1
|
Liang X, Zhang C, Shen L, Ding L, Guo H. Role of non‑coding RNAs in UV‑induced radiation effects (Review). Exp Ther Med 2024; 27:262. [PMID: 38756908 PMCID: PMC11097301 DOI: 10.3892/etm.2024.12550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024] Open
Abstract
Ultraviolet (UV) is divided into UVA (long-wave, 320-400 nm), UVB (middle-wave, 280-320 nm) and UVC (short-wave, 100-280 nm) based on wavelength. UV radiation (UVR) from sunlight (UVA + UVB) is a major cause of skin photodamage including skin inflammation, aging and pigmentation. Accidental exposure to UVC burns the skin and induces skin cancer. In addition to the skin, UV radiation can also impair visual function. Non-coding RNAs (ncRNAs) are a class of functional RNAs that do not have coding activity but can control cellular processes at the post-transcriptional level, including microRNA (miRNA), long non-coding RNA (lncRNA) and circulatory RNA (circRNA). Through a review of the literature, it was determined that UVR can affect the expression of various ncRNAs, and that this regulation may be wavelength specific. Functionally, ncRNAs participate in the regulation of photodamage through various pathways and play pathogenic or protective regulatory roles. In addition, ncRNAs that are upregulated or downregulated by UVR can serve as biomarkers for UV-induced diseases, aiding in diagnosis and prognosis assessment. Therapeutic strategies targeting ncRNAs, including the use of natural drugs and their extracts, have shown protective effects against UV-induced photodamage. In the present review, an extensive summarization of previous studies was performed and the role and mechanism of ncRNAs in UV-induced radiation effects was reviewed to aid in the diagnosis and treatment of UV-related diseases.
Collapse
Affiliation(s)
- Xiaofei Liang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161000, P.R. China
| | - Chao Zhang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161000, P.R. China
| | - Lijuan Shen
- Department of Laboratory Medicine, Qiqihar MingZhu Hospital, Qiqihar, Heilongjiang 161000, P.R. China
| | - Ling Ding
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161000, P.R. China
| | - Haipeng Guo
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161000, P.R. China
| |
Collapse
|
2
|
Soleimani M, Cheraqpour K, Koganti R, Djalilian AR. Cellular senescence and ophthalmic diseases: narrative review. Graefes Arch Clin Exp Ophthalmol 2023; 261:3067-3082. [PMID: 37079093 DOI: 10.1007/s00417-023-06070-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
PURPOSE Cellular senescence is a state of permanent growth arrest whereby a cell reaches its replicative limit. However, senescence can also be triggered prematurely in certain stressors including radiation, oxidative stress, and chemotherapy. This stress-induced senescence has been studied in the context of promoting inflammation, tumor development, and several chronic degenerative diseases of aging. Emerging research has elucidated the role of senescence in various ocular diseases. METHODS The literature search was performed using PubMed with using the query (senescence OR aging) AND (eye disease OR ocular disease OR ophthalmic disease OR cornea OR glaucoma OR cataract OR retina) on October 20th, 2022. No time restriction was proposed. Articles were excluded if they were not referenced in English. RESULTS Overall, 51 articles regarding senescence and ocular diseases were found and summarized in this study. Several signaling pathways have been implicated in the development of senescence. Currently, senescence has been linked to various corneal and retinal pathologies, as well as cataract and glaucoma. Given the number of pathologies, senolytics, which are small molecules with the ability to selective targeting of senescent cells, can be used as therapeutic or prophylactic agents. CONCLUSIONS Senescence has been shown to underlie the pathogenesis of numerous ocular diseases. The overall literature on senescence and ocular disease is growing rapidly. There is an ongoing debate whether or not cellular senescence detected in experiments contributes in a significant way to diseases. Research on understanding the mechanism of senescence from ocular cells and tissues is just beginning. Multiple animal models are required to test potential senolytics. Currently, no studies exist to date which have demonstrated the benefits of senolytic therapies in human studies.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Cornea Service, Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Illinois Eye and Ear Infirmary, 1855 W. Taylor Street, M/C 648, Chicago, IL, 60612, USA
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Cornea Service, Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Illinois Eye and Ear Infirmary, 1855 W. Taylor Street, M/C 648, Chicago, IL, 60612, USA.
| |
Collapse
|
3
|
Liang Y, Lan T, Gan Q, Liang H. Successful transduction of target gene mediated by adeno-associated virus 2 into lens epithelial cells in rats. J Virol Methods 2023; 321:114792. [PMID: 37591371 DOI: 10.1016/j.jviromet.2023.114792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
The Adeno-Associated Virus (AAV) has emerged as a promising candidate for delivery of genetic material, exhibiting significant potential in various clinical applications. Although multiple AAV serotypes have been shown to transduce ocular tissues, there have been few studies of AAV transduction of lens epithelial cells (LECs) in the ocular. In this study, we compared the efficiency of intravitreal injection of six AAV serotypes (AAV2, AAV5, AAV6, AAV8, AAV9, and AAVDJ) to transduce lens and retina in rats, The expression and localization of the reporter gene ZsGreen in the lens and retina were examined using immunofluorescence staining, and the relative expression of ZsGreen mRNA was detected using RT-qPCR. Our results demonstrated that AAV2 had the highest efficiency in transducing LECs. All six AAV serotypes could transduce the retina. To validate this observation, we further constructed an AAV2 vector with exogenous gene senescence marker protein 30 (SMP30) and performed intravitreal injection to successfully overexpress SMP30 in LECs of rats. our results provide a basis for the use of AAV vector-mediated gene therapy for lens diseases.
Collapse
Affiliation(s)
- Yongshun Liang
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Tian Lan
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qingqiao Gan
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Hao Liang
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
4
|
Circular RNA circ_0024037 suppresses high glucose-induced lens epithelial cell injury by targeting the miR-199a-5p/TP53INP1 axis. Mol Cell Toxicol 2023. [DOI: 10.1007/s13273-023-00340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
5
|
Ma Y, Liu Y, Shu B, Yang J, Lv L, Zhou L, Wang L, Shi Z. CircMAP3K4 protects human lens epithelial cells from H 2O 2-induced dysfunction by targeting miR-193a-3p/PLCD3 axis in age-related cataract. Cell Cycle 2023; 22:303-315. [PMID: 36071682 PMCID: PMC9851233 DOI: 10.1080/15384101.2022.2114587] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs (circRNAs) have shown pivotal regulatory roles in multiple human ocular diseases, including age-related cataract (ARC). Here, we explored the role of circRNA mitogen-activated protein kinase kinase kinase 4 (circMAP3K4, hsa_circ_0078619) in ARC pathology and its associated mechanism. The expression of RNAs and proteins was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot assay. Cell viability, senescence, proliferation, and apoptosis were analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, senescence-associated-β-galactosidase (SA-β-Gal) staining, 5-ethynyl-20-deoxyuridine (EdU) assay, and flow cytometry. The oxidative stress status of SRA01/04 cells was analyzed using the commercial kits. The interaction between microRNA-193a-3p (miR-193a-3p) and circMAP3K4 or phospholipase C delta 3 (PLCD3) was verified by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay, and RNA-pull down assay. CircMAP3K4 was significantly down-regulated in ARC patients and H2O2-induced SRA01/04 cells. H2O2 treatment restrained the viability and proliferation and promoted the senescence, apoptosis, and oxidative stress of SRA01/04 cells, and circMAP3K4 overexpression protected SRA01/04 cells from H2O2-induced dysfunction. MiR-193a-3p was a direct target of circMAP3K4, and circMAP3K4 overexpression-mediated protective effects in H2O2-induced SRA01/04 cells were largely reversed by the accumulation of miR-193a-3p. MiR-193a-3p interacted with the 3' untranslated region (3'UTR) of PLCD3, and PLCD3 knockdown largely overturned miR-193a-3p silencing-induced protective effects in H2O2-induced SRA01/04 cells. CircMAP3K4 up-regulated the expression of PLCD3 via sponging miR-193a-3p in SRA01/04 cells. In conclusion, circMAP3K4 protected SRA01/04 cells from H2O2-induced dysfunction in ARC through mediating miR-193a-3p/PLCD3 axis.
Collapse
Affiliation(s)
- Yu Ma
- Department of Ophthalmology, Zhengzhou University, Affiliated Hospital 5, Zhengzhou, Henan, China
| | - Yi Liu
- College of Medical Technology and Engineering, Zhengzhou Railway Vocational Technology College, Zhengzhou, China
| | - Baotong Shu
- Department of Medical Technology, Henan Medical College, Zhengzhou, Henan, China
| | - Jianguo Yang
- Department of ophtalmology, Ningbo Eye Hospital West Branch, Ningbo, China
| | - Liang Lv
- Department of Ophthalmology, Zhengzhou University, Affiliated Hospital 5, Zhengzhou, Henan, China
| | - Lixiao Zhou
- Department of Ophthalmology, Zhengzhou University, Affiliated Hospital 5, Zhengzhou, Henan, China
| | - Lichun Wang
- Department of Ophthalmology, Zhengzhou Second People’s Hospital, Zhengzhou, China
| | - Zongli Shi
- Department of ophtalmology, Chang Zhou Banshang Eye Hospital, Changzhou, China
| |
Collapse
|
6
|
The Differential Expression of Circular RNAs and the Role of circAFF1 in Lens Epithelial Cells of High-Myopic Cataract. J Clin Med 2023; 12:jcm12030813. [PMID: 36769461 PMCID: PMC9918043 DOI: 10.3390/jcm12030813] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
High-myopic cataract (HMC) is a complex cataract with earlier onset and more rapid progress than age-related cataract (ARC). Circular RNAs (circRNAs) have been implicated in many diseases. However, their involvement in HMC remain largely unexplored. To investigate the role of dysregulated circRNAs in HMC, lens epithelium samples from 24 HMC and 24 ARC patients were used for whole transcriptome sequencing. Compared with ARC, HMC had 3687 uniquely expressed circRNAs and 1163 significantly differentially expressed circRNAs (DEcRs) (|log2FC| > 1, p < 0.05). A putative circRNA-miRNA-mRNA network was constructed based on correlation analysis. We validated the differential expression of 3 DEcRs by quantitative polymerase chain reaction (qPCR) using different sets of samples. We further investigated the role of circAFF1 in cultured lens epithelial cells (LECs) and found that the overexpression of circAFF1 promoted cell proliferation, migration and inhibited apoptosis. We also showed that circAFF1 upregulated Tropomyosin 1 (TPM1) expression by sponging miR-760, which was consistent with the network prediction. Collectively, our study suggested the involvement of circRNAs in the pathogenesis of HMC and provide a resource for further study on this topic.
Collapse
|
7
|
Li R, Zhu H, Li Q, Tang J, Jin Y, Cui H. METTL3-mediated m6A modification of has_circ_0007905 promotes age-related cataract progression through miR-6749-3p/EIF4EBP1. PeerJ 2023; 11:e14863. [PMID: 36908822 PMCID: PMC9997201 DOI: 10.7717/peerj.14863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/17/2023] [Indexed: 03/08/2023] Open
Abstract
Many cases of blindness are caused by age-related cataracts (ARCs). N6-methyladenosine (m6A)-modified circRNA widely participates in disease progression. However, the role of m6A modification of circRNA in ARC is unclear. We mined and elucidated the functions and mechanisms of key circRNAs with m6A modification involved in ARC progression. The GSE153722 dataset was used to mine m6A-mediated key circRNA. Loss-of-function assays and rescue assays were used to explore the effect and mechanism of circRNA on ARC cell proliferation and apoptosis. Has_circ_0007905 was a hypermethylated and upregulated expression in the ARC group relative to the control group both in vivo and in vitro. Silencing of has_circ_0007905 promoted proliferation and inhibited the apoptosis of HLE-B3 cells. METTL3 was upregulated in HLE-B3 cells after ARC modeling and had four binding sites with has_circ_0007905 and a mediated m6A modification of has_circ_0007905. Proliferation was significantly inhibited and apoptosis of HLE-B3 cells was facilitated by METTL3 overexpression, whereas these effects were prevented by has_circ_0007905 silencing. Silencing of has_circ_0007905 led to an alteration in the transcriptome landscape. Differentially expressed genes were mainly involved in immune-related processes and pathways. EIF4EBP1 overexpression promoted apoptosis and suppressed proliferation, and also significantly reversed effects of has_circ_0007905 silencing. Moreover, miR-6749-3p significantly decreased the luciferase activities of wild type plasmids with both of has_circ_0007905 and EIF4EBP1. MiR-6749-3p inhibitor blocked elevation in proliferation and reduced EIF4EBP1 expression and apoptosis conferred by has_circ_0007905 silencing. We reveal for the first time that the commitment of ARC progression is guided by METTL3/has_circ_0007905/miR-6749-3p/EIF4EBP1 axis, and the results provide new insights into ARC pathology.
Collapse
Affiliation(s)
- Rui Li
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haohao Zhu
- Department of Ophthalmology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Qian Li
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiancen Tang
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiping Jin
- Department of Ophthalmology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Hongping Cui
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Chen Q, Gu P, Liu X, Hu S, Zheng H, Liu T, Li C. Gold Nanoparticles Encapsulated Resveratrol as an Anti-Aging Agent to Delay Cataract Development. Pharmaceuticals (Basel) 2022; 16:ph16010026. [PMID: 36678523 PMCID: PMC9866047 DOI: 10.3390/ph16010026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Nanoparticle-based drug delivery systems, which can overcome the challenges associated with poor aqueous solubility and other harmful side effects of drugs, display potent applications in cataract treatment. Herein, we designed a nanosystem of gold nanoparticles containing resveratrol (RGNPs) as an anti-aging agent to delay cataracts. The spherical RGNPs had a superior ability to inhibit hydrogen peroxide-mediated oxidative stress damage, including reactive oxygen species (ROS) production, malondialdehyde (MDA) generation, and glutathione (GSH) consumption in the lens epithelial cells. Additionally, the present data showed that RGNPs could delay cellular senescence induced by oxidative stress by decreasing the protein levels of p16 and p21, reducing the ratio of BAX/BCL-2 and the senescence-associated secretory phenotype (SASP) in vitro. Moreover, the RGNPs could also clearly relieve sodium selenite-induced lens opacity in a rat cataract model. Our data indicated that cell senescence was reduced and cataracts were delayed upon treatment with RGNPs through activating the Sirt1/Nrf2 signaling pathway. Our findings suggested that RGNPs could serve as an anti-aging ingredient, highlighting their potential to delay cataract development.
Collapse
Affiliation(s)
- Qifang Chen
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Peilin Gu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xuemei Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Shaohua Hu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Ting Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing 400042, China
- Correspondence: (T.L.); (C.L.)
| | - Chongyi Li
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing 400042, China
- Correspondence: (T.L.); (C.L.)
| |
Collapse
|
9
|
Wang Y, Tseng Y, Chen K, Wang X, Mao Z, Li X. Reduction in Lens Epithelial Cell Senescence Burden through Dasatinib Plus Quercetin or Rapamycin Alleviates D-Galactose-Induced Cataract Progression. J Funct Biomater 2022; 14:jfb14010006. [PMID: 36662053 PMCID: PMC9862066 DOI: 10.3390/jfb14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Senescent cells accumulate in aged organisms and promote the progression of age-related diseases including cataracts. Therefore, we aimed to study the therapeutic effects of senescence-targeting drugs on cataracts. In this study, a 28-day D-galactose-induced cataract rat model was used. The opacity index, a grading based on slit-lamp observations, was used to assess lens cloudiness. Furthermore, the average lens density (ALD), lens density standard deviation (LDSD), and maximum lens density (MLD) obtained from Scheimpflug images were used to assess lens transparency. Immunohistochemical stainings for p16 and γH2AX were used as hallmarks of senescence. We treated rat cataract models with the senolytic drug combination dasatinib plus quercetin (D+Q) and senescence-associated secretory phenotype (SASP) inhibitors. In comparison to control lenses, D-galactose-induced cataract lenses showed a higher opacity index, ALD, LDSD, and MLD values, as well as accumulation of senescent lens epithelial cells (LECs). After D+Q treatment, ALD, LDSD, and MLD values on day 21 were significantly lower than those of vehicle-treated model rats. The expression levels of p16 and γH2AX were also reduced after D+Q administration. In addition, the SASP inhibitor rapamycin decreased the opacity index, ALD, LDSD, and MLD values on day 21. In conclusion, D+Q alleviated D-galactose-induced cataract progression by reducing the senescent LEC burden in the early stage of cataract.
Collapse
Affiliation(s)
- Yinhao Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerves, Peking University Third Hospital, Beijing 100191, China
| | - Yulin Tseng
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerves, Peking University Third Hospital, Beijing 100191, China
| | - Keyu Chen
- Department of Biochemistry and Molecular Biology, Health Science Center, Peking University, Beijing 100191, China
| | - Xinglin Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerves, Peking University Third Hospital, Beijing 100191, China
| | - Zebin Mao
- Department of Biochemistry and Molecular Biology, Health Science Center, Peking University, Beijing 100191, China
- Correspondence: (Z.M.); (X.L.)
| | - Xuemin Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerves, Peking University Third Hospital, Beijing 100191, China
- Correspondence: (Z.M.); (X.L.)
| |
Collapse
|
10
|
Analysis of cataract-regulated genes using chemical DNA damage induction in a rat ex vivo model. PLoS One 2022; 17:e0273456. [PMID: 36477544 PMCID: PMC9728860 DOI: 10.1371/journal.pone.0273456] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/08/2022] [Indexed: 12/12/2022] Open
Abstract
Although cataracts affect almost all people at advanced age and carry a risk of blindness, the mechanisms of cataract development remain incompletely understood. Oxidative stress, which is a causative factor in cataract, results in DNA breakage, which suggests that DNA damage could contribute to the formation of cataracts. We developed an ex vivo experimental system to study changes in gene expression during the formation of opacities in the lens by culturing explanted rat lenses with Methylmethanesulfonate (MMS) or Bleomycin, which induce DNA damage. Lenses cultured using this experimental system developed cortical opacity, which increased in a concentration- and time-dependent manner. In addition, we compared expression profiles at the whole gene level using microarray analysis of lenses subjected to MMS or Bleomycin stress. Microarray findings in MMS-induced opacity were validated and gene expression was measured from Days 1-4 using RT-qPCR. Altered genes were classified into four groups based on the days of peak gene expression: Group 1, in which expression peaked on Day 1; Group 2, in which expression peaked on Day 2; Group 3, in which expression progressively increased from Days 1-4 or were upregulated on Day 1 and sustained through Day 4; and Group 4, in which expression level oscillated from Days 1-4. Genes involved in lipid metabolism were restricted to Group 1. DNA repair- and cell cycle-related genes were restricted to Groups 1 and 2. Genes associated with oxidative stress and drug efflux were restricted to Group 2. These findings suggest that in temporal changes of MMS-induced opacity formation, the activated pathways could occur in the following order: lipid metabolism, DNA repair and cell cycle, and oxidative stress and drug efflux.
Collapse
|
11
|
Wu B, Sun Y, Hou J. CircMED12L Protects Against Hydrogen Peroxide-induced Apoptotic and Oxidative Injury in Human Lens Epithelial Cells by miR-34a-5p/ALCAM axis. Curr Eye Res 2022; 47:1631-1640. [PMID: 36218352 DOI: 10.1080/02713683.2022.2134427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE Cataract is the leading cause of visual impairment and reversible blindness. Despite advances in surgical removal of cataracts, cataract continues to be a leading public-health issue due to the complications after surgery. Circular RNAs (circRNAs) have been showed to be implicated in the pathophysiology of age-related cataract (ARC). Herein, this work elucidated the role and mechanism of circMED12L in the process of ARC. METHODS Human lens epithelial cells (HLECs) were exposed to hydrogen peroxide (H2O2) in experimental groups. Levels of genes and proteins were measured by qRT-PCR and western blotting. Cell growth was evaluated by Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. The oxidative stress was assessed by detecting the activity of malondialdehyde, catalase, and superoxide dismutase. The interaction between miR-34a-5p and circMED12L or ALCAM (activated leukocyte cell adhesion molecule) was validated using dual-luciferase reporter and RNA immunoprecipitation assays. RESULTS CircMED12L expression was lower in the lens epithelium of ARC patients and H2O2-induced HLECs compared with the normal individuals and untreated cells. Functionally, forced expression of circMED12L could alleviate H2O2-induced viability inhibition, as well as apoptotic and oxidative injury in HLECs. Mechanistically, circMED12L/miR-34a-5p/ALCAM constituted a feedback loop in HLECs. MiR-34a-5p was increased, while ALCAM was decreased in ARC patients and H2O2-induced HLECs. High expression of miR-34a-5p reversed the protective effects of circMED12L on HLECs under H2O2 treatment. Besides, inhibition of miR-34a-5p could repress H2O2-induced apoptotic and oxidative injury in HLECs, which were abolished by subsequent ALCAM knockdown. CONCLUSION Overexpression of circMED12L could protect against H2O2-induced apoptosis and oxidative stress in HLECs by miR-34a-5p/ALCAM axis.
Collapse
Affiliation(s)
- Baohua Wu
- Department of Ophthalmology, Lanzhou Purui Ophthalmology Hospital, Lanzhou, China
| | - Yan Sun
- Department of Ophthalmology, Lanzhou Purui Ophthalmology Hospital, Lanzhou, China.,Department of Ophthalmology, Gansu Rehabilitation Center Hospital, Lanzhou, China.,Clinical School of Traditional Chinese, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jingmei Hou
- Department of Ophthalmology, Lanzhou Purui Ophthalmology Hospital, Lanzhou, China.,Department of Ophthalmology, Gansu Rehabilitation Center Hospital, Lanzhou, China
| |
Collapse
|
12
|
Nagaya M, Kanada F, Takashima M, Takamura Y, Inatani M, Oki M. Atm inhibition decreases lens opacity in a rat model of galactose-induced cataract. PLoS One 2022; 17:e0274735. [PMID: 36149903 PMCID: PMC9506662 DOI: 10.1371/journal.pone.0274735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Cataract causes vision loss and blindness due to formation of opacities of the lens. The regulatory mechanisms of cataract formation and progression remain unclear, and no effective drug treatments are clinically available. In the present study, we tested the effect of ataxia telangiectasia mutated (Atm) inhibitors using an ex vivo model in which rat lenses were cultured in galactose-containing medium to induce opacity formation. After lens opacities were induced by galactose, the lenses were further incubated with the Atm inhibitors AZD0156 or KU55933, which decreased lens opacity. Subsequently, we used microarray analysis to investigate the underlying molecular mechanisms of action, and extracted genes that were upregulated by galactose-induced opacity, but not by inhibitor treatment. Quantitative measurement of mRNA levels and subsequent STRING analysis revealed that a functional network consisting primarily of actin family and actin-binding proteins was upregulated by galactose treatment and downregulated by both Atm inhibitors. In particular, Acta2 is a known marker of epithelial-mesenchymal transition (EMT) in epithelial cells, and other genes connected in this functional network (Actn1, Tagln, Thbs1, and Angptl4) also suggested involvement of EMT. Abnormal differentiation of lens epithelial cells via EMT could contribute to formation of opacities; therefore, suppression of these genes by Atm inhibition is a potential therapeutic target for reducing opacities and alleviating cataract-related visual impairment.
Collapse
Affiliation(s)
- Masaya Nagaya
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Fumito Kanada
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Masaru Takashima
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Yoshihiro Takamura
- Faculty of Medical Sciences, Department of Ophthalmology, University of Fukui, Fukui, Japan
| | - Masaru Inatani
- Faculty of Medical Sciences, Department of Ophthalmology, University of Fukui, Fukui, Japan
| | - Masaya Oki
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
- * E-mail:
| |
Collapse
|
13
|
Chen S, Zhang C, Shen L, Hu J, Chen X, Yu Y. Noncoding RNAs in cataract formation: star molecules emerge in an endless stream. Pharmacol Res 2022; 184:106417. [PMID: 36038044 DOI: 10.1016/j.phrs.2022.106417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
For decades, research on the pathological mechanism of cataracts has usually focused on the abnormal protein changes caused by a series of risk factors. However, an entire class of molecules, termed non-coding RNA (ncRNA), was discovered in recent years and proven to be heavily involved in cataract formation. Recent studies have recognized the key regulatory roles of ncRNAs in cataracts by shaping cellular activities such as proliferation, apoptosis, migration and epithelial-mesenchymal transition (EMT). This review summarizes our current insight into the biogenesis, properties and functions of ncRNAs and then discusses the development of research on ncRNAs in cataracts. Considering the significant role of ncRNA in cataract formation, research on novel associated regulatory mechanisms is urgently needed, and the development of therapeutic alternatives for the treatment of cataracts seems promising.
Collapse
Affiliation(s)
- Silong Chen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Chengshou Zhang
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Lifang Shen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Jianghua Hu
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China; Department of Ophthalmology, Jiande Branch, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, China.
| | - Yibo Yu
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China.
| |
Collapse
|
14
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Baniahmad A, Branicki W, Taheri M, Eghbali A. Emerging Role of Non-Coding RNAs in Senescence. Front Cell Dev Biol 2022; 10:869011. [PMID: 35865636 PMCID: PMC9294638 DOI: 10.3389/fcell.2022.869011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Senescence is defined as a gradual weakening of functional features of a living organism. Cellular senescence is a process that is principally aimed to remove undesirable cells by prompting tissue remodeling. This process is also regarded as a defense mechanism induced by cellular damage. In the course of oncogenesis, senescence can limit tumor progression. However, senescence participates in the pathoetiology of several disorders such as fibrotic disorders, vascular disorders, diabetes, renal disorders and sarcopenia. Recent studies have revealed contribution of different classes of non-coding RNAs in the cellular senescence. Long non-coding RNAs, microRNAs and circular RNAs are three classes of these transcripts whose contributions in this process have been more investigated. In the current review, we summarize the available literature on the impact of these transcripts in the cellular senescence.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospitals, Jena, Germany
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospitals, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| | - Ahmad Eghbali
- Anesthesiology Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| |
Collapse
|
15
|
Circular RNA PVT1 inhibits tendon stem/progenitor cell senescence by sponging microRNA-199a-5p. Toxicol In Vitro 2021; 79:105297. [PMID: 34896603 DOI: 10.1016/j.tiv.2021.105297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Tendon stem/progenitor cell (TSPC) senescence can lead to age-dependent tendon maladies and undermines both tendon repair and replacement capacity in humans. The mechanisms underlying TSPC senescence and sensitivity to adverse factors are complicated. In this study, we analyzed involvement of the circular RNA (circRNA) PVT1 (circPVT1) in TSPC senescence. circPVT1 expression was found to be significantly diminished in human TSPCs under prolonged in vitro culture. Accordingly, circPVT1 knockdown promoted senescence progression and suppressed self renewal, migration, and tenogenic differentiation of TSPCs. Furthermore, we found that circPVT1 directly targets microRNA (miR)-199a-5p thereby attenuating its negative regulation of SIRT1 expression. Either miR-199a-5p inhibition or SIRT1 overexpression attenuated the senescence-boosting effect of circPVT1 knockdown, implying that circPVT1 suppresses TSPC senescence in part by upregulating the miR-199a-5p-SIRT1 signaling axis. Our findings conclusively explain the major roles of circPVT1 in TSPC senescence regulation; circPVT1 is a novel potential therapeutic target for reducing tendon senescence.
Collapse
|
16
|
Zhou C, Huang X, Li X, Xiong Y. Circular RNA erythrocyte membrane protein band 4.1 assuages ultraviolet irradiation-induced apoptosis of lens epithelial cells by stimulating 5'-bisphosphate nucleotidase 1 in a miR-24-3p-dependent manner. Bioengineered 2021; 12:8953-8964. [PMID: 34652259 PMCID: PMC8806953 DOI: 10.1080/21655979.2021.1990196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Apoptosis of lens epithelial cells contributed to the formation of age-related cataract (ARC), and previous data revealed that circular RNA (circRNA) was responsible for the underneath mechanism. The study was organized to explore the role of circular RNA erythrocyte membrane protein band 4.1 (circ_EPB41) in ultraviolet (UV) irradiation-induced apoptosis of lens epithelial cells. SRA01/04 cells were irradiated with UV to mimic the ARC cell model. The RNA levels of circ_EPB41, microRNA-24-3p (miR-24-3p), and 3ʹ(2ʹ), 5ʹ-bisphosphate nucleotidase 1 (BPNT1) were detected by quantitative real-time polymerase chain reaction. Protein expression was checked by western blot. 5-Ethynyl-29-deoxyuridine, 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide and DNA content quantitation assays were performed to investigate cell proliferation. Flow cytometry was conducted to analyze cell apoptosis. Dual-luciferase reporter assay was implemented to confirm the interaction among circ_EPB41, miR-24-3p, and BPNT1. Our data showed that circ_EPB41 and BPNT1 expression were downregulated in ARC tissues and UV-irradiated SRA01/04 cells as compared with normal anterior lens capsules and untreated SRA01/04 cells. Circ_EPB41 overexpression ameliorated the effects of UV irradiation on the proliferation and apoptosis of SRA01/04 cells. Besides, miR-24-3p, a target miRNA of circ_EPB41, attenuated circ_EPB41 introduction-mediated proliferation, and apoptosis of UV-irradiated SRA01/04 cells. MiR-24-3p regulated UV irradiation-induced effects by targeting BPNT1. Importantly, it was found that circ_EPB41 stimulated BPNT1 production by miR-24-3p. Taken together, the enforced expression of circ_EPB41 ameliorated UV irradiation-induced apoptosis of lens epithelial cells by miR-24-3p/BPNT1 pathway, providing us with a potential target for the therapy of UV-caused ARC.
Collapse
Affiliation(s)
- Cuiyun Zhou
- Department of Ophthalmology, Jingmen First People's Hospital, Jingmen, Hubei, China
| | - Xiaoqiong Huang
- Department of Ophthalmology, Jingmen First People's Hospital, Jingmen, Hubei, China
| | - Xia Li
- Department of Ophthalmology, Jingmen First People's Hospital, Jingmen, Hubei, China
| | - Yan Xiong
- Department of Ophthalmology, Jingmen First People's Hospital, Jingmen, Hubei, China
| |
Collapse
|