1
|
Kurl S, Kaur S, Mittal N, Kaur G. Mushrooms and Colorectal Cancer: Unveiling Mechanistic Insights and Therapeutic Innovations. Phytother Res 2024. [PMID: 39528260 DOI: 10.1002/ptr.8382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/26/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Nature has bestowed us with an abundant reservoir of resources that besides having nutritional value, are prolific mines of bioactive constituents with a plethora of medicinal activities. Mushrooms have been used since centuries in traditional system of medicine for their purported health benefits including anticancer activities. Thorough research, spanning over centuries in Japan, China, Korea, and the USA, has established the unique properties of mushrooms and their extractives in the prevention and treatment of various types cancer. The aim of the review article is to provide a comprehensive overview of the existing literature highlighting the potential relationship between mushrooms and colorectal cancer. Different databases such as PubMed, Web of Science, Google Scholar, and ScienceDirect were searched and a total of 62 articles and two book chapters were reviewed, and data were extracted. Multiple studies have demonstrated that mushrooms exhibit anticancer activities, effectively reducing adverse side effects such as nausea, myelosuppression, anemia, and sleeplessness. Furthermore, they have been shown to mitigate drug resistance following chemotherapy and radiation therapy. Certain species such as Antrodia, Pleurotus, Ganoderma, Lentinula, Hericium, Cantharellus, Clitocybe, Coprinopsis, Trametes, Sparassis, Lactarius, and so on manifest anticancer activity in colon. The article can help improve the scientific understanding of the co-relationship between mushrooms and colorectal cancer. This may help in advancing the research directions and integrating the mushroom-based strategies into current treatment protocols of colorectal cancer.
Collapse
Affiliation(s)
- Samridhi Kurl
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, Punjab, India
| | - Snimmer Kaur
- General William Polyclinic, Patiala, Punjab, India
| | - Neeraj Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Gurpreet Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, Punjab, India
| |
Collapse
|
2
|
Yan Y, Yu W, Guo M, Zhu N, Chen X, Li N, Zhong C, Wang G. Autophagy regulates apoptosis of colorectal cancer cells based on signaling pathways. Discov Oncol 2024; 15:367. [PMID: 39182013 PMCID: PMC11344751 DOI: 10.1007/s12672-024-01250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer is a common malignant tumor of the digestive system. Its morbidity and mortality rank among the highest in the world. Cancer development is associated with aberrant signaling pathways. Autophagy is a process of cell self-digestion that maintains the intracellular environment and has a bidirectional regulatory role in cancer. Apoptosis is one of the important death programs in cancer cells and is able to inhibit cancer development. Studies have shown that a variety of substances can regulate autophagy and apoptosis in colorectal cancer cells through signaling pathways, and participate in the regulation of autophagy on apoptosis. In this paper, we focus on the relevant research on autophagy in colorectal cancer cells based on the involvement of related signaling pathways in the regulation of apoptosis in order to provide new research ideas and therapeutic directions for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Yuwei Yan
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Wenyan Yu
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Min Guo
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Naicheng Zhu
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Xiudan Chen
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Nanxin Li
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Chen Zhong
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Guojuan Wang
- Oncology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, No.445, Bayi Avenue, Nanchang, 330006, China.
| |
Collapse
|
3
|
Walweel N, Aydin O. Enhancing Therapeutic Efficacy in Cancer Treatment: Integrating Nanomedicine with Autophagy Inhibition Strategies. ACS OMEGA 2024; 9:27832-27852. [PMID: 38973850 PMCID: PMC11223161 DOI: 10.1021/acsomega.4c02234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024]
Abstract
The complicated stepwise lysosomal degradation process known as autophagy is in charge of destroying and eliminating damaged organelles and defective cytoplasmic components. This mechanism promotes metabolic adaptability and nutrition recycling. Autophagy functions as a quality control mechanism in cells that support homeostasis and redox balance under normal circumstances. However, the role of autophagy in cancer is controversial because, mostly depending on the stage of the tumor, it may either suppress or support the disease. While autophagy delays the onset of tumors and slows the dissemination of cancer in the early stages of tumorigenesis, numerous studies demonstrate that autophagy promotes the development and spread of tumors as well as the evolution and development of resistance to several anticancer drugs in advanced cancer stages. In this Review, we primarily emphasize the therapeutic role of autophagy inhibition in improving the treatment of multiple cancers and give a broad overview of how its inhibition modulates cancer responses. There have been various attempts to inhibit autophagy, including the use of autophagy inhibitor drugs, gene silencing therapy (RNA interference), and nanoparticles. In this Review, all these topics are thoroughly covered and illustrated by recent studies and field investigations.
Collapse
Affiliation(s)
- Nada Walweel
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- NanoThera
Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri 38280, Turkey
| | - Omer Aydin
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- NanoThera
Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri 38280, Turkey
- ERNAM-Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- ERKAM-Clinical-Engineering
Research and Implementation Center, Erciyes
University, Kayseri 38030, Turkey
| |
Collapse
|
4
|
Jin X, You L, Qiao J, Han W, Pan H. Autophagy in colitis-associated colon cancer: exploring its potential role in reducing initiation and preventing IBD-Related CAC development. Autophagy 2024; 20:242-258. [PMID: 37723664 PMCID: PMC10813649 DOI: 10.1080/15548627.2023.2259214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023] Open
Abstract
ABBREVIATIONS A. muciniphila: Akkermansia muciniphila; AIEC: adherent invasive Escherichia coli; AOM/DSS: azoxymethane-dextran sodium sulfate; ATG: autophagy related; BECN1: beclin1, autophagy related; CAC: colitis-associated colon cancer; CCDC50: coiled-coil domain containing 50; CLDN2: claudin 2; CoPEC: colibactin-producing Escherichia coli; CRC: colorectal cancer; DAMPs: danger/damage-associated molecular patterns; DC: dendritic cell; DSS: dextran sulfate sodium; DTP: drug-resistant persistent; ER: endoplasmic reticulum; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; IBD: inflammatory bowel disease; IECs: intestinal epithelial cells; IKK: IkappaB kinase; IL: interleukin; IRGM1: immunity-related GTPase family M member 1; ISC: intestinal stem cell; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MDP: muramyl dipeptide; MELK: maternal embryonic leucine zipper kinase; MHC: major histocompatibility complex; miRNA: microRNA; MTOR: mechanistic target of rapamycin kinase; NLRP3: NLR family, pyrin domain containing 3; NOD2: nucleotide-binding oligomerization domain containing 2; NRBF2: nuclear receptor binding factor 2; PAMPs: pathogen-associated molecular patterns; PI3K: class I phosphoinositide 3-kinase; PtdIns3K: class III phosphatidylinositol 3-kinase; PYCARD/ASC: PYD and CARD domain containing; RALGAPA2/RalGAPα2: Ral GTPase activating protein protein, alpha subunit 2 (catalytic); RIPK2/CARD3: receptor (TNFRSF)-interacting serine-threonine kinase 2; RIPK3: receptor-interacting serine-threonine kinase 3; ROS: reactive oxygen species; sCRC: sporadic colorectal cancer; SMARCA4/BRG1: SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription 3; TNF/TNFA: tumor necrosis factor; ULK1: unc-51 like autophagy activating kinase 1; UPR: unfolded protein response; WT: wild-type.
Collapse
Affiliation(s)
- Xuanhong Jin
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liangkun You
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jincheng Qiao
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Hseu JH, Lin YA, Pandey S, Vadivalagan C, Ali A, Chen SJ, Way TD, Yang HL, Hseu YC. Antrodia salmonea suppresses epithelial-mesenchymal transition/metastasis and Warburg effects by inhibiting Twist and HIF-1α expression in Twist-overexpressing head and neck squamous cell carcinoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117030. [PMID: 37572931 DOI: 10.1016/j.jep.2023.117030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Antrodia salmonea (AS), linked to the genus Taiwanofungus, is a medicinal fungus, and exhibits anti-inflammatory, anti-oxidant, and tumor inhibiting properties. AIM OF THE STUDY In this study, we investigated the metabolic reprogramming and anti-metastasis/epithelial-mesenchymal transition (EMT) effects of AS exposure in Twist-overexpressing head and neck squamous cell carcinoma (HNSCC, OECM-1 and FaDu-Twist) cells. MATERIALS AND METHODS MTT assay, Western blot, migration/invasion assay, immunofluorescence, glucose uptake assay, lactate assay, oxygen consumption rate (OCR)/Extracellular acidification rate (ECAR) assay, Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry (LC-ESI-MS), and qRT-PCR experimental techniques were used to evaluate the therapeutic potential of AS treatment in HNSCC cells. RESULTS This study showed that AS exhibits anti-EMT and anti-metastatic effects as well as metabolic reprogramming in Twist-overexpressing HNSCC cells. AS exposure inhibited Twist and hypoxia-inducible factor-1α (HIF-1α) protein and/or mRNA expression in Twist-overexpressing OECM-1 and FaDu-Twist cells. AS markedly suppressed EMT by enhancing the expression of E-cadherin; while the N-cadherin was suppressed. Furthermore, glucose uptake and lactate accumulation, together with HIF-1α-regulated glycolysis genes were diminished by AS in OECM-1 cells. AS decreased the ECAR, and enhanced the OCR together with basal respiration, ATP production, maximal respiration, and spare respiratory capacity under normoxia and hypoxia (CoCl2) in OECM-1 cells. There was a marked reduction in the level of glycolytic intermediate's; while TCA cycle metabolites were increased by AS treatment in OECM-1 cells. CONCLUSIONS We concluded that AS treatment suppresses EMT/metastasis and Warburg effects through Twist and HIF-1α inhibition in Twist-overexpressing HNSCC cells.
Collapse
Affiliation(s)
- Jhih-Hsuan Hseu
- Department of Dermatology, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Yi-An Lin
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan
| | - Sudhir Pandey
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 406040, Taiwan
| | - Chithravel Vadivalagan
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109, United States
| | - Asif Ali
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir, 190005, India
| | - Siang-Jyun Chen
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan
| | - Tzong-Der Way
- Department of Life Sciences, China Medical University, Taichung, 406040, Taiwan
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan.
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 406040, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, 413305, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, 404333, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 404333, Taiwan.
| |
Collapse
|
6
|
Zhang Z, Zhao Y, Wang Y, Zhao Y, Guo J. Autophagy/ferroptosis in colorectal cancer: Carcinogenic view and nanoparticle-mediated cell death regulation. ENVIRONMENTAL RESEARCH 2023; 238:117006. [PMID: 37669735 DOI: 10.1016/j.envres.2023.117006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/07/2023]
Abstract
The cell death mechanisms have a long history of being evaluated in diseases and pathological events. The ability of triggering cell death is considered to be a promising strategy in cancer therapy, but some mechanisms have dual functions in cancer, requiring more elucidation of underlying factors. Colorectal cancer (CRC) is a disease and malignant condition of colon and rectal that causes high mortality and morbidity. The autophagy targeting in CRC is therapeutic importance and this cell death mechanism can interact with apoptosis in inhibiting or increasing apoptosis. Autophagy has interaction with ferroptosis as another cell death pathway in CRC and can accelerate ferroptosis in suppressing growth and invasion. The dysregulation of autophagy affects the drug resistance in CRC and pro-survival autophagy can induce drug resistance. Therefore, inhibition of protective autophagy enhances chemosensitivity in CRC cells. Moreover, autophagy displays interaction with metastasis and EMT as a potent regulator of invasion in CRC cells. The same is true for ferroptosis, but the difference is that function of ferroptosis is determined and it can reduce viability. The lack of ferroptosis can cause development of chemoresistance in CRC cells and this cell death mechanism is regulated by various pathways and mechanisms that autophagy is among them. Therefore, current review paper provides a state-of-art analysis of autophagy, ferroptosis and their crosstalk in CRC. The nanoparticle-mediated regulation of cell death mechanisms in CRC causes changes in progression. The stimulation of ferroptosis and control of autophagy (induction or inhibition) by nanoparticles can impair CRC progression. The engineering part of nanoparticle synthesis to control autophagy and ferroptosis in CRC still requires more attention.
Collapse
Affiliation(s)
- Zhibin Zhang
- Chengde Medical College, College of Traditional Chinese Medicine, Chengde, Hebei, 067000, China.
| | - Yintao Zhao
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Yuman Wang
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Yutang Zhao
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Jianen Guo
- Chengde Medical College, Chengde, Hebei, 067000, China
| |
Collapse
|
7
|
Qin Y, Ashrafizadeh M, Mongiardini V, Grimaldi B, Crea F, Rietdorf K, Győrffy B, Klionsky DJ, Ren J, Zhang W, Zhang X. Autophagy and cancer drug resistance in dialogue: Pre-clinical and clinical evidence. Cancer Lett 2023; 570:216307. [PMID: 37451426 DOI: 10.1016/j.canlet.2023.216307] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The emergence of drug resistance is a major challenge for oncologists. Resistance can be categorized as acquired or intrinsic; the alteration of several biological mechanisms contributes to both intrinsic and acquired resistance. Macroautophagy/autophagy is the primary process in eukaryotes for the degradation of macromolecules and organelles. This process is critical in maintaining cellular homeostasis. Given its function as either a pro-survival or a pro-death phenomenon, autophagy has a complex physio-pathological role. In some circumstances, autophagy can confer chemoresistance and promote cell survival, whereas in others it can promote chemosensitivity and contribute to cell death. The role of autophagy in the modulation of cancer drug resistance reflects its impact on apoptosis and metastasis. The regulation of autophagy in cancer is mediated by various factors including AMP-activated protein kinase (AMPK), MAPK, phosphoinositide 3-kinase (PI3K)-AKT, BECN1 and ATG proteins. Non-coding RNAs are among the main regulators of autophagy, e.g., via the modulation of chemoresistance pathways. Due to the significant contribution of autophagy in cancer drug resistance, small molecule modulators and natural compounds targeting autophagy have been introduced to alter the response of cancer cells to chemotherapy. Furthermore, nanotherapeutic approaches based on autophagy regulation have been introduced in pre-clinical cancer therapy. In this review we consider the potential for using autophagy regulators for the clinical treatment of malignancies.
Collapse
Affiliation(s)
- Yi Qin
- Department of Lab, Chifeng Cancer Hospital (The 2nd Affliated Hospital of Chifeng University), Chifeng University, Chifeng City, Inner Mongolia Autonomous Region, 024000, China.
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Vera Mongiardini
- Molecular Medicine Research Line, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, 16163, Italy
| | - Benedetto Grimaldi
- Molecular Medicine Research Line, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, 16163, Italy
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Katja Rietdorf
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Tüzoltó u. 7-9, 1094, Budapest, Hungary; Department of Pediatrics, Semmelweis University, Tüzoltó u. 7-9, 1094, Budapest, Hungary; Cancer Biomarker Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar tudosok korutja 2, 1117, Budapest, Hungary
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
8
|
Orlandi G, Roncucci L, Carnevale G, Sena P. Different Roles of Apoptosis and Autophagy in the Development of Human Colorectal Cancer. Int J Mol Sci 2023; 24:10201. [PMID: 37373349 DOI: 10.3390/ijms241210201] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer (CRC) remains a major life-threatening malignancy, despite numerous therapeutic and screening attempts. Apoptosis and autophagy are two processes that share common signaling pathways, are linked by functional relationships and have similar protein components. During the development of cancer, the two processes can trigger simultaneously in the same cell, causing, in some cases, an inhibition of autophagy by apoptosis or apoptosis by autophagy. Malignant cells that have accumulated genetic alterations can take advantage of any alterations in the apoptotic process and as a result, progress easily in the cancerous transformation. Autophagy often plays a suppressive role during the initial stages of carcinogenicity, while in the later stages of cancer development it can play a promoting role. It is extremely important to determine the regulation of this duality of autophagy in the development of CRC and to identify the molecules involved, as well as the signals and the mechanisms behind it. All the reported experimental results indicate that, while the antagonistic effects of autophagy and apoptosis occur in an adverse environment characterized by deprivation of oxygen and nutrients, leading to the formation and development of CRC, the effects of promotion and collaboration usually involve an auxiliary role of autophagy compared to apoptosis. In this review, we elucidate the different roles of autophagy and apoptosis in human CRC development.
Collapse
Affiliation(s)
- Giulia Orlandi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo, 71-41124 Modena, Italy
| | - Luca Roncucci
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via del Pozzo, 71-41124 Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo, 71-41124 Modena, Italy
| | - Paola Sena
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo, 71-41124 Modena, Italy
| |
Collapse
|
9
|
Yang HL, Huang ST, Lyu ZH, Bhat AA, Vadivalagan C, Yeh YL, Hseu YC. The anti-tumor activities of coenzyme Q0 through ROS-mediated autophagic cell death in human triple-negative breast cells. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
|
10
|
Yang HL, Lin YA, Pandey S, Liao JW, Way TD, Yeh YL, Chen SJ, Hseu YC. In vitro and in vivo anti-tumor activity of Antrodia salmonea against twist-overexpressing HNSCC cells: Induction of ROS-mediated autophagic and apoptotic cell death. Food Chem Toxicol 2023; 172:113564. [PMID: 36563924 DOI: 10.1016/j.fct.2022.113564] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a relatively common malignancy, characterized by lethal morbidity. Herein, we attempted to investigate the autophagy/apoptosis activities of the submerged fermented broths of Antrodia salmonea (AS) in HNSCC Twist-overexpressing (OECM-1 and FaDu-Twist) cells. AS (0-150 μg/mL) effectively reduced cell viability, colony formation, and downregulated Twist expression in OECM-1 and FaDu-Twist cells compared to FaDu cells. AS- induced apoptosis was mainly associated with activation of caspase-3, PARP cleavage, increased expression of VDAC-1 and disproportionation of Bax/Bcl-2. Annexin V/PI staining suggested late apoptosis induction by AS treatment. AS exhibits enhanced autophagy process mediated via LC3-I/II accumulation, increased acidic vesicular organelles (AVOs) formation and p62/SQSTM1 expression feeding into the apoptotic program. However, pre-treatment with autophagy blockers 3-MA and CQ significantly diminished AS-induced cell death. Additionally, suppression of AS-induced ROS release by treatment with antioxidant N-acetylcysteine (NAC) resulted in reduction of apoptotic and autophagic cell death. In vivo studies strengthened the above observations and showed that AS effectively reduced the tumor volume and tumor weight in OECM-1-xenografted nude mice. This study discovered that Antrodia salmonea exhibits a novel anti-cancer mechanism which could be harnessed as a new potent drug for HNSCC treatment.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 40402, Taiwan
| | - Yi-An Lin
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 40402, Taiwan
| | - Sudhir Pandey
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung-Hsing University, Taichung, 402, Taiwan
| | - Tzong-Der Way
- Department of Life Sciences, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Yu-Lyu Yeh
- Department of Healthcare Administration, Asia University, Taichung, 41354, Taiwan
| | - Siang-Jyun Chen
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 40402, Taiwan
| | - You-Cheng Hseu
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 40402, Taiwan; Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
11
|
Xia Y, Wang D, Li J, Chen M, Wang D, Jiang Z, Liu B. Compounds purified from edible fungi fight against chronic inflammation through oxidative stress regulation. Front Pharmacol 2022; 13:974794. [PMID: 36160418 PMCID: PMC9500316 DOI: 10.3389/fphar.2022.974794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023] Open
Abstract
Chronic inflammation is associated with various chronic diseases, including cardiovascular disease, neurodegenerative disease, and cancer, which severely affect the health and quality of life of people. Oxidative stress induced by unbalanced production and elimination of reactive oxygen species (ROS) is one of the essential risk factors for chronic inflammation. Recent studies, including the studies of mushrooms, which have received considerable attention, report that the antioxidant effects of natural compounds have more advantages than synthetic antioxidants. Mushrooms have been consumed by humans as precious nourishment for 3,000 years, and so far, more than 350 types have been identified in China. Mushrooms are rich in polysaccharides, peptides, polyphenols, alkaloids, and terpenoids and are associated with several healthy biological functions, especially antioxidant properties. As such, the extracts purified from mushrooms could activate the expression of antioxidant enzymes through the Keap1/Nrf2/ARE pathway to neutralize excessive ROS and inhibit ROS-induced chronic inflammation through the NF-κB pathway. Recently, the antioxidant properties of mushrooms have been successfully applied to treating cardiovascular disease (CAD), neurodegenerative diseases, diabetes mellitus, and cancer. The present review summarizes the antioxidant properties and the mechanism of compounds purified from mushrooms, emphasizing the oxidative stress regulation of mushrooms to fight against chronic inflammation.
Collapse
Affiliation(s)
- Yidan Xia
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Jiaqi Li
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Minqi Chen
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Duo Wang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Ziping Jiang, ; Bin Liu,
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Ziping Jiang, ; Bin Liu,
| |
Collapse
|
12
|
Methylation Drives SLC2A1 Transcription and Ferroptosis Process Decreasing Autophagy Pressure in Colon Cancer. JOURNAL OF ONCOLOGY 2022; 2022:9077424. [PMID: 36065306 PMCID: PMC9440784 DOI: 10.1155/2022/9077424] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/23/2022] [Indexed: 12/24/2022]
Abstract
Colon cancer is a common malignant tumor in the digestive tract, with relatively high rates of morbidity and mortality. It is the third most common type of tumor in the world. The effective treatment of advanced colon cancer is limited, so it is particularly important to study the new pathogenesis of colon cancer. Ferroptosis is a nonapoptotic regulated cell death mode driven by iron-dependent lipid peroxidation, a process which has been discovered in recent years. Autophagy involves lysosomal degradation pathways that promote or prevent cell death. High levels of autophagy are associated with ferroptosis, but a clear association has not yet been made between ferroptosis and autophagy in colon cancer. Through the analysis of transcriptome expression profiling data in colon cancer, we obtained the common upregulated genes and downregulated genes by recording the intersection of the differentially expressed genes in each dataset. Solute Carrier Family 2 Member 1 (SLC2A1) was identified by combining autophagy genes obtained from GeneCards and ferroptosis genes obtained from FerrDb. In order to explore the clinical significance and prognostic value of SLC2A1, we utilized massive databases to conduct an in-depth exploration of the methylation of SLC2A1, and we also investigated the differences in immune infiltration between tumor and normal tissues. We found that there are abundant methylation sites in SLC2A1 and that the methylation of SLC2A1 is correlated with the immunosuppression of tumor tissue. We discovered that during the induction of environmental factors, the transcription and methylation levels of SLC2A1 were greatly increased, autophagy and ferroptosis were inhibited, and the immune system was defective, resulting in a poor prognosis for patients. These results suggest that the autophagy and ferroptosis-related gene SLC2A1 is involved in the tumor immune regulation of colon cancer, and SLC2A1 may become a new therapeutic target for colon cancer.
Collapse
|
13
|
Wang R, Ren Q, Gao D, Paudel YN, Li X, Wang L, Zhang P, Wang B, Shang X, Jin M. Ameliorative effect of Gastrodia elata Blume extracts on depression in zebrafish and cellular models through modulating reticulon 4 receptors and apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115018. [PMID: 35092824 DOI: 10.1016/j.jep.2022.115018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/09/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastrodia elata Blume (G. elata), a traditional Chinese herb, known as "Tian Ma", is widely used as a common medicine and diet ingredient for treating or preventing neurological disorders for thousands of years in China. However, the anti-depressant effect of G. elata and the underlying mechanism have not been fully evaluated. AIM OF THE STUDY The study is aimed to investigate the anti-depressant effect and the molecular mechanism of G. elata in vitro and in vivo using PC12 cells and zebrafish model, respectively. MATERIAL AND METHODS Network pharmacology was performed to explore the potential active ingredients and action targets of G. elata Blume extracts (GBE) against depression. The cell viability and proliferation were determined by MTT and EdU assay, respectively. TUNEL assay was used to examine the anti-apoptotic effect of GBE. Immunofluorescence and Western blot were used to detect the protein expression level. In addition, novel tank diving test was used to investigate the anti-depressant effect in zebrafish depression model. RT-PCR was used to analyze the mRNA expression levels of genes. RESULTS G. elata against depression on the reticulon 4 receptors (RTN4R) and apoptosis-related targets, which were predicted by network pharmacology. Furthermore, GBE enhanced cell viability and inhibited the apoptosis in PC12 cells against CORT treatment. GBE relieved depression-like symptoms in adult zebrafish, included increase of exploratory behavior and regulation of depression related genes. Mechanism studies showed that the GBE inhibited the expression of RTN4R-related and apoptosis-related genes. CONCLUSION Our studies show the ameliorative effect of G. elata against depression. The mechanism may be associated with the inhibition of RTN4R-related and apoptosis pathways.
Collapse
Affiliation(s)
- Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| | - Qingyu Ren
- School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, PR China; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia.
| | - Xia Li
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd, Gangxing 3rd Rd, High-Tech and Innovation Zone, Bldg. 2, Rm. 2201, Ji'nan, 250101, Shandong Province, PR China.
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| | - Pengyu Zhang
- School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, PR China; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| | - Baokun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| | - Xueliang Shang
- School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, PR China.
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| |
Collapse
|
14
|
Chen X, Lin S, Lin Y, Wu S, Zhuo M, Zhang A, Zheng J, You Z. BRAF-activated WT1 contributes to cancer growth and regulates autophagy and apoptosis in papillary thyroid carcinoma. J Transl Med 2022; 20:79. [PMID: 35123502 PMCID: PMC8818187 DOI: 10.1186/s12967-022-03260-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/17/2022] [Indexed: 12/17/2022] Open
Abstract
Abstract
Background
Papillary thyroid carcinoma (PTC) is one of most prevalent malignant endocrine neoplasms, and it is associated with a high frequency of BRAF gene mutations, which lead to lymphatic metastasis and distant metastasis that promote tumor progression. The molecular mechanism of PTC and the role of BRAF mutation in PTC progression and development need to be further elucidated.
Methods
In this study, a comprehensive bioinformatics analysis was performed to identify the differentially expressed genes and signaling pathways in thyroid cancer patients carrying mutant BRAF. Then, we confirmed the prognostic role of WT1 in thyroid cancer patients. Immunohistochemistry was performed to measure the expression profile of WT1 in PTC tissue. Lentivirus shWT1 was transfected into BRAFV600E (mutant) PTC cells to stably inhibit WT1 expression. CCK-8, EdU, immunofluorescence, colony formation, cell migration, cell wound healing, apoptosis and autophagy assays were performed to assess the biological functions of WT1 in BRAFV600E PTC cells. RNA sequencing, immunohistochemistry and immunoblotting were performed to explore the molecular mechanism of WT1 in BRAFV600E PTC cells.
Results
The results confirmed that “epithelial cell proliferation”, “apoptosis” and “selective autophagy” were closely associated with this BRAF mutant in these thyroid cancer patients. Knocking down BRAF-activated WT1 effectively inhibited the proliferation and migration of BRAFV600E PTC cells. Silencing WT1 significantly inhibited autophagy and promoted the apoptosis of BRAFV600E PTC cells. Mechanistic investigations showed that silencing WT1 expression remarkably suppressed the AKT/mTOR and ERK/P65 signaling pathways in BRAFV600E PTC cells.
Conclusion
All these results indicate that WT1 is a promising prognostic biomarker and facilitates PTC progression and development of cells carrying the BRAFV600E mutation.
Collapse
|
15
|
Anticancer Activities of Mushrooms: A Neglected Source for Drug Discovery. Pharmaceuticals (Basel) 2022; 15:ph15020176. [PMID: 35215289 PMCID: PMC8876642 DOI: 10.3390/ph15020176] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 01/08/2023] Open
Abstract
Approximately 270 species of mushrooms have been reported as potentially useful for human health. However, few mushrooms have been studied for bioactive compounds that can be helpful in treating various diseases. Like other natural regimens, the mushroom treatment appears safe, as could be expected from their long culinary and medicinal use. This review aims to provide a critical discussion on clinical trial evidence for mushrooms to treat patients with diverse types of cancer. In addition, the review also highlights the identified bioactive compounds and corresponding mechanisms of action among the explored mushrooms. Furthermore, it also discusses mushrooms with anticancer properties, demonstrated either in vitro and/or in vivo models, which have never been tested in clinical studies. Several mushrooms have been tested in phase I or II clinical trials, mostly for treating breast cancer (18.6%), followed by colorectal (14%) and prostate cancer (11.6%). The majority of clinical studies were carried out with just 3 species: Lentinula edodes (22.2%), Coriolus versicolor, and Ganoderma lucidum (both 13.9%); followed by two other species: Agaricus bisporus and Grifola frondosa (both 11.1%). Most in vitro cell studies use breast cancer cell lines (43.9%), followed by lung (14%) and colorectal cancer cell lines (13.1%), while most in vivo animal studies are performed in mice tumor models (58.7%). Although 32 species of mushrooms at least show some promise for the treatment of cancer, only 11 species have been tested clinically thus far. Moreover, most clinical studies have investigated fewer numbers of patients, and have been limited to phase III or IV. Therefore, despite the promising preclinical and clinical data publication, more solid scientific efforts are required to clarify the therapeutic value of mushrooms in oncology.
Collapse
|
16
|
Braga KMDS, Cruz VDS, Arnhold E, Araújo EGD. Recycled Pequi (Caryocar brasiliense, Camb.) Shell Ethanolic Extract Induces Apoptosis in Canine Osteosarcoma Cells. CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v22e-71198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract Osteosarcoma is a mesenchymal cancer associated with high mortality in dogs and in humans. The biodiversity-rich Cerrado, the predominant biome in the Midwest region of Brazil, is native to locally appreciated fruits such as pequi (Caryocar brasiliense, Camb). Although this plant has been frequently used in folk medicine, the pharmacological properties of pequi fruit shells have not been fully evaluated. Thus, this study aimed to determine the cytotoxic activity of ethanol extract of recycled pequi shells on canine osteosarcoma cells in vitro. Cells were cultured and treated with final extract concentrations of 0, 0.029 µg/µL, 0.29 µg/µL, and 2.91 µg/µL for 24, 48, or 72 hours. Cell viability assay using trypan blue exclusion method and tetrazolium reduction method, cell survival assay, and double labeling with annexin V and propidium iodide were performed in the treated osteosarcoma cells. These allowed the determination of IC50, survival fraction, and type of cell death, respectively. Pequi shell ethanol extract at a concentration of 2.91 µg/µL showed the greatest inhibition of osteosarcoma cell growth in vitro, resulting in a 71.80% decrease in growth compared to the control. The mean IC50 was 155.2 μg/mL at 72 hours. The calculated survival fractions showed that cell growth at 72 hours was 3.33% lower in cells treated with 2.91 µg/µL extract. Results from the double labeling experiment suggest that apoptosis was the predominant type of cell death in cells treated with 2.91 µg/µL extract. These results demonstrate that ethanol extract of recycled pequi shells promotes apoptosis in canine osteosarcoma cells.
Collapse
|
17
|
Chen CY, Lin H, Cheng PT, Cheng YC, Oner M, Li YH, Chen MC, Wu JH, Chang TC, Celik A, Liu FL, Wang HY, Lai CH, Hsieh JT. Antrodia salmonea extract inhibits cell proliferation through regulating cell cycle arrest and apoptosis in prostate cancer cell lines. CHINESE J PHYSIOL 2022; 65:209-214. [DOI: 10.4103/cjp.cjp_78_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Crosstalk between Autophagy and Inflammatory Processes in Cancer. Life (Basel) 2021; 11:life11090903. [PMID: 34575052 PMCID: PMC8466094 DOI: 10.3390/life11090903] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/18/2022] Open
Abstract
Inflammation is an adaptive response to tissue injury, which is a critical process in order to restore tissue functionality and homeostasis. The association between inflammation and cancer has been a topic of interest for many years, not only inflammatory cells themselves but also the chemokines and cytokines they produce, which affect cancer development. Autophagy is an intracellular self-degradative process providing elimination of damaged or dysfunctional organelles under stressful conditions such as nutrient deficiency, hypoxia, or chemotherapy. Interestingly, the signaling pathways that are involved in cancer-associated inflammation may regulate autophagy as well. These are (1) the toll-like receptor (TLR) signaling cascade, (2) the reactive oxygen species (ROS) signaling pathway, (3) the inflammatory cytokine signaling pathway, and (4) the IκB kinase (IKK)/Nuclear factor-κB (NF-κB) signaling axis. Moreover, the studies on the context-specific functions of autophagy during inflammatory responses in cancer will be discussed here. On that basis, we focus on autophagy inhibitors and activators regulating inflammatory process in cancer as useful candidates for enhancing anticancer effects. This review summarizes how the autophagic process regulates these key inflammatory processes and vice versa in various cancers.
Collapse
|