1
|
Luo M, Feng G, Chen M, Ke H. Probiotics and Immunostimulant modulate intestinal flora diversity in Reeves pond tortoise (Mauremys reevesii) and effects of Clostridium butyricum on its spleen transcriptome. FISH & SHELLFISH IMMUNOLOGY 2023:108908. [PMID: 37380116 DOI: 10.1016/j.fsi.2023.108908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
In this study, we investigated the effects of Clostridium butyricum (group A), Bacillus subtilis (group B), and the immune enhancer algal β-1,3 glucan (group C) on the intestinal flora of Mauremys reevesii and the effects of C. butyricum on the transcriptome of M. reevesii splenic immune tissues. M. reevesii were assigened to four groups, each containing three replicates from 18 samples. Juvenile turtles with an initial weight of 106.35 ± 0.03 g were fed a basic diet containing no probiotics (control group D), or a basic diet containing the A, B, or C supplement. After the turtles had been fed for 60, 90, and 120 d of the experimental period, high-throughput sequencing of the 16S rRNA gene revealed no significant difference in alpha diversity among the four groups at 60 days of feeding (P > 0.05), and at 90 days, the alpha diversity in group A was significantly different (P < 0.05), with an increase of 26.62% in the Shannon index and a decrease of 83.33% in the Simpson index; at 120 d, the alpha diversity (Shannon index)showed a decreasing trend in order for groups A, B, and C, At the phylum level, the abundance of Bacteroidetes, Proteobacteria, and Fusobacteria in group A increased significantly with increasing feeding time (P < 0.05),At the genus level, the abundance of Ruminococcaceae and Anaerotruncus in group A increased significantly compared with that in the other three groups (P < 0.05). Transcriptome analysis showed that 384 genes were differentially expressed in the spleen of M. reevesii, 195 genes were upregulated and 189 genes were downregulated, and C. butyricum TF201120 regulated the hematopoietic cell lineage signaling pathway in the spleen of M. reevesii (P < 0.05). The regulation of several identified immune-related genes was confirmed by qPCR, These results showed that C. butyricum, B. subtilis and the immune enhancer algal β-1,3 glucan can improve the intestinal flora of M. reevesii, with C. butyricum TF20 being the most effective and significantly enhancing the immunity of M. reevesii.
Collapse
Affiliation(s)
- Meng Luo
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; College of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Guoqing Feng
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; Guangdong Scientific Observation Experimental Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture and Rural Affairs, Guangzhou, 510000, China
| | - Mingjie Chen
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; College of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Hao Ke
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; Guangdong Scientific Observation Experimental Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture and Rural Affairs, Guangzhou, 510000, China; Key Laboratory of Animal and Poultry Disease Control Research, Guangdong Province, Guangzhou, 510000, China.
| |
Collapse
|
2
|
Wan GY. Biomarker identification of immune-related genes in pheochromocytoma and paraganglioma. Transl Androl Urol 2023; 12:249-260. [PMID: 36915875 PMCID: PMC10006013 DOI: 10.21037/tau-22-800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023] Open
Abstract
Background Although we have a good understanding of the diagnosis and treatment of pheochromocytoma and paraganglioma (PPGL), the underlying pathogenesis and molecular pathways of PPGL need to be further studied. This study aimed to use bioinformatics to analyze the role of immune-related genes (IRGs) in the pathogenesis of PPGL. Methods GSE19422 and GSE60459 microarray data were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified using the "limma" package in R, and genes overlapping with IRGs were screened using the "VennDiagram" package. A protein-protein interaction (PPI) network was constructed in the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and the core genes were identified by Cytoscape, followed by enrichment analysis and receiver operating characteristic (ROC) curve analysis to evaluate the diagnostic efficacy of the core genes. In addition, the level of immune cell infiltration of PPGL was analyzed and the target drug of the core gene was predicted. Results A total of 1,105 DEGs were identified from the 2 datasets, of which 94 were IRGs, suggesting that the occurrence of PPGL involved immune-related pathways. Through PPI and Cytoscape, a total of 2 core genes: fibroblast growth factor 2 (FGF2), FYN proto-oncogene (FYN), and vascular cell adhesion molecule 1 (VCAM1) were identified, and the ROC curve showed that these 3 core genes had good efficacy in the diagnosis of PPGL, and more than 50 potential therapeutic drugs could be predicted based on these 3 core genes. Subsequent immunoinfiltration analysis showed that mast cells activated were significantly elevated in patients with PPGL, negatively correlated with macrophages M2, and positively correlated with the level of dendritic cells activated. Conclusions This study found that immunity is closely related to the occurrence of PPGL, and that FGF2, FYN, and VCAM1 may be potential biomarkers and therapeutic targets of PPGL.
Collapse
Affiliation(s)
- Guang Yang Wan
- Department of Urology, the People's Hospital of Baise, Baise, China
| |
Collapse
|
3
|
Martinelli S, Amore F, Canu L, Maggi M, Rapizzi E. Tumour microenvironment in pheochromocytoma and paraganglioma. Front Endocrinol (Lausanne) 2023; 14:1137456. [PMID: 37033265 PMCID: PMC10073672 DOI: 10.3389/fendo.2023.1137456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Pheochromocytomas and Paragangliomas (Pheo/PGL) are rare catecholamine-producing tumours derived from adrenal medulla or from the extra-adrenal paraganglia respectively. Around 10-15% of Pheo/PGL develop metastatic forms and have a poor prognosis with a 37% of mortality rate at 5 years. These tumours have a strong genetic determinism, and the presence of succinate dehydrogenase B (SDHB) mutations are highly associated with metastatic forms. To date, no effective treatment is present for metastatic forms. In addition to cancer cells, the tumour microenvironment (TME) is also composed of non-neoplastic cells and non-cellular components, which are essential for tumour initiation and progression in multiple cancers, including Pheo/PGL. This review, for the first time, provides an overview of the roles of TME cells such as cancer-associated fibroblasts (CAFs) and tumour-associated macrophages (TAMs) on Pheo/PGL growth and progression. Moreover, the functions of the non-cellular components of the TME, among which the most representatives are growth factors, extracellular vesicles and extracellular matrix (ECM) are explored. The importance of succinate as an oncometabolite is emerging and since Pheo/PGL SDH mutated accumulate high levels of succinate, the role of succinate and of its receptor (SUCNR1) in the modulation of the carcinogenesis process is also analysed. Further understanding of the mechanism behind the complicated effects of TME on Pheo/PGL growth and spread could suggest novel therapeutic targets for further clinical treatments.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
| | - Francesca Amore
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Letizia Canu
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
| | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
| | - Elena Rapizzi
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- *Correspondence: Elena Rapizzi,
| |
Collapse
|
4
|
Ghosal S, Hadrava Vanova K, Uher O, Das S, Patel M, Meuter L, Huynh TT, Jha A, Talvacchio S, Knue M, Prodanov T, Zeiger MA, Nilubol N, Taieb D, Crona J, Shankavaram UT, Pacak K. Immune signature of pheochromocytoma and paraganglioma in context of neuroendocrine neoplasms associated with prognosis. Endocrine 2023; 79:171-179. [PMID: 36370152 PMCID: PMC10683554 DOI: 10.1007/s12020-022-03218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE To understand prognostic immune cell infiltration signatures in neuroendocrine neoplasms (NENs), particularly pheochromocytoma and paraganglioma (PCPG), we analyzed tumor transcriptomic data from The Cancer Genome Atlas (TCGA) and other published tumor transcriptomic data of NENs. METHODS We used CIBERSORT to infer immune cell infiltrations from bulk tumor transcriptomic data from PCPGs, in comparison to gastroenteropancreatic neuroendocrine tumors (GEPNETs) and small cell lung carcinomas (SCLCs). PCPG immune signature was validated with NanoString immune panel in an independent cohort. Unsupervised clustering of the immune infiltration scores from CIBERSORT was used to find immune clusters. A prognostic immune score model for PCPGs and the other NENs were calculated as a linear combination of the estimated infiltration of activated CD8+/CD4+ T cells, activated NK cells, and M0 and M2 macrophages. RESULTS In PCPGs, we found five dominant immune clusters, associated with M2 macrophages, monocytes, activated NK cells, M0 macrophages and regulatory T cells, and CD8+/CD4+ T cells respectively. Non-metastatic tumors were associated with activated NK cells and metastatic tumors were associated with M0 macrophages and regulatory T cells. In GEPNETs and SCLCs, M0 macrophages and regulatory T cells were associated with unfavorable outcomes and features, such as metastasis and high-grade tumors. The prognostic immune score model for PCPGs and the NENs could predict non-aggressive and non-metastatic diseases. In PCPGs, the immune score was also an independent predictor of metastasis-free survival in a multivariate Cox regression analysis. CONCLUSION The transcriptomic immune signature in PCPG correlates with clinical features like metastasis and prognosis.
Collapse
Affiliation(s)
- Suman Ghosal
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Katerina Hadrava Vanova
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ondrej Uher
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Shaoli Das
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mayank Patel
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Leah Meuter
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thanh-Truc Huynh
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sara Talvacchio
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marianne Knue
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tamara Prodanov
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Martha A Zeiger
- Office of Surgeon Scientists Programs, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Naris Nilubol
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, Marseille, France
- European Center for Research in Medical Imaging, Aix-Marseille University, Marseille, France
| | - Joakim Crona
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Medical Sciences, Uppsala University, Akademiska Sjukhuset ing 78, 75185, Uppsala, Sweden
| | - Uma T Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Pacak K. New Biology of Pheochromocytoma and Paraganglioma. Endocr Pract 2022; 28:1253-1269. [PMID: 36150627 PMCID: PMC9982632 DOI: 10.1016/j.eprac.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022]
Abstract
Pheochromocytomas and paragangliomas continue to be defined by significant morbidity and mortality despite their several recent advances in diagnosis, localization, and management. These adverse outcomes are largely related to mass effect as well as catecholamine-induced hypertension, tachyarrhythmias and consequent target organ damage, acute coronary syndromes, and strokes (ischemic and hemorrhagic stroke). Thus, a proper understanding of the physiology and pathophysiology of these tumors and recent advances are essential to affording optimal care. These major developments largely include a redefinition of metastatic behavior, a novel clinical categorization of these tumors into 3 genetic clusters, and an enhanced understanding of catecholamine metabolism and consequent specific biochemical phenotypes. Current advances in imaging of these tumors are shifting the paradigm from poorly specific anatomical modalities to more precise characterization of these tumors using the advent and development of functional imaging modalities. Furthermore, recent advances have revealed new molecular events in these tumors that are linked to their genetic landscape and, therefore, provide new therapeutic platforms. A few of these prospective therapies translated into new clinical trials, especially for patients with metastatic or inoperable tumors. Finally, outcomes are ever-improving as patients are cared for at centers with cumulative experience and well-established multidisciplinary tumor boards. In parallel, these centers have supported national and international collaborative efforts and worldwide clinical trials. These concerted efforts have led to improved guidelines collaboratively developed by healthcare professionals with a growing expertise in these tumors and consequently improving detection, prevention, and identification of genetic susceptibility genes in these patients.
Collapse
Affiliation(s)
- Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
6
|
Guo Y, Li H, Xie D, You L, Yan L, Li Y, Zhang S. Hemorrhage in pheochromocytoma surgery: evaluation of preoperative risk factors. Endocrine 2022; 76:426-433. [PMID: 35426588 PMCID: PMC9068676 DOI: 10.1007/s12020-021-02964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/11/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Pheochromocytoma surgery carries a higher risk of hemorrhage. Our objective was to identify preoperative risk factors for hemorrhage during pheochromocytoma surgery. METHODS Patients who underwent surgery and with postoperative pathological confirmation were enrolled. A total of 251 patients from our center were included in the investigation, and 120 patients from the First Affiliated Hospital, Sun Yat-sen University were included as an external validation dataset. Family and medical history, demographics, hemodynamics, biochemical parameters, image data, anesthesia and operation records, postoperative outcomes were collected. Postoperative complications were graded by the Clavien-Dindo classification. Correlation between intraoperative hemorrhage volume and postoperative outcomes was assessed. The features associated with intraoperative hemorrhage were identified by linear regression. All features that were statistically significant in the multiple linear regression were then used to construct models and nomograms for predicting intraoperative hemorrhage. The constructed models were evaluated by Akaike Information Criterion. Finally, internal and external validations were carried out by tenfold cross-validation. RESULTS Intraoperative hemorrhage volume was positively correlated with the postoperative hospitalization time (R = 0.454, P < 0.001) and the Clavien-Dindo grades (R = 0.664, P < 0.001). Features associated with intraoperative hemorrhage were male gender (β = 0.533, OR = 1.722, P = 0.002), tumor diameter (β = 0.027, OR = 1.027, P < 0.001), preoperative CCB use (β = 0.318, OR = 1.308, P = 0.123) and open surgery (β = 1.175, OR = 3.234, P < 0.001). Validations showed reliable results (internal (R = 0.612, RMSE = 1.355, MAE = 1.111); external (R = 0.585, RMSE = 1.398, MAE = 0.964)). CONCLUSION More intraoperative hemorrhage is correlated with longer postoperative hospitalization time and more severe postoperative complications. Male gender, larger tumor, preoperative CCB use and open surgery are preoperative risk factors for hemorrhage in PCC surgery.
Collapse
Affiliation(s)
- Ying Guo
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hai Li
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dingxiang Xie
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lili You
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Shaoling Zhang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|