1
|
Qian J, Jiang Y, Hu H. Ginsenosides: an immunomodulator for the treatment of colorectal cancer. Front Pharmacol 2024; 15:1408993. [PMID: 38939839 PMCID: PMC11208871 DOI: 10.3389/fphar.2024.1408993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
Ginsenosides, the primary bioactive ingredients derived from the root of Panax ginseng, are eagerly in demand for tumor patients as a complementary and alternative drug. Ginsenosides have increasingly become a "hot topic" in recent years due to their multifunctional role in treating colorectal cancer (CRC) and regulating tumor microenvironment (TME). Emerging experimental research on ginsenosides in the treatment and immune regulation of CRC has been published, while no review sums up its specific role in the CRC microenvironment. Therefore, this paper systematically introduces how ginsenosides affect the TME, specifically by enhancing immune response, inhibiting the activation of stromal cells, and altering the hallmarks of CRC cells. In addition, we discuss their impact on the physicochemical properties of the tumor microenvironment. Furthermore, we discuss the application of ginsenosides in clinical treatment as their efficacy in enhancing tumor patient immunity and prolonging survival. The future perspectives of ginsenoside as a complementary and alternative drug of CRC are also provided. This review hopes to open up a new horizon for the cancer treatment of Traditional Chinese Medicine monomers.
Collapse
Affiliation(s)
- Jianan Qian
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyu Jiang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyi Hu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Guan L, Eisenmenger A, Crasta KC, Sandalova E, Maier AB. Therapeutic effect of dietary ingredients on cellular senescence in animals and humans: A systematic review. Ageing Res Rev 2024; 95:102238. [PMID: 38382678 DOI: 10.1016/j.arr.2024.102238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Cellular senescence has been regarded as a therapeutic target for ageing and age-related diseases. Several senotherapeutic agents have been proposed, including compounds derived from natural products which hold the translational potential to promote healthy ageing. This systematic review examined the association of dietary ingredients with cellular senescence in animals and humans, with an intent to identify dietary ingredients with senotherapeutic potential. METHODS This systematic review was registered at PROSPERO International prospective register of systematic reviews (Reg #: CRD42022338885). The databases PubMed and Embase were systematically searched for key terms related to cellular senescence, senescence markers, diets, nutrients and bioactive compounds. Intervention and observational studies on human and animals investigating the effects of dietary ingredients via oral administration on cellular senescence load were included. The SYRCLE's risk of bias tool and Cochrane risk of bias tool v2.0 were used to assess the risk of bias for animal and human studies respectively. RESULTS Out of 5707 identified articles, 83 articles consisting of 78 animal studies and 5 human studies aimed to reduce cellular senescence load using dietary ingredients. In animal studies, the most-frequently used senescence model was normative ageing (26 studies), followed by D-galactose-induced models (17 studies). Resveratrol (8 studies), vitamin E (4 studies) and soy protein isolate (3 studies) showed positive effects on reducing the level of senescence markers such as p53, p21, p16 and senescence-associated ß-galactosidase in various tissues of physiological systems. In three out of five human studies, ginsenoside Rg1 had no positive effect on reducing senescence in muscle tissues after exercise. The risk of bias for both animal and human studies was largely unclear. CONCLUSION Resveratrol, vitamin E and soy protein isolate are promising senotherapeutics studied in animal models. Studies testing dietary ingredients with senotherapeutic potential in humans are limited and translation is highly warranted.
Collapse
Affiliation(s)
- Lihuan Guan
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore
| | - Anna Eisenmenger
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore
| | - Karen C Crasta
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore; Department of Physiology, National University of Singapore, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Agency for Science, Technology & Research (A⁎STAR), Institute of Molecular and Cell Biology (IMCB), Singapore
| | - Elena Sandalova
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore; Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, the Netherlands.
| |
Collapse
|
3
|
Reid N, Young A, Shafiee Hanjani L, Hubbard RE, Gordon EH. Sex-specific interventions to prevent and manage frailty. Maturitas 2022; 164:23-30. [PMID: 35780633 DOI: 10.1016/j.maturitas.2022.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/20/2022] [Accepted: 05/28/2022] [Indexed: 12/15/2022]
Abstract
There is growing interest in interventions that delay, slow, and even reverse frailty. In this narrative review, we explore the evidence on exercise, nutrition, medication optimisation and social support interventions for frailty and consider how these relate to underlying frailty pathophysiology. We also consider pathophysiological mechanisms underpinning sex differences in frailty before evaluating the limited evidence for sex-specific frailty interventions that is currently available. Through this review of the literature, we generate a list of potential sex-specific interventions for frailty. While individual-level recommendations are certainly important, future work should turn the focus towards population-level interventions that take into account sex differences in frailty, including changes to healthcare and socioeconomic systems, as well as changes to the built environment to promote healthy behaviours.
Collapse
Affiliation(s)
- Natasha Reid
- Faculty of Medicine, The University of Queensland, Queensland, Australia.
| | - Adrienne Young
- Faculty of Medicine, The University of Queensland, Queensland, Australia; Royal Brisbane and Women's Hospital, Metro North Health, Queensland, Australia
| | | | - Ruth E Hubbard
- Faculty of Medicine, The University of Queensland, Queensland, Australia; Princess Alexandra Hospital, Metro South Health, Queensland, Australia
| | - Emily H Gordon
- Faculty of Medicine, The University of Queensland, Queensland, Australia; Princess Alexandra Hospital, Metro South Health, Queensland, Australia
| |
Collapse
|
4
|
From cyclins to CDKIs: Cell cycle regulation of skeletal muscle stem cell quiescence and activation. Exp Cell Res 2022; 420:113275. [PMID: 35931143 DOI: 10.1016/j.yexcr.2022.113275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/12/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022]
Abstract
After extensive proliferation during development, the adult skeletal muscle cells remain outside the cell cycle, either as post-mitotic myofibers or as quiescent muscle stem cells (MuSCs). Despite its terminally differentiated state, adult skeletal muscle has a remarkable regeneration potential, driven by MuSCs. Upon injury, MuSC quiescence is reversed to support tissue growth and repair and it is re-established after the completion of muscle regeneration. The distinct cell cycle states and transitions observed in the different myogenic populations are orchestrated by elements of the cell cycle machinery. This consists of i) complexes of cyclins and Cyclin-Dependent Kinases (CDKs) that ensure cell cycle progression and ii) their negative regulators, the Cyclin-Dependent Kinase Inhibitors (CDKIs). In this review we discuss the roles of these factors in developmental and adult myogenesis, with a focus on CDKIs that have emerging roles in stem cell functions.
Collapse
|
5
|
Lee TXY, Wu J, Jean WH, Condello G, Alkhatib A, Hsieh CC, Hsieh YW, Huang CY, Kuo CH. Reduced stem cell aging in exercised human skeletal muscle is enhanced by ginsenoside Rg1. Aging (Albany NY) 2021; 13:16567-16576. [PMID: 34181580 PMCID: PMC8266347 DOI: 10.18632/aging.203176] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Background: Stem cell aging, characterized by elevated p16INK4a expression, decreases cell repopulating and self-renewal abilities, which results in elevated inflammation and slow recovery against stress. Methods: Biopsied muscles were analyzed at baseline and 24 h after squat exercise in 12 trained men (22 ± 2 y). Placebo (PLA) and immunostimulant Rg1 (5 mg) were supplemented 1 h before a squat exercise, using a double-blind counterbalanced crossover design. Results: Perceived exertion at the end of resistance exercise session was significantly lowered after Rg1 supplementation. Exercise doubled endothelial progenitor cells (EPC) (p < 0.001) and decreased p16INK4a mRNA to 50% of baseline (d = 0.865, p < 0.05) in muscle tissues, despite p16INK4a+ cell and beta-galactosidase+ (ß-Gal+) cell counts being unaltered. Rg1 further lowered p16INK4a mRNA to 35% of baseline with greater effect size than the PLA level (d = 1.302, p < 0.01) and decreased myeloperoxidase (MPO) mRNA to 39% of baseline (p < 0.05). A strong correlation between MPO and p16INK4a expression in muscle tissues was observed (r = 0.84, p < 0.001). Conclusion: EPC in skeletal muscle doubled 1 d after an acute bout of resistance exercise. The exercised effects in lowering EPC aging and tissue inflammation were enhanced by immunostimulant Rg1, suggesting the involvement of immune stimulation on EPC rejuvenation.
Collapse
Affiliation(s)
- Tania Xu Yar Lee
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei City 11153, Taiwan, ROC
| | - Jinfu Wu
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei City 11153, Taiwan, ROC.,Laboratory of Regenerative Medicine in Sports Science, School of Physical Education & Sports Science, South China Normal University, Guangzhou, China
| | - Wei-Horng Jean
- Department of Anesthesiology, Far East Memorial Hospital, New Taipei City 220, Taiwan, ROC
| | - Giancarlo Condello
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei City 11153, Taiwan, ROC
| | - Ahmad Alkhatib
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei City 11153, Taiwan, ROC.,School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, England, United Kingdom
| | - Chao-Chieh Hsieh
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei City 11153, Taiwan, ROC
| | - Yu-Wen Hsieh
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei City 11153, Taiwan, ROC
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC.,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan, ROC.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, ROC.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan, ROC
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei City 11153, Taiwan, ROC
| |
Collapse
|
6
|
Guo H, Zhang Y, Han T, Cui X, Lu X. Chronic intermittent hypoxia aggravates skeletal muscle aging by down-regulating Klc1/grx1 expression via Wnt/β-catenin pathway. Arch Gerontol Geriatr 2021; 96:104460. [PMID: 34218156 DOI: 10.1016/j.archger.2021.104460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Sleep breathing disorder may affect skeletal muscle decline in the elderly, but the mechanism is not clear. Therefore, this study explores the mechanism of skeletal muscle aging in chronic intermittent hypoxia (CIH) rats. METHODS In vitro and in vivo CIH models were constructed in L6 cells and SD rats by treating chronic intermittent hypoxia. Pathological changes of skeletal muscle in vivo were measured by hematoxylin-eosin (HE) staining. Cell proliferation and apoptosis were detected by CCK-8 and Flow cytometer, respectively. The expression of KLC1/GRX1 and the proteins related to the Wnt/β-catenin pathway were measured by qRT-PCR and western blot. RESULTS CIH model was successfully established induced by chronic intermittent hypoxia with lower skeletal muscle index (SMI), increased inward migration of muscle fiber cell nucleus, and muscle cells' distance. The results showed that Wnt/β-catenin signalling was activatedin both L6 cells and CIH rats' model. KLC1 and GRX1 were significantly downregulated in the CIH model. Loss of function showed that downregulation of KLC1 promoted L6 cell and skeletal muscle aging in vitro and in vivo, respectively. CONCLUSION Our results demonstrated that CIH aggravated skeletal muscle aging by down-regulating KLC1/GRX1 expression via the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Hua Guo
- Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China; Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Yunyun Zhang
- Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Tingting Han
- Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Xiaochuan Cui
- Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China.
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|