1
|
Qin F, Zheng H, Wu J, Liu Z, Zheng Y, Yang X, Chen J, Deng W, Luo Z, Tan J, Cai W, Jian B, Zeng Y, Qin X, Liao H. APOC1 expressed in macrophages promotes the pulmonary metastasis of colorectal cancer via CCL2/CCL5. Int Immunopharmacol 2025; 154:114611. [PMID: 40194454 DOI: 10.1016/j.intimp.2025.114611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/16/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025]
Abstract
Metastasis is the main cause of death in colorectal cancer (CRC), and the lungs are common sites of metastasis. However, there is little effective target to intervene colorectal cancer pulmonary metastasis (CCPM), especially on its unique immune microenvironment. In this study, sixteen genes were identified as core CCPM-related differentially expressed genes (DEGs) between CRC and CCPM. Three genes including Apolipoprotein C1 (APOC1) were associated with prognosis, stage and metastasis of CRC. In immunohistochemistry, APOC1 was mainly expressed in macrophages, and expressed more in CCPM than CRC. Patients with synchronous CCPM, higher stage, poorer OS and CCPM-free interval tended to have higher expression. In experiments in vitro, knockdown of APOC1 in macrophages reduced the migration, invasion, and epithelial-mesenchymal transition of CRC cells. Knockdown of APOC1 in macrophages significantly decreased secretion of chemokines like CCL2 and CCL5. The pro-metastatic effect of macrophages expressing APOC1 was partially blocked by the antibodies of CCL2 and CCL5. Activation of STAT3 was a key process in APOC1's regulation of CCL2 and CCL5. In experiments in vivo, knockdown of APOC1 in macrophages reduced pulmonary metastasis. To conclude, APOC1 is one of core CCPM-related DEGs and associated with the metastasis and survival of CRC. Macrophages expressing APOC1 promote the CCPM by APOC1-STAT3-CCL2/CCL5 axis. APOC1 and macrophages expressing APOC1 play vital roles and may be potential therapeutic targets in CCPM.
Collapse
Affiliation(s)
- Fei Qin
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Haosheng Zheng
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jiayan Wu
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Zui Liu
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yuzhen Zheng
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xingping Yang
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Junguo Chen
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Weihao Deng
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Ziyin Luo
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jian Tan
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Weijie Cai
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Bozhu Jian
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yushuai Zeng
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xianyu Qin
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| | - Hongying Liao
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| |
Collapse
|
2
|
Yang Z, Yang L, Sun Z, Rong Y, Bai C, Dong Q, Jian L. miRNA-660-3p inhibits malignancy in glioblastoma via negative regulation of APOC1-TGFβ2 signaling pathway. Cancer Biol Ther 2023; 24:2281459. [PMID: 37981873 PMCID: PMC10783846 DOI: 10.1080/15384047.2023.2281459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023] Open
Abstract
Glioblastoma as the most common and aggressive central nervous system tumor in adults. Its prognosis and therapeutic outcome are poor due to the limited understanding of its molecular mechanism. Apolipoprotein C-1 (APOC1) as a member of the apolipoprotein family that acts as a tumor promoter in various cancers. MicroRNA (miRNA) can silence gene expression and suppress tumor progression. However, the role of APOC1 and its upstream miRNA has not been explored in glioblastoma. Two glioblastoma cell lines (U87 and U251) were used to explore the role of APOC1 and its upstream miRNA-660-3p in glioblastoma tumorigenesis in vitro. Cells with APOC1/miRNA-660-3p overexpression or knockdown were assessed for their proliferation, migration, and invasion in vitro, and tumorigenesis in vivo. Gene and protein expression was assessed by qRT-PCR and western blot, respectively. Cell proliferation was assessed by the MTT assay and the EdU and Ki67 staining. Cell migration and invasion were assessed by the transwell assay. Tumorigenesis in vivo was assessed in U87 cells with a xenograft mouse model. APOC1 was overexpressed in glioblastoma compared with normal peritumoral tissue and was inversely related to patient prognosis. APOC1 overexpression promotes cell proliferation, migration, and invasion in vitro. APOC1 inhibition reduced tumor growth in vivo. miRNA-660-3p inhibits tumorigenesis by directly targeting APOC1. Mechanistically, APOC1 drives the malignancy of glioblastoma by activating the TGFβ2 signaling pathway. miRNA-660-3p suppresses tumorigenesis by targeting APOC1. Therefore, miRNA-660-3p/APOC1 axis can serve as potential intervention targets in managing glioblastoma progression.
Collapse
Affiliation(s)
- Zelin Yang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Liang Yang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhenkai Sun
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuxi Rong
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chenglian Bai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Qiaoxiang Dong
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Lin Jian
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Ahmadieh-Yazdi A, Mahdavinezhad A, Tapak L, Nouri F, Taherkhani A, Afshar S. Using machine learning approach for screening metastatic biomarkers in colorectal cancer and predictive modeling with experimental validation. Sci Rep 2023; 13:19426. [PMID: 37940644 PMCID: PMC10632378 DOI: 10.1038/s41598-023-46633-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023] Open
Abstract
Colorectal cancer (CRC) liver metastasis accounts for the majority of fatalities associated with CRC. Early detection of metastasis is crucial for improving patient outcomes but can be delayed due to a lack of symptoms. In this research, we aimed to investigate CRC metastasis-related biomarkers by employing a machine learning (ML) approach and experimental validation. The gene expression profile of CRC patients with liver metastasis was obtained using the GSE41568 dataset, and the differentially expressed genes between primary and metastatic samples were screened. Subsequently, we carried out feature selection to identify the most relevant DEGs using LASSO and Penalized-SVM methods. DEGs commonly selected by these methods were selected for further analysis. Finally, the experimental validation was done through qRT-PCR. 11 genes were commonly selected by LASSO and P-SVM algorithms, among which seven had prognostic value in colorectal cancer. It was found that the expression of the MMP3 gene decreases in stage IV of colorectal cancer compared to other stages (P value < 0.01). Also, the expression level of the WNT11 gene was observed to increase significantly in this stage (P value < 0.001). It was also found that the expression of WNT5a, TNFSF11, and MMP3 is significantly lower, and the expression level of WNT11 is significantly higher in liver metastasis samples compared to primary tumors. In summary, this study has identified a set of potential biomarkers for CRC metastasis using ML algorithms. The findings of this research may provide new insights into identifying biomarkers for CRC metastasis and may potentially lay the groundwork for innovative therapeutic strategies for treatment of this disease.
Collapse
Affiliation(s)
- Amirhossein Ahmadieh-Yazdi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Mahdavinezhad
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leili Tapak
- Department of Biostatistics, School of Public Health and Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Nouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
4
|
Ghafouri-Fard S, Askari A, Behzad Moghadam K, Hussen BM, Taheri M, Samadian M. A review on the role of ZEB1-AS1 in human disorders. Pathol Res Pract 2023; 245:154486. [PMID: 37120907 DOI: 10.1016/j.prp.2023.154486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
ZEB1 Antisense RNA 1 (ZEB1-AS1) is a type of RNA characterized as long non-coding RNA (lncRNA). This lncRNA has important regulatory roles on its related gene, Zinc Finger E-Box Binding Homeobox 1 (ZEB1). In addition, role of ZEB1-AS1 has been approved in diverse malignancies such as colorectal cancer, breast cancer, glioma, hepatocellular carcinoma and gastric cancer. ZEB1-AS1 serves as a sponge for a number of microRNAs, namely miR-577, miR-335-5p, miR-101, miR-505-3p, miR-455-3p, miR-205, miR-23a, miR-365a-3p, miR-302b, miR-299-3p, miR-133a-3p, miR-200a, miR-200c, miR-342-3p, miR-214, miR-149-3p and miR-1224-5p. In addition to malignant conditions, ZEB1-AS1 has functional role in non-malignant conditions like diabetic nephropathy, diabetic lung, arthrosclerosis, Chlamydia trachomatis infection, pulmonary fibrosis and ischemic stroke. This review outlines different molecular mechanisms of ZEB1-AS1 in a variety of disorders and highlights its importance in their pathogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Institue of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
He Y, Chen J, Ma Y, Chen H. Apolipoproteins: New players in cancers. Front Pharmacol 2022; 13:1051280. [PMID: 36506554 PMCID: PMC9732396 DOI: 10.3389/fphar.2022.1051280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022] Open
Abstract
Apolipoproteins (APOs), the primary protein moiety of lipoproteins, are known for their crucial role in lipid traffic and metabolism. Despite extensive exploration of APOs in cardiovascular diseases, their roles in cancers did not attract enough attention. Recently, research focusing on the roles of APOs in cancers has flourished. Multiple studies demonstrate the interaction of APOs with classical pathways of tumorigenesis. Besides, the dysregulation of APOs may indicate cancer occurrence and progression, thus serving as potential biomarkers for cancer patients. Herein, we summarize the mechanisms of APOs involved in the development of various cancers, their applications as cancer biomarkers and their genetic polymorphism associated with cancer risk. Additionally, we also discuss the potential anti-cancer therapies by virtue of APOs. The comprehensive review of APOs in cancers may advance the understanding of the roles of APOs in cancers and their potential mechanisms. We hope that it will provide novel clues and new therapeutic strategies for cancers.
Collapse
Affiliation(s)
- Yingcheng He
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Jianrui Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Yanbing Ma
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Jiangxi Key Laboratory of Experimental Animals, Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Hongping Chen,
| |
Collapse
|
6
|
Zhang R, Zhang G, Li B, Wang J, Wang J, Che J, Wang X, Zhang Z. Analysis of LINC01314 and miR-96 Expression in Colorectal Cancer Patients via Tissue Microarray-Based Fluorescence In Situ Hybridization. DISEASE MARKERS 2022; 2022:5378963. [PMID: 36246563 PMCID: PMC9568347 DOI: 10.1155/2022/5378963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022]
Abstract
Methods A tissue microarray (TMA) containing 76 individual colorectal tumor samples and 28 adjacent normal samples was constructed, and the expression levels of LINC01314 and miR-96 were detected by fluorescence in situ hybridization. Results The expression levels of both LINC01314 and miR-96 were upregulated in CRC tissues and were associated with vascular metastasis (p < 0.05). A significantly positive correlation was observed between LINC01314 and miR-96 expression in tumor tissues (p < 0.001, r = 0.870). Dominant expression of LINC01314 was a risk factor for both blood vessel invasion (p < 0.05) and poor 5-year survival (p = 0.001, hazard ratio = 4.144). The Kaplan-Meier analysis indicated that patients with LINC01314-dominant expression exhibited worse 5-year survival rates than those with miR-96-dominant expression (p < 0.05). Conclusion The expression patterns of both LINC01314 and miR-96 may be diagnostic of, and prognostic for, CRC. These findings will facilitate further exploration of the molecular mechanism of lncRNAs in CRC.
Collapse
Affiliation(s)
- Runan Zhang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Genhua Zhang
- Department of Pathology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Baohua Li
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Juan Wang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jvfang Wang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jia Che
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaojun Wang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhen Zhang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
miR-335-5p regulates the proliferation, migration and phenotypic switching of vascular smooth muscle cells in aortic dissection by directly regulating SP1. Acta Biochim Biophys Sin (Shanghai) 2022; 54:961-973. [PMID: 35866606 PMCID: PMC9828317 DOI: 10.3724/abbs.2022081] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Uncontrolled proliferation, migration and phenotypic switching of vascular smooth muscle cells (VSMCs) are important steps in the development and progression of aortic dissection (AD). The function and potential mechanism of miR-335-5p in the pathogenesis of AD are explored in this study. Specifically, the biological function of miR-335-5p is explored in vitro through CCK-8, Transwell, immunofluorescence, EdU, wound-healing, RT-qPCR and western blotting assays. In addition, an AD model induced by angiotensin II is used to investigate the function of miR-335-5p in vivo. A dual-luciferase assay is performed to verify the targeting relationship between miR-335-5p and specificity protein 1 (SP1). Experiments involving the loss of SP1 function are performed to demonstrate the function of SP1 in the miR-335-5p-mediated regulation of human aortic-VSMCs (HA-VSMCs). AD tissues and platelet-derived growth factor BB (PDGF-BB)-stimulated HA-VSMCs show significant downregulation of miR-335-5p expression and upregulated SP1 expression. Overexpression of miR-335-5p effectively suppresses cell proliferation, migration and synthetic phenotype markers and enhances contractile phenotype markers induced by PDGF-BB treatment. Additionally, SP1 is identified as a target gene downstream of miR-335-5p, and its expression is negatively correlated with miR-335-5p in AD. Upregulation of SP1 partially reverses the inhibitory effect of miR-335-5p on HA-VSMCs, whereas the downregulation of SP1 has the opposite effect. Furthermore, Ad-miR-335-5p clearly suppresses aorta dilatation and vascular media degeneration in the AD model. Our results suggest that miR-335-5p inhibits HA-VSMC proliferation, migration and phenotypic switching by negatively regulating SP1, and indicate that miR-335-5p may be a potential therapeutic target in AD.
Collapse
|
8
|
Zhang M, Wu K, Zhang P, Qiu Y, Bai F, Chen H. HOTAIR Facilitates Endocrine Resistance in Breast Cancer Through ESR1/ miR-130b-3p Axis: Comprehensive Analysis of mRNA-miRNA-lncRNA Network. Int J Gen Med 2021; 14:4653-4663. [PMID: 34434057 PMCID: PMC8380629 DOI: 10.2147/ijgm.s320998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022] Open
Abstract
Background To summarize the regulatory role of mRNA-miRNA-lncRNA network associated with endocrine therapy resistance (ETR) in breast cancer. Methods We analyzed the differentially expressed genes (DEGs), differentially expressed lncRNAs (DELs), and differentially expressed miRNAs (DEMs) in long-term estrogen-deprived (LTED) estrogen receptor (ER)-positive breast cancer cells (LTED MCF7) (modeling relapse on endocrine therapy) and MCF7 cells in the presence of estrogen (E2) (modeling a patient at primary diagnosis) by mining GSE120929 and GSE120930 datasets. The mRNA-miRNA-lncRNA network was constructed by multiple bioinformatic tools. The prognosis of genes from the network was validated in breast cancer patients with following systemic treatment (endocrine therapy) by GEPIA, Kaplan–Meier plotter and UALCAN database. Results Totally, 769 DEGs, 33 DEMs, and 10 DELs were selected. The mRNA-miRNA-lncRNA network was established including 60 mRNA nodes, 6 miRNA nodes and 3 lncRNA nodes. A significant module containing 3 nodes and 3 edges was calculated based on the mRNA-miRNA-lncRNA network. The hub genes in the network are ABCG2, ESR1 and GJA1. ESR1/miR-130b-3p/HOTAIR are significantly correlated with the prognosis of breast cancer patients with endocrine therapy. Conclusion This study provides a novel ETR-related mRNA-miRNA-lncRNA network. Further, we suggest that ESR1/miR-130b-3p/HOTAIR may be promising targets for clinical treatment of endocrine therapy-resistant breast cancer.
Collapse
Affiliation(s)
- Mingdi Zhang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Kejin Wu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Peng Zhang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Yiran Qiu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Fang Bai
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Hongliang Chen
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Zhan T, Gao X, Wang G, Li F, Shen J, Lu C, Xu L, Li Y, Zhang J. Construction of Novel lncRNA-miRNA-mRNA Network Associated With Recurrence and Identification of Immune-Related Potential Regulatory Axis in Hepatocellular Carcinoma. Front Oncol 2021; 11:626663. [PMID: 34336642 PMCID: PMC8320021 DOI: 10.3389/fonc.2021.626663] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/30/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant diseases globally. Despite continuous improvement of treatment methods, high postoperative recurrence rate remains an urgent problem. In order to determine the mechanism underlying recurrence of liver cancer and identify prognostic genes, data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were integrated and analyzed. Differentially expressed genes (DEGs) between HCC tissue and normal liver tissue were identified, and a protein–protein interaction network was constructed to find hub genes. Clinical correlation analysis and disease-free survival (DFS) analysis were performed using the R language and GEPIA to identify relapse-related genes. Correlation analysis was used to identify a potential regulatory axis. Dual-luciferase reporter gene assay was used to confirm the reliability of the long non-coding RNA (lncRNA)–microRNA (miRNA)–mRNA regulatory axis. Immune infiltration analysis was performed using the TIMER database. Correlations between immune gene markers and ASF1B were verified using quantitative real-time polymerase chain reaction (RT-qPCR). In this work, we found that nine lncRNAs and five mRNAs were significantly overexpressed in HCC tissues from patients with recurrence. SNHG3, LINC00205, ASF1B, AURKB, CCNB1, CDKN3, and DTL were also closely related to HCC grade and stage. Survival analysis showed that these seven DEGs were significantly correlated with poor DFS. Correlation analysis identified SNHG3–miR-214-3p–ASF1B as a potential regulatory axis. Dual-luciferase reporter gene assay showed that SNHG3 and ASF1B directly bound to miR-214-3p. ASF1B was negatively regulated by miRNA-214-3p, and overexpression of SNHG3 could inhibit the expression of miRNA-214-3p. In addition, ASF1B was positively correlated with immune infiltration. A reduction in ASF1B could markedly inhibit the expression of CD86, CD8, STAT1, STAT4, CD68, and PD1 in HCC cells. Flow cytometry showed that SNHG3 promoted the PD-1 expression by regulating ASF1B. Meanwhile, elevated ASF1B predicted poor prognosis of HCC patients in subgroups with decreased B cells, CD8+ T cells, or neutrophils, and those with enriched CD4+ T cells. In conclusion, we found that a novel lncRNA SNHG3/miR-214-3p/ASF1B axis could promote the recurrence of HCC by regulating immune infiltration.
Collapse
Affiliation(s)
- Tian Zhan
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.,The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiang Gao
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.,The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guoguang Wang
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.,The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fan Li
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.,The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jian Shen
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.,The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chen Lu
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.,The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Xu
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.,The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuan Li
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianping Zhang
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.,The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|