1
|
Wu X, Fu Y, Ma J, Li C, He A, Zhang T. LGR5 Modulates Differentiated Phenotypes of Chondrocytes Through PI3K/AKT Signaling Pathway. Tissue Eng Regen Med 2024; 21:791-807. [PMID: 38771465 PMCID: PMC11187034 DOI: 10.1007/s13770-024-00645-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Tissue engineering is increasingly viewed as a promising avenue for functional cartilage reconstruction. However, chondrocyte dedifferentiation during in vitro culture remains an obstacle for clinical translation of tissue engineered cartilage. Re-differentiated induction have been employed to induce dedifferentiated chondrocytes back to their original phenotype. Regrettably, these strategies have been proven to be only moderately effective. METHODS To explore underlying mechanism, RNA transcriptome sequencing was conducted on primary chondrocytes (P0), dedifferentiated chondrocytes (P5), and redifferentiated chondrocytes (redifferentiation-induction of P5, P5.R). Based on multiple bioinformatics analysis, LGR5 was identified as a target gene. Subsequently, stable cell lines with LGR5 knocking-down and overexpression were established using P0 chondrocytes. The phenotypic changes in P1 and P5 chondrocytes with either LGR5 knockdown or overexpression were assessed to ascertain the potential influence of LGR5 dysregulation on chondrocyte phenotypes. Regulatory mechanism was then investigated using bioinformatic analysis, protein-protein docking, immunofluorescence co-localization and immunoprecipitation. RESULTS The current study found that dysregulation of LGR5 can significantly impact the dedifferentiated phenotypes of chondrocytes (P5). Upregulation of LGR5 appears to activate the PI3K/AKT signal via increasing the phosphorylation levels of AKT (p-AKT1). Moreover, the increase of p-AKT1 may stabilize β-catenin and enhance the intensity of Wnt/β-catenin signal, and help to restore the dedifferentated phenotype of chondrocytes. CONCLUSION LGR5 can modulate the phenotypes of chondrocytes in P5 passage through PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xu Wu
- Department of Facial Plastic and Reconstructive Surgery, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
- Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, ENT Institute, Fudan University, Shanghai, 200031, China
| | - Yaoyao Fu
- Department of Facial Plastic and Reconstructive Surgery, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
- Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, ENT Institute, Fudan University, Shanghai, 200031, China
| | - Jing Ma
- Department of Facial Plastic and Reconstructive Surgery, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
- Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, ENT Institute, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Chenlong Li
- Department of Facial Plastic and Reconstructive Surgery, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
- Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, ENT Institute, Fudan University, Shanghai, 200031, China
| | - Aijuan He
- Department of Facial Plastic and Reconstructive Surgery, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Tianyu Zhang
- Department of Facial Plastic and Reconstructive Surgery, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China.
- Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, ENT Institute, Fudan University, Shanghai, 200031, China.
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
2
|
Liu H, Liu H, Yang Q, Fan Z. LncRNA SNHG1 enhances cartilage regeneration by modulating chondrogenic differentiation and angiogenesis potentials of JBMMSCs via mitochondrial function regulation. Stem Cell Res Ther 2024; 15:177. [PMID: 38886785 PMCID: PMC11184886 DOI: 10.1186/s13287-024-03793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Cartilage is a kind of avascular tissue, and it is difficult to repair itself when it is damaged. In this study, we investigated the regulation of chondrogenic differentiation and vascular formation in human jaw bone marrow mesenchymal stem cells (h-JBMMSCs) by the long-chain noncoding RNA small nucleolar RNA host gene 1 (SNHG1) during cartilage tissue regeneration. METHODS JBMMSCs were isolated from the jaws via the adherent method. The effects of lncRNA SNHG1 on the chondrogenic differentiation of JBMMSCs in vitro were detected by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), Pellet experiment, Alcian blue staining, Masson's trichrome staining, and modified Sirius red staining. RT-qPCR, matrix gel tube formation, and coculture experiments were used to determine the effect of lncRNA SNHG1 on the angiogenesis in JBMMSCs in vitro. A model of knee cartilage defects in New Zealand rabbits and a model of subcutaneous matrix rubber suppositories in nude mice were constructed for in vivo experiments. Changes in mitochondrial function were detected via RT-qPCR, dihydroethidium (DHE) staining, MitoSOX staining, tetramethyl rhodamine methyl ester (TMRM) staining, and adenosine triphosphate (ATP) detection. Western blotting was used to detect the phosphorylation level of signal transducer and activator of transcription 3 (STAT3). RESULTS Alcian blue staining, Masson's trichrome staining, and modified Sirius Red staining showed that lncRNA SNHG1 promoted chondrogenic differentiation. The lncRNA SNHG1 promoted angiogenesis in vitro and the formation of microvessels in vivo. The lncRNA SNHG1 promoted the repair and regeneration of rabbit knee cartilage tissue. Western blot and alcian blue staining showed that the JAK inhibitor reduced the increase of STAT3 phosphorylation level and staining deepening caused by SNHG1. Mitochondrial correlation analysis revealed that the lncRNA SNHG1 led to a decrease in reactive oxygen species (ROS) levels, an increase in mitochondrial membrane potential and an increase in ATP levels. Alcian blue staining showed that the ROS inhibitor significantly alleviated the decrease in blue fluorescence caused by SNHG1 knockdown. CONCLUSIONS The lncRNA SNHG1 promotes chondrogenic differentiation and angiogenesis of JBMMSCs. The lncRNA SNHG1 regulates the phosphorylation of STAT3, reduces the level of ROS, regulates mitochondrial energy metabolism, and ultimately promotes cartilage regeneration.
Collapse
Affiliation(s)
- Hua Liu
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Huina Liu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
- Department of General Dentistry and Integrated Emergency Dental Care, Capital Medical University School of Stomatology, Beijing, 100050, China.
| | - Qiubo Yang
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
The Critical Role of Hypoxia in the Re-Differentiation of Human Articular Chondrocytes. Cells 2022; 11:cells11162553. [PMID: 36010629 PMCID: PMC9406483 DOI: 10.3390/cells11162553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022] Open
Abstract
The preservation of the chondrogenic phenotype and hypoxia-related physiological microenvironment are major challenges in the 2D culture of primary human chondrocytes. To address this problem, we develop a 3D culture system generating scaffold-free spheroids from human chondrocytes. Our results highlight the chondrogenic potential of cultured human articular chondrocytes in a 3D system combined with hypoxia independently of the cartilage source. After 14 days of culture, we developed spheroids with homogenous diameter and shape from hyaline cartilage donors. Spheroids generated in hypoxia showed a significantly increased glycosaminoglycans synthesis and up-regulated the expression of SOX9, ACAN, COL2A1, COMP, and SNAI1 compared to those obtained under normoxic conditions. Therefore, we conclude that spheroids developed under hypoxic conditions modulate the expression of chondrogenesis-related genes and native tissue features better than 2D cultures. Thus, this scaffold-free 3D culture system represents a novel in vitro model that can be used for cartilage biology research.
Collapse
|
4
|
Huang H, Xing D, Zhang Q, Li H, Lin J, He Z, Lin J. LncRNAs as a new regulator of chronic musculoskeletal disorder. Cell Prolif 2021; 54:e13113. [PMID: 34498342 PMCID: PMC8488571 DOI: 10.1111/cpr.13113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 01/15/2023] Open
Abstract
Objectives In recent years, long non‐coding RNAs (lncRNAs) have been found to play a role in the occurrence, progression and prognosis of chronic musculoskeletal disorders. Design and methods Literature exploring on PubMed was conducted using the combination of keywords 'LncRNA' and each of the following: 'osteoarthritis', 'rheumatoid arthritis', 'osteoporosis', 'osteogenesis', 'osteoclastogenesis', 'gout arthritis', 'Kashin‐Beck disease', 'ankylosing spondylitis', 'cervical spondylotic myelopathy', 'intervertebral disc degeneration', 'human muscle disease' and 'muscle hypertrophy and atrophy'. For each disorder, we focused on the publications in the last five years (5/1/2016‐2021/5/1, except for Kashin‐Beck disease). Finally, we excluded publications that had been reported in reviews of various musculoskeletal disorders during the last three years. Here, we summarized the progress of research on the role of lncRNA in multiple pathological processes during musculoskeletal disorders. Results LncRNAs play a crucial role in regulating downstream gene expression and maintaining function and homeostasis of cells, especially in chondrocytes, synovial cells, osteoblasts, osteoclasts and skeletal muscle cells. Conclusions Understanding the mechanisms of lncRNAs in musculoskeletal disorders may provide promising strategies for clinical practice.
Collapse
Affiliation(s)
- Hesuyuan Huang
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China
| | - Dan Xing
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China
| | - Qingxi Zhang
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China
| | - Hui Li
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China
| | - Jianjing Lin
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China
| | - Zihao He
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China
| | - Jianhao Lin
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China
| |
Collapse
|