1
|
Bai SH, Chandnani A, Cao S. Bile Acids in Inflammatory Bowel Disease: From Pathophysiology to Treatment. Biomedicines 2024; 12:2910. [PMID: 39767816 PMCID: PMC11673883 DOI: 10.3390/biomedicines12122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic condition that affects about 7 million people worldwide, and new therapies are needed. Understanding the complex roles that bile acids (BAs) play in IBD may lead to the development of novel IBD treatments independent of direct immunosuppression. This review discusses the latest discoveries in the roles BAs play in IBD pathogenesis and explores how these discoveries offer promising new therapeutic targets to treat IBD and improve patient outcomes. Several therapies discussed include specific BA receptor (BAR) agonists, dietary therapies, supplements, probiotics, and mesenchymal stem cell therapies that have all been shown to decrease IBD disease activity.
Collapse
Affiliation(s)
| | | | - Siyan Cao
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.H.B.); (A.C.)
| |
Collapse
|
2
|
Lin C, Song D, Wang S, Chu Y, Chi C, Jia S, Lin M, He C, Jiang C, Gong F, Chen Q. Polygonatum cyrtonema polysaccharides reshape the gut microbiota to ameliorate dextran sodium sulfate-induced ulcerative colitis in mice. Front Pharmacol 2024; 15:1424328. [PMID: 38898924 PMCID: PMC11185953 DOI: 10.3389/fphar.2024.1424328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized inflammatory imbalance, intestinal epithelial mucosal damage, and dysbiosis of the gut microbiota. Polygonatum cyrtonema polysaccharides (PCPs) can regulate gut microbiota and inflammation. Here, the different doses of PCPs were administered to dextran sodium sulfate-induced UC mice, and the effects of the whole PCPs were compared with those of the fractionated fractions PCP-1 (19.9 kDa) and PCP-2 (71.6 and 4.2 kDa). Additionally, an antibiotic cocktail was administered to UC mice to deplete the gut microbiota, and PCPs were subsequently administered to elucidate the potential role of the gut microbiota in these mice. The results revealed that PCP treatment significantly optimized the lost weight and shortened colon, restored the balance of inflammation, mitigated oxidative stress, and restored intestinal epithelial mucosal damage. And, the PCPs exhibited superior efficacy in ameliorating these symptoms compared with PCP-1 and PCP-2. However, depletion of the gut microbiota diminished the therapeutic effects of PCPs in UC mice. Furthermore, fecal transplantation from PCP-treated UC mice to new UC-afflicted mice produced therapeutic effects similar to PCP treatment. So, PCPs significantly ameliorated the symptoms, inflammation, oxidative stress, and intestinal mucosal damage in UC mice, and gut microbiota partially mediated these effects.
Collapse
Affiliation(s)
- Chaoyou Lin
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Dawei Song
- Mount Jiuhuashan Sealwort Research Institute, Chizhou, China
| | - Shangwen Wang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yunfei Chu
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Changxing Chi
- China Department of Endocrinology, Yanbian University Hospital, Yanji, China
| | - Sining Jia
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Mengyi Lin
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Chenbei He
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Chengxi Jiang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Fanghua Gong
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Qiongzhen Chen
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
3
|
Zhou J, Wang J, Li D, Zhang Z, Wang C, Zhang X, Xu X, Gao J. An inulin-type fructan CP-A from Codonopsis pilosula alleviates TNBS-induced ulcerative colitis based on serum-untargeted metabolomics. Am J Physiol Gastrointest Liver Physiol 2024; 326:G216-G227. [PMID: 38193197 DOI: 10.1152/ajpgi.00214.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Ulcerative colitis (UC) is an inflammatory disease with abdominal pain, diarrhea, and bloody stool as the main symptoms. Several studies have confirmed that polysaccharides are effective against UC. It is commonly accepted that the traditional benefits of Radix Codonopsis can be attributed to its polysaccharide contents, and inulin-type fructan CP-A is the main active monomer in the polysaccharide components. Herein, we established a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced UC rat model and lipopolysaccharide (LPS)-induced colonic epithelial cell model (NCM460) to investigate the effect of CP-A on UC. Untargeted metabolomics studies were conducted to identify differential metabolites using ultra-high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF/MS) and enrich metabolic pathways in rat serum. The in vivo assays demonstrated that CP-A reduces colonic macroscopic injury, disease activity index (DAI), histopathological score, interleukin (IL)-8, and tumor necrosis factor-α (TNF-α) levels, as well as the expression of intercellular adhesion molecules. On the other hand, CP-A increases IL-10 and transforming growth factor-β (TGF-β) levels. The in vitro experiments indicated that CP-A treatment could reduce nitric oxide (NO) and IL-1β after LPS stimulation. The metabolomics results suggested that CP-A therapy for UC may be related to the mammalian target of rapamycin (mTOR) signaling pathway. The in vitro and in vivo validation of the pathway showed similar results, indicating that CP-A alleviates UC by preventing the activation of mTOR/p70S6K signaling pathway. These findings offer a fresh approach to treating UC and a theoretical foundation for the future advancement of CP-A.NEW & NOTEWORTHY We report that an inulin-type fructan from Codonopsis pilosula CP-A exhibits a therapeutic effect on experimental colitis. Its mechanism may be to alleviate intestinal inflammation by preventing the activation of mammalian target of rapamycin (mTOR)/p70S6K signaling pathway. These findings offer a fresh approach to treating ulcerative colitis (UC) and a theoretical foundation for the future advancement of CP-A.
Collapse
Affiliation(s)
- Jiangtao Zhou
- School of Pharmacy, Shanxi Medical University, Taiyuan, People's Republic of China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jiajing Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Deyun Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Zhijia Zhang
- Urology Surgery, Shanxi Provincial People's Hospital, Taiyuan, People's Republic of China
| | - Changjian Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xuepeng Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xiexin Xu
- School of Pharmacy, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jianping Gao
- School of Pharmacy, Shanxi Medical University, Taiyuan, People's Republic of China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
4
|
Wushouer X, Aximujiang K, Kadeer N, Aihemaiti A, Zhong L, Yunusi K. Effect of huankuile on colon injury in rats with ulcerative colitis by reducing TNF-α and MMP9. Eur J Med Res 2024; 29:102. [PMID: 38321559 PMCID: PMC10845565 DOI: 10.1186/s40001-024-01695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
OBJECTIVE To explore the mechanism of huankuile (HKL) in colon injury repair in rats with ulcerative colitis (UC). METHODS Fifty SPF Wistar male rats were divided randomly into a normal group, a negative control group, an HKL intervention group ('HKL group') and a 5-aminosalicylic acid intervention group ('5-ASA group'). After 14 days of intervention with corresponding drugs, pathological scores were obtained using the results of immunohistochemical staining; morphological changes were observed by hematoxylin-eosin staining, and the mRNA expression levels of tumour necrosis factor-α (TNF-α), matrix metalloproteinase 9 (MMP9) and interleukin-13 (IL-13) were detected by real-time quantitative PCR. RESULTS After the successful construction of the rat model, it was compared with the rats in the normal group. In the negative group, it was found that the expression of TNF-α and MMP9 was significantly increased in the colonic mucosal epithelia of the rats, the pathological score was significantly increased (P < 0.05), and the mRNA expression levels of TNF-α, MMP9 and IL-13 were increased (P < 0.05). After treatment with HKL, the colonic morphology of the rats returned to normal, the expression of TNF-α and MMP9 in the colonic mucosal epithelium of the rats returned to normal, the pathological score grade was significantly reduced (P < 0.05), and the mRNA expression levels of TNF-α, MMP9 and IL-13 were reduced; these results were largely consistent with those of the normal group, with no statistically significant difference. CONCLUSION HKL effectively improved the general symptoms and tissue injury in UC rats, and the therapeutic effect was better than that of 5-ASA group. Ulcerative colitis in rats increased the expression of TNF-α, MMP9 and IL-13. HKL repaired UC-induced colonic injury in rats by decreasing the expression of TNF-α, MMP9 and IL-13.
Collapse
Affiliation(s)
- Xilinguli Wushouer
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
- Xinjiang key laboratory of Molecular Biology for endemic diseases, Urumqi , 830054, China
| | - Kasimujiang Aximujiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Nafeisha Kadeer
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Abulaiti Aihemaiti
- The Functional Center, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Li Zhong
- The Functional Center, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Kurexi Yunusi
- UygurMedical College, Xinjiang Medical University, Urumqi, 830017, China.
| |
Collapse
|
5
|
Zhang H, Zou Y, Xue Q, Li M, Yang H, Cheng H, Gu Y, Shen C, Tian Q, Wang S. Elemene oral emulsion attenuates colitis in mice by altering gut microbiome and regulating amino acids metabolism. Microb Pathog 2022; 173:105821. [PMID: 36336131 DOI: 10.1016/j.micpath.2022.105821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Honghua Zhang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China; Jining Medical University, Jining, Shandong, 272113, PR China
| | - Yuqing Zou
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China
| | - Qingjie Xue
- Jining Medical University, Jining, Shandong, 272113, PR China
| | - Minhui Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China
| | - Huimin Yang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China
| | - Huijuan Cheng
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China
| | - Yuxin Gu
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, PR China
| | - Qingchang Tian
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China.
| | - Shuling Wang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China.
| |
Collapse
|
6
|
Yuan S, Wang Q, Li J, Xue JC, Li Y, Meng H, Hou XT, Nan JX, Zhang QG. Inflammatory bowel disease: an overview of Chinese herbal medicine formula-based treatment. Chin Med 2022; 17:74. [PMID: 35717380 PMCID: PMC9206260 DOI: 10.1186/s13020-022-00633-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/02/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent inflammatory disease of the intestine, including Crohn’s disease (CD) and ulcerative colitis (UC), whose etiology and pathogenesis have not been fully understood. Due to its prolonged course and chronic recurrence, IBD imposes a heavy economic burden and psychological stress on patients. Traditional Chinese Herbal Medicine has unique advantages in IBD treatment because of its symptomatic treatment. However, the advantages of the Chinese Herbal Medicine Formula (CHMF) have rarely been discussed. In recent years, many scholars have conducted fundamental studies on CHMF to delay IBD from different perspectives and found that CHMF may help maintain intestinal integrity, reduce inflammation, and decrease oxidative stress, thus playing a positive role in the treatment of IBD. Therefore, this review focuses on the mechanisms associated with CHMF in IBD treatment. CHMF has apparent advantages. In addition to the exact composition and controlled quality of modern drugs, it also has multi-component and multi-target synergistic effects. CHMF has good prospects in the treatment of IBD, but its multi-agent composition and wide range of targets exacerbate the difficulty of studying its treatment of IBD. Future research on CHMF-related mechanisms is needed to achieve better efficacy.
Collapse
Affiliation(s)
- Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China.,Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China
| | - Qi Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China
| | - Jiao Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China.,Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, 133002, Jilin, China
| | - Jia-Chen Xue
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China.,Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, 133002, Jilin, China
| | - You Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China
| | - Huan Meng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China
| | - Xiao-Ting Hou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China.
| | - Qing-Gao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China. .,Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China. .,Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, 133002, Jilin, China.
| |
Collapse
|