1
|
Shao Y, Xu J, Chen W, Hao M, Liu X, Zhang R, Wang Y, Dong Y. miR-135b: An emerging player in cardio-cerebrovascular diseases. J Pharm Anal 2024; 14:100997. [PMID: 39211791 PMCID: PMC11350494 DOI: 10.1016/j.jpha.2024.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 09/04/2024] Open
Abstract
miR-135 is a highly conserved miRNA in mammals and includes miR-135a and miR-135b. Recent studies have shown that miR-135b is a key regulatory factor in cardio-cerebrovascular diseases. It is involved in regulating the pathological process of myocardial infarction, myocardial ischemia/reperfusion injury, cardiac hypertrophy, atrial fibrillation, diabetic cardiomyopathy, atherosclerosis, pulmonary hypertension, cerebral ischemia/reperfusion injury, Parkinson's disease, and Alzheimer's disease. Obviously, miR-135b is an emerging player in cardio-cerebrovascular diseases and is expected to be an important target for the treatment of cardio-cerebrovascular diseases. However, the crucial role of miR-135b in cardio-cerebrovascular diseases and its underlying mechanism of action has not been reviewed. Therefore, in this review, we aimed to comprehensively summarize the role of miR-135b and the signaling pathway mediated by miR-135b in cardio-cerebrovascular diseases. Drugs targeting miR-135b for the treatment of diseases and related patents, highlighting the importance of this target and its utility as a therapeutic target for cardio-cerebrovascular diseases, have been discussed.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Minglu Hao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Yanhong Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Yinying Dong
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| |
Collapse
|
2
|
Zong Y, Dai Y, Yan J, Yu B, Wang D, Mao S. The roles of circular RNAs in nerve injury and repair. Front Mol Neurosci 2024; 17:1419520. [PMID: 39077756 PMCID: PMC11284605 DOI: 10.3389/fnmol.2024.1419520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/21/2024] [Indexed: 07/31/2024] Open
Abstract
Nerve injuries significantly impact the quality of life for patients, with severe cases posing life-threatening risks. A comprehensive understanding of the pathophysiological mechanisms underlying nerve injury is crucial to the development of effective strategies to promote nerve regeneration. Circular RNAs (circRNAs), a recently characterized class of RNAs distinguished by their covalently closed-loop structures, have been shown to play an important role in various biological processes. Numerous studies have highlighted the pivotal role of circRNAs in nerve regeneration, identifying them as potential therapeutic targets. This review aims to succinctly outline the latest advances in the role of circRNAs related to nerve injury repair and the underlying mechanisms, including peripheral nerve injury, traumatic brain injury, spinal cord injury, and neuropathic pain. Finally, we discuss the potential applications of circRNAs in drug development and consider the potential directions for future research in this field to provide insights into circRNAs in nerve injury repair.
Collapse
Affiliation(s)
| | | | | | | | - Dong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, School of Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Susu Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, School of Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
3
|
Li D, Liu C, Wang H, Li Y, Wang Y, An S, Sun S. The Role of Neuromodulation and Potential Mechanism in Regulating Heterotopic Ossification. Neurochem Res 2024; 49:1628-1642. [PMID: 38416374 DOI: 10.1007/s11064-024-04118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Heterotopic ossification (HO) is a pathological process characterized by the aberrant formation of bone in muscles and soft tissues. It is commonly triggered by traumatic brain injury, spinal cord injury, and burns. Despite a wide range of evidence underscoring the significance of neurogenic signals in proper bone remodeling, a clear understanding of HO induced by nerve injury remains rudimentary. Recent studies suggest that injury to the nervous system can activate various signaling pathways, such as TGF-β, leading to neurogenic HO through the release of neurotrophins. These pathophysiological changes lay a robust groundwork for the prevention and treatment of HO. In this review, we collected evidence to elucidate the mechanisms underlying the pathogenesis of HO related to nerve injury, aiming to enhance our understanding of how neurological repair processes can culminate in HO.
Collapse
Affiliation(s)
- Dengju Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong First Medical University, Jinan, Shandong, China
| | - Changxing Liu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Haojue Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yunfeng Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yaqi Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Senbo An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
| | - Shui Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
4
|
Wang W, Liu C, He D, Shi G, Song P, Zhang B, Li T, Wei J, Jiang Y, Ma L. CircRNA CDR1as affects functional repair after spinal cord injury and regulates fibrosis through the SMAD pathway. Pharmacol Res 2024; 204:107189. [PMID: 38649124 DOI: 10.1016/j.phrs.2024.107189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Spinal cord injury (SCI) is a complex problem in modern medicine. Fibroblast activation and fibroscarring after SCI impede nerve recovery. Non-coding RNA plays an important role in the progression of many diseases, but the study of its role in the progression of spinal fibrosis is still emerging. Here, we investigated the function of circular RNAs, specifically antisense to the cerebellar degeneration-related protein 1 (CDR1as), in spinal fibrosis and characterized its molecular mechanism and pathophysiology. The presence of CDR1as in the spinal cord was verified by sequencing and RNA expression assays. The effects of inhibition of CDR1as on scar formation, inflammation and nerve regeneration after spinal cord injury were investigated in vivo and in vitro. Further, gene expression of miR-7a-5p and protein expression of transforming Growth Factor Beta Receptor II (TGF-βR2) were measured to evaluate their predicted interactions with CDR1as. The regulatory effects and activation pathways were subsequently verified by miR-7a-5p inhibitor and siCDR1as. These results indicate that CDR1as/miR-7a-5p/TGF-βR2 interactions may exert scars and nerves functions and suggest potential therapeutic targets for treating spinal fibrotic diseases.
Collapse
Affiliation(s)
- Wenzhao Wang
- Department of Orthopedic, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dong He
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Post-doctoral Scientific Research Workstation, Shandong Freda Biotech Co., Ltd, Jinan, Shandong, China; Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
| | - Guidong Shi
- Department of Orthopedic, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ping Song
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Boqing Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jianlu Wei
- Department of Orthopedic, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Yunpeng Jiang
- Department of Orthopedic, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Liang Ma
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
5
|
Yari D, Saberi A, Salmasi Z, Ghoreishi SA, Etemad L, Movaffagh J, Ganjeifar B. Recent Advances in the Treatment of Spinal Cord Injury. THE ARCHIVES OF BONE AND JOINT SURGERY 2024; 12:380-399. [PMID: 38919744 PMCID: PMC11195032 DOI: 10.22038/abjs.2023.73944.3424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/07/2023] [Indexed: 06/27/2024]
Abstract
Spinal cord injury (SCI) is a complex, multifaceted, progressive, and yet incurable complication that can cause irreversible damage to the individual, family, and society. In recent years strategies for the management and rehabilitation of SCI besides axonal regeneration, remyelination, and neuronal plasticity of the injured spinal cord have significantly improved. Although most of the current research and therapeutic advances have been made in animal models, so far, no specific and complete treatment has been reported for SCI in humans. The failure to treat this complication has been due to the inherent neurological complexity and the structural, cellular, molecular, and biochemical characteristics of spinal cord injury. In this review, in addition to elucidating the causes of spinal cord injury from a molecular and pathophysiological perspective, the complexity and drawbacks of neural regeneration that lead to the failure in SCI treatment are described. Also, recent advances and cutting-edge strategies in most areas of SCI treatment are presented.
Collapse
Affiliation(s)
- Davood Yari
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Saberi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Alireza Ghoreishi
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Orthopedic Surgery, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jebrail Movaffagh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Babak Ganjeifar
- Department of Neurosurgery, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Ma CW, Wang ZQ, Ran R, Liao HY, Lyu JY, Ren Y, Lei ZY, Zhang HH. TGF-β signaling pathway in spinal cord injury: Mechanisms and therapeutic potential. J Neurosci Res 2024; 102:e25255. [PMID: 37814990 DOI: 10.1002/jnr.25255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/15/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023]
Abstract
Spinal cord injury (SCI) is a highly disabling central nervous system injury with a complex pathological process, resulting in severe sensory and motor dysfunction. The current treatment modalities only alleviate its symptoms and cannot effectively intervene or treat its pathological process. Many studies have reported that the transforming growth factor (TGF)-β signaling pathway plays an important role in neuronal differentiation, growth, survival, and axonal regeneration after central nervous system injury. Furthermore, the TGF-β signaling pathway has a vital regulatory role in SCI pathophysiology and neural regeneration. Following SCI, regulation of the TGF-β signaling pathway can suppress inflammation, reduce apoptosis, prevent glial scar formation, and promote neural regeneration. Due to its role in SCI, the TGF-β signaling pathway could be a potential therapeutic target. This article reported the pathophysiology of SCI, the characteristics of the TGF-β signaling pathway, the role of the TGF-β signaling pathway in SCI, and the latest evidence for targeting the TGF-β signaling pathway for treating SCI. In addition, the limitations and difficulties in TGF-β signaling pathway research in SCI are discussed, and solutions are provided to address these potential challenges. We hope this will provide a reference for the TGF-β signaling pathway and SCI research, offering a theoretical basis for targeted therapy of SCI.
Collapse
Affiliation(s)
- Chun-Wei Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Zhi-Qiang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Rui Ran
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hai-Yang Liao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jia-Yang Lyu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yi Ren
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Ze-Yuan Lei
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hai-Hong Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Ghafouri-Fard S, Shoorei H, Sabernia T, Hussen BM, Taheri M, Pourmoshtagh H. Circular RNAs and inflammation: Epigenetic regulators with diagnostic role. Pathol Res Pract 2023; 251:154912. [PMID: 38238072 DOI: 10.1016/j.prp.2023.154912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 01/23/2024]
Abstract
Circular RNAs (circRNAs) are a group of transcripts generally known to be non-coding transcripts, but occasionally producing short peptides. Circ_Ttc3/miR-148a, circ_TLK1/miR-106a-5p, circ_VMA21/miR-9-3p, circ_0068,888/miR-21-5p, circ_VMA21/miR-199a-5p, circ_AFF2/miR-375, circ_0008360/miR-135b-5p and circ-FBXW7/miR-216a-3p are examples of circRNA/miRNA pairs that contribute in the pathogenesis of immune-related conditions. CircRNAs have been found to regulate function of immune system and participate in the pathophysiology of immune-related disorders. In the current study, we searched PubMed and Google Scholar databases until July 2022 with the key words "circRNA" OR "circular RNA" AND "inflammation". Then, we assessed the abstract of retrieved articles to include original articles that assessed contribution of circRNAs in the pathoetiology of inflammation and related disorders. Finally, we went through the main texts of the articles and tabulated the available information. Therefore, the current study summarizes the role of circRNAs in the pathoetiology of sepsis, atherosclerosis, rheumatoid arthritis and osteoarthritis, immune-related cardiovascular, pulmonary, gastrointestinal and nervous system disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Toofan Sabernia
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hasan Pourmoshtagh
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Qu D, Hu D, Zhang J, Yang G, Guo J, Zhang D, Qi C, Fu H. Identification and Validation of Ferroptosis-Related Genes in Patients with Acute Spinal Cord Injury. Mol Neurobiol 2023; 60:5411-5425. [PMID: 37316756 DOI: 10.1007/s12035-023-03423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
Ferroptosis plays crucial roles in the pathology of spinal cord injury (SCI). The purpose of this study was to identify differentially expressed ferroptosis-related genes (DE-FRGs) in human acute SCI by bioinformatics analysis and validate the hub DE-FRGs in non-SCI and SCI patients. The GSE151371 dataset was downloaded from the Gene Expression Omnibus and difference analysis was performed. The differentially expressed genes (DEGs) in GSE151371 overlapped with the ferroptosis-related genes (FRGs) obtained from the Ferroptosis Database. A total of 41 DE-FRGs were detected in 38 SCI samples and 10 healthy samples in GSE151371. Then, enrichment analyses of these DE-FRGs were performed for functional annotation. The GO enrichment results showed that upregulated DE-FRGs were mainly associated with reactive oxygen species and redox reactions, and the KEGG enrichment analysis indicated involvement in some diseases and ferroptosis pathways. Protein-protein interaction (PPI) analysis and lncRNA-miRNA-mRNA regulatory network were performed to explore the correlations between genes and regulatory mechanisms. The relationship between DE-FRGs and differentially expressed mitochondria-related genes (DE-MRGs) was also analyzed. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the hub DE-FRGs in clinical blood samples from acute SCI patients and healthy controls. Consistent with the bioinformatics results, qRT-PCR of the clinical samples indicated similar expression levels of TLR4, STAT3, and HMOX1. This study identified DE-FRGs in blood samples from SCI patients, and the results could improve our understanding of the molecular mechanisms of ferroptosis in SCI. These candidate genes and pathways could be therapeutic targets for SCI.
Collapse
Affiliation(s)
- Di Qu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
- Medical Department of Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Die Hu
- Qingdao Eye Hospital of Shandong First Medical University, 5 Yan'er Island Road, Qingdao, 266071, China
| | - Jing Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
- Medical Department of Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Guodong Yang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
- Medical Department of Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Jia Guo
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
- Medical Department of Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Dongfang Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Chao Qi
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| | - Haitao Fu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| |
Collapse
|
9
|
Cao J, Pan C, Zhang J, Chen Q, Li T, He D, Cheng X. Analysis and verification of the circRNA regulatory network RNO_CIRCpedia_ 4214/RNO-miR-667-5p/Msr1 axis as a potential ceRNA promoting macrophage M2-like polarization in spinal cord injury. BMC Genomics 2023; 24:181. [PMID: 37020267 PMCID: PMC10077679 DOI: 10.1186/s12864-023-09273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND CircRNAs are involved in the pathogenesis of several central nervous system diseases. However, their functions and mechanisms in spinal cord injury (SCI) are still unclear. Therefore, the purpose of this study was to evaluate circRNA and mRNA expression profiles in the pathological setting of SCI and to predict the potential function of circRNA through bioinformatics. METHODS A microarray-based approach was used for the simultaneous measurement of circRNAs and mRNAs, together with qPCR, fluorescence in situ hybridization, western immunoblotting, and dual-luciferase reporter assays to investigate the associated regulatory mechanisms in a rat SCI model. RESULTS SCI was found to be associated with the differential expression of 414 and 5337 circRNAs and mRNAs, respectively. Pathway enrichment analyses were used to predict the primary function of these circRNAs and mRNAs. GSEA analysis showed that differentially expressed mRNAs were primarily associated with inflammatory immune response activity. Further screening of these inflammation-associated genes was used to construct and analyze a competing endogenous RNA network. RNO_CIRCpedia_4214 was knocked down in vitro, resulting in reduced expression of Msr1, while the expression of RNO-miR-667-5p and Arg1 was increased. Dual-luciferase assays demonstrated that RNO_CIRCpedia_4214 bound to RNO-miR-667-5p. The RNO_CIRCpedia_4214/RNO-miR-667-5p/Msr1 axis may be a potential ceRNA that promotes macrophage M2-like polarization in SCI. CONCLUSION Overall, these results highlighted the critical role that circRNAs may play in the pathophysiology of SCI and the discovery of a potential ceRNA mechanism based on novel circRNAs that regulates macrophage polarization, providing new targets for the treatment of SCI.
Collapse
Affiliation(s)
- Jian Cao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Chongzhi Pan
- Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Jian Zhang
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, 330006, China
| | - Qi Chen
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Jiangxi, 330006, China
| | - Tao Li
- Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Dingwen He
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, 330006, China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
- Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, 330006, China.
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, 330006, China.
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Jiangxi, 330006, China.
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, East Laker District, Nanchang, Jiangxi, China.
| |
Collapse
|
10
|
Li Y, Wang B, Sun W, Kong C, Li G, Chen X, Lu S. Screening the immune-related circRNAs and genes in mice of spinal cord injury by RNA sequencing. Front Immunol 2022; 13:1060290. [PMID: 36479123 PMCID: PMC9720296 DOI: 10.3389/fimmu.2022.1060290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/28/2022] [Indexed: 11/22/2022] Open
Abstract
Spinal cord injury (SCI) is a pathological condition that leading to serious nerve damage, disability and even death. Increasing evidence have revealed that circular RNAs (circRNAs) and mRNA are widely involved in the regulation of the pathological process of neurological diseases by sponging microRNAs (miRNAs). Nevertheless, the potential biological functions and regulatory mechanisms of circRNAs in the subacute stage of SCI remain unclear. We analyzed the expression and regulatory patterns of circRNAs and mRNAs in SCI mice models using RNA-sequencing and bioinformatics analysis. A total of 24 circRNAs and 372 mRNAs were identified to be differentially expressed. Then we identifying the immune-related genes (IRGs) from them. The protein-protein interaction network were constructed based on the STRING database and Cytoscape software. Furthermore, Go and KEGG enrichment analysis were conducted to predict the functions of the IRGs and host genes of DECs. These findings will contribute to elucidate the pathophysiology of SCI and provide effective therapeutic targets for SCI patients.
Collapse
Affiliation(s)
- Yongjin Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Baobao Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenzhi Sun
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guowang Li
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China,*Correspondence: Xiaolong Chen, ; Shibao Lu,
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China,*Correspondence: Xiaolong Chen, ; Shibao Lu,
| |
Collapse
|
11
|
Zhao Y, Chen Y, Wang Z, Xu C, Qiao S, Liu T, Qi K, Tong D, Li C. Bone Marrow Mesenchymal Stem Cell Exosome Attenuates Inflammasome-Related Pyroptosis via Delivering circ_003564 to Improve the Recovery of Spinal Cord Injury. Mol Neurobiol 2022; 59:6771-6789. [PMID: 36038697 DOI: 10.1007/s12035-022-03006-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
Bone marrow mesenchymal stem cell (BMSC) is previously reported to present a certain effect on treating spinal cord injury (SCI), while the underlying mechanism is largely uncovered. Therefore, the current study aimed to investigate the involvement of exosome-delivered circRNA profile in the BMSC's effect on pyroptosis for SCI treatment. H2O2 treated rat primary neurons were cultured with normal medium, BMSC, BMSC plus GW4869, and BMSC-derived exosome, respectively, then inflammasome-related pyroptosis markers, and circRNA profiles were detected. Subsequently, circ_003564-knockdown BMSC exosome was transfected into H2O2 treated rat primary neurons and NGF-stimulated PC-12 cells. Furthermore, in vivo validation was conducted. BMSC and BMSC-derived exosome both decreased inflammasome-related pyroptosis markers including cleaved caspase-1, GSDMD, NLRP3, IL-1β, and IL-18 in H2O2-treated neurons, while exosome-free BMSC (BMSC plus GW4869) did not obviously reduce these factors. Microarray assay revealed that BMSC (vs. exosome-free BMSC) and BMSC-derived exosome (vs. normal medium) greatly regulated circRNA profiles, which were enriched in neuroinflammation pathways (such as neurotrophin, apoptosis, and TNF). Among three functional candidate circRNAs (circ_015525, circ_008876, and circ_003564), circ_003564 was most effective to regulate inflammasome-related pyroptosis. Interestingly, circ_003564-knockdown BMSC exosome showed higher expression of inflammasome-related pyroptosis markers compared to negative-control-knockdown BMSC exosome in H2O2 treated primary neurons/NGF-stimulated PC-12 cells. In vivo, BMSC exosome improved the function recovery and decreased tissue injury and inflammasome-related pyroptosis in SCI rats, whose effect was attenuated by circ_003564 knockdown transfection. BMSC exosome attenuates inflammasome-related pyroptosis via delivering circ_003564, contributing to its treatment efficacy for SCI.
Collapse
Affiliation(s)
- Yanyin Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwei Wang
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Changli Xu
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Suchi Qiao
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Tianze Liu
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Ke Qi
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Dake Tong
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Cheng Li
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
12
|
Guo K, Chang Y, Jin Y, Yuan H, Che P. circ-Ncam2 (mmu_circ_0006413) Participates in LPS-Induced Microglia Activation and Neuronal Apoptosis via the TLR4/NF-κB Pathway. J Mol Neurosci 2022; 72:1738-1748. [PMID: 35687299 DOI: 10.1007/s12031-022-02018-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
Spinal cord injury (SCI) can cause permanent neurological deficits. Circular RNA Ncam2 (circ-Ncam2 also termed mmu_circ_0006413) has been reported to be overexpressed in SCI mouse models. However, the function of circ-Ncam2 in SCI has not been validated. Lipopolysaccharide (LPS) was used to activate mouse microglia (BV2 cells). Expression levels of circ-Ncam2 were determined by RT-qPCR. Relative protein levels were evaluated by western blotting. Cytokines were determined by ELISA. The regulatory mechanism of circ-Ncam2 was validated by dual-luciferase reporter and RNA pull-down assays. Effects of LPS-induced BV2 cells on mouse neuronal (HT22 cells) viability, proliferation, and apoptosis were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays. LPS stimulation promoted circ-Ncam2 expression in BV2 cells. Inhibition of circ-Ncam2 mitigated LPS-induced BV2 cell activation and inflammation. Mechanically, circ-Ncam2 adsorbed miR-544-3p to regulate TLR4 expression. Also, either miR-544-3p inhibition or TLR4 overexpression weakened circ-Ncam2 silencing-mediated effects on LPS-induced BV2 cell activation and inflammation. Furthermore, LPS-induced BV2 cells suppressed HT22 cell proliferation and promoted HT22 cell apoptosis through the circ-Ncam2/miR-544-3p axis. Importantly, circ-Ncam2 activated the NF-κB signaling via the miR-544-3p/TLR4axis. circ-Ncam2 silencing lowered LPS-induced microglia activation and neuronal apoptosis via blocking the TLR4/NF-κB pathway through acting as a miR-544-3p sponge, suggesting that circ-Ncam2 may be involved in secondary SCI.
Collapse
Affiliation(s)
- Kai Guo
- Department of Orthopedics, Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yulin Chang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yutao Jin
- Department of Orthopedics, Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hong Yuan
- Department of Orthopedics, Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ping Che
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
13
|
Yao Y, Zhang X, Xu J, Gao F, Wu Y, Cui X, Wei L, Jiang J, Wang X. circ_014260/miR-384/THBS1 aggravates spinal cord injury in rats by promoting neuronal apoptosis and endoplasmic reticulum stress. Am J Transl Res 2022; 14:518-533. [PMID: 35173872 PMCID: PMC8829636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To explore the mechanism of circ_014260 regulating neuronal apoptosis, oxidative stress, and endoplasmic reticulum stress in rats with spinal cord injury (SCI) via miR-384/THBS1 axis. METHODS T9-L10 spinal cord segments of Sprague Dawley rats were subjected to compression or contusion injuries after T10 laminectomy to establish rat models of SCI, which were then divided into SCI group, si-circ group and oe-circ group according to the transfection. There was another sham operation group which received no treatment. There were 10 rats in each group. The Basso-Beattie-Bresnahan scale and HE staining were used to evaluate the changes in neuronal motor function in rats with SCI. TUNEL staining was used to determine the neuronal apoptosis. Flow cytometry was used to measure the changes in H2O2-induced apoptosis of primary neurons. The activities of myeloperoxidase, malondialdehyde, superoxide dismutase and catalase were measured to evaluate the level of oxidative stress. Western blot was used to measure the expressions of CHOP and CRP78 (which are related to endoplasmic reticulum stress). Expression of circ_014260, miR-384 and THBS1 in tissues and cells was measured by qRT-PCR. RNase R restriction enzyme digestion and chromatin fractionation were used to identify the nature of circ_014260. Dual-luciferase reporter assay and RNA immunoprecipitation were used to verify the targeted binding relationship between circ_014260 and miR-384, as well as between miR-384 and THBS1. RESULTS Compared with the sham operation group or the untreated rat primary neurons (control group), increased expression of circ_014260 and THBS1 as well as decreased expression of miR-384 were observed in the spinal cord tissue from rats with SCI and in H2O2-treated primary neurons (all P<0.05). The results of both in vivo and in vitro experiments showed that knocking down circ_014260 could reduce neuronal apoptosis and inhibit oxidative stress and endoplasmic reticulum stress in rats with SCI (all P<0.05). Circ_014260 targetedly inhibited miR-384 to up-regulate the expression of THBS1. Both miR-384 inhibitor and THBS1 overexpression vector partially reversed the alleviated neuronal damage by knocking down circ_014260 (both P<0.05). CONCLUSION Circ_014260 promotes neuronal damage in rats with SCI by inhibiting miR-384 to up-regulate the expression of THBS1. Thus, circ_014260 could possibly be a new molecular target of SCI.
Collapse
Affiliation(s)
- Yu Yao
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| | - Xin Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| | - Jun Xu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| | - Feng Gao
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| | - Yanni Wu
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| | - Xintao Cui
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| | - Li Wei
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| | - Jie Jiang
- Department of Orthopedics, Hailun Traditional Chinese Medicine HospitalSuihua 152300, Heilongjiang Province, China
| | - Xintao Wang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| |
Collapse
|
14
|
Liu P, Zhang Z, Wang J, Zhang X, Yu X, Li Y. Empagliflozin protects diabetic pancreatic tissue from damage by inhibiting the activation of the NLRP3/caspase-1/GSDMD pathway in pancreatic β cells: in vitro and in vivo studies. Bioengineered 2021; 12:9356-9366. [PMID: 34823419 PMCID: PMC8810000 DOI: 10.1080/21655979.2021.2001240] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetes mellitus is an important public health problem worldwide. Insulin deficiency caused by pancreatic β cell dysfunction is an important pathogenic factor of diabetes mellitus. This study evaluated whether empagliflozin (EMPA) protects the pancreas from diabetes mellitus-induced injury by downregulating the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)/caspase-1/Gasdermin D (GSDMD) pyroptosis-related inflammasome pathway in vitro and in vivo. In vivo, animals were separated into blank control (control, C57/bl6j wild-type mice), diabetes model (db/db mice, BKS-Leprem2Cd479/Gpt mice), and db/db mice+EMPA (db/db+EMPA) groups. In vitro, pancreatic β cells were separated into low glucose (control), high glucose (HG), and HG+EMPA groups. The db/db+EMPA group were administered empagliflozin at 10 mg/(kg·day) by gavage for six months. Histological changes in the pancreatic tissues were observed by hematoxylin-eosin staining, and levels of the pyroptosis-related inflammatory factors NLPR3, caspase-1, and GSDMD were measured by immunohistochemistry and immunofluorescence staining methods. The Cell Counting Kit-8 assay was used to detect the effect of different concentrations of glucose and empagliflozin on the proliferation of mouse insulinoma islet β (β TC-6) cells. NLRP3/caspase-1/GSDMD expression was assessed by western blotting and immunofluorescent labeling in the β TC-6 cells. The results showed that empagliflozin reduced the pathological changes and inflammatory cell infiltration in the pancreatic tissues of db/db mice. Furthermore, empagliflozin not only reduced the expression levels of NLRP3/caspase-1/GSDMD in vitro, but also reduced their expression levels in vivo. In summary, our data suggested that empagliflozin protects the pancreatic tissues from diabetes mellitus-induced injury by downregulating the NLRP3/caspase-1/GSDMD pyroptosis-related inflammasome pathway.
Collapse
Affiliation(s)
- Pan Liu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Endocrinology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jinwu Wang
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, China
| | - Xiao Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Endocrinology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaoping Yu
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Yao Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Endocrinology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
15
|
Tong D, Zhao Y, Tang Y, Ma J, Wang Z, Li C. Circ-Usp10 promotes microglial activation and induces neuronal death by targeting miRNA-152-5p/CD84. Bioengineered 2021; 12:10812-10822. [PMID: 34753388 PMCID: PMC8809980 DOI: 10.1080/21655979.2021.2004362] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Spinal cord injury (SCI) is a traumatic disease resulting in neuronal injury. circRNAs are closely associated with human diseases. Nevertheless, the potential mechanism by which circRNAs impact SCI remains to be elucidated. The aim of this study was to investigate the regulatory roles of Circular RNAs (circRNAs) in SCI. The SCI mouse model and integrated bioinformatics analysis were used to identify the differentially expressed genes (DEGs). Functional enrichment analysis was conducted to study the related pathways. The circRNA-mediated ceRNA network and subnetwork was constructed based on circMir, TargetScan and miRanda. qRT–PCR, ELISA, flow cytometry, and luciferase reporter assays were carried out to validate the role of circ_0014637 (circ-Usp10) and microRNA(miR)-152-5p /CD84 in microglia. In all, 23 DE-circRNAs, 127 DE-miRNAs and 1327 DE-mRNAs were identified. We integrated these DEGs to construct a circRNA-miRNA-mRNA network. The circ-Usp10/miR-152-5p/CD84 axis was found to function in microglial activation. We also found that circ-Usp10 inhibited the secretion of proinflammatory factors in microglial BV2 cells. In addition, silencing circ-Usp10 significantly reduced the death of the neuronal cell line HT22. Taken together, we concluded that circ-Usp10 may function as a competing endogenous RNA (ceRNA) to promote microglial activation and induce neuronal death by targeting miR-152-5p/CD84. The circ-Usp10 may be a diagnostic biomarker and potential target for SCI therapy.
Collapse
Affiliation(s)
- Dake Tong
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Yanyin Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Jie Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Zhiwei Wang
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Naval Medical University, 700 North Moyu Road, Shanghai, 201805, China
| | - Cheng Li
- Department of Orthopedics, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai 200433, P.R. China
| |
Collapse
|