1
|
Li M, Niu Y, Zhang T, Yang H, Tian L, Zhou S, Wumiti T, Sun J, Zhou Q, Zuo X, Gao T, Li J, Ma Y, Guo Y, Wang L. Wen-Shen-Tong-Luo-Zhi-Tong-Decoction inhibits bone loss in senile osteoporosis model mice by promoting testosterone production. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119033. [PMID: 39515680 DOI: 10.1016/j.jep.2024.119033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wen-Shen-Tong-Luo-Zhi-Tong-Decoction (WSTLZTD) is a traditional Chinese medicine formula, and its effectiveness in the treatment of senile osteoporosis(SOP) has been confirmed by clinical studies. However, the underlying mechanism of WSTLZTD in SOP is unclear. AIM OF THE STUDY This study aimed to clarify the unique effects of Wen-Shen-Tong-Luo-Zhi-Tong-Decoction(WSTLZTD) on senile osteoporosis(SOP) and its underlying mechanisms. MATERIALS AND METHODS SAMP6 mice were treated with varying doses of WSTLZTD as the SOP model. Bone loss was evaluated by micro-CT, HE, OCN immunohistochemistry staining, and serum Trap level. Metabolomics studies serum metabolites. ELISA, qPCR, and immunofluorescence were utilized to measure testosterone levels in mouse testis. The effect of testosterone on the mitochondrial energy metabolism of BMSCs was investigated using ROS generation, NAD+/NADH ratio, and WB. Cell senescence was examined by β-galactosidase staining and WB. The effect of TM3 cell conditioned media (CM) on mitochondrial energy metabolism and BMSCs osteogenesis were studied using ALP, ARS, ROS staining, the NAD+/NADH, and WB. RESULTS WSTLZTD effectively reversed bone loss in SOP model mice, resulting in better bone microstructure, increased BMD, BV/TV, Tb.n, Tb.Th and, and decreased Tb.Sp. WSTLZTD can increase OCN expression and decrease Trap levels. Network pharmacology data suggest that WSTLZTD regulates steroid hormone production, cellular senescence, inflammation. Metabolomic data indicate that WSTLZTD increases testosterone production or metabolism-related metabolites. WSTLZTD enhanced testosterone production and the mRNA expression of genes involved in testosterone synthesis. Testosterone inhibited the decline in osteogenic differentiation and mitochondrial energy metabolism of senescent BMSCs. The decreased testosterone production in senescent TM3 is reversed by WSTLZTD. CM derived from WSTLZTD-treated TM3 cells promoted osteogenic differentiation and mitochondrial energy metabolism of BMSCs. CONCLUSIONS By increasing testosterone production, WSTLZTD may promote mitochondrial energy metabolism and osteogenic differentiation of senescent BMSCs, thereby exerting its anti-SOP effect.
Collapse
Affiliation(s)
- Muzhe Li
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Yuanyuan Niu
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Tianchi Zhang
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Haomiao Yang
- NanJing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, Jiangsu, China, Nanjing, 210029, Jiangsu Province, China
| | - Linkun Tian
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Shijie Zhou
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Taxi Wumiti
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Jie Sun
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Qinfeng Zhou
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Xinchen Zuo
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Tianle Gao
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Jiale Li
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China; Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 224000, Yancheng, Jiangsu Province, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China.
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China; NanJing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, Jiangsu, China, Nanjing, 210029, Jiangsu Province, China; Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China.
| |
Collapse
|
2
|
Xu Q, Hu G, Lin Q, Wu M, Tang K, Zhang Y, Chen F. The association between testosterone, estradiol, estrogen sulfotransferase and idiopathic pulmonary fibrosis: a bidirectional mendelian randomization study. BMC Pulm Med 2024; 24:435. [PMID: 39227879 PMCID: PMC11373247 DOI: 10.1186/s12890-024-03198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND The causal relationships between testosterone, estradiol, estrogen sulfotransferase, and idiopathic pulmonary fibrosis (IPF) are not well understood. This study employs a bidirectional two-sample Mendelian Randomization (MR) approach to explore these associations. METHODS All genetic data utilized in our study were obtained from the IEU Open GWAS project. For the MR analysis, we employed the inverse variance weighted (IVW), MR-Egger, and weighted median methods to assess the causal relationships. We also conducted a multivariate MR (MVMR) analysis, with adjustments made for smoking. To ensure the robustness of our findings, sensitivity analyses were conducted using Cochran's Q test, MR-Egger regression, the MR-PRESSO global test, and the leave-one-out method. RESULTS Genetically predicted increases in serum testosterone levels by one standard deviation were associated with a 58.7% decrease in the risk of developing IPF (OR = 0.413, PIVW=0.029, 95% CI = 0.187 ∼ 0.912), while an increase in serum estrogen sulfotransferase by one standard deviation was associated with a 32.4% increase in risk (OR = 1.324, PIVW=0.006, 95% CI = 1.083 ∼ 1.618). No causal relationship was found between estradiol (OR = 1.094, PIVW=0.735, 95% CI = 0.650 ∼ 1.841) and the risk of IPF. Reverse MR analysis did not reveal any causal relationship between IPF and testosterone (OR = 1.001, PIVW=0.51, 95% CI = 0.998 ∼ 1.004), estradiol (OR = 1.001, PIVW=0.958, 95% CI = 0.982 ∼ 1.019), or estrogen sulfotransferase (OR = 0.975, PIVW=0.251, 95% CI = 0.933 ∼ 1.018). The MVMR analysis demonstrated that the association between testosterone (OR = 0.442, P = 0.037, 95% CI = 0.205 ∼ 0.953) and estrogen sulfotransferase (OR = 1.314, P = 0.001, 95% CI = 1.118 ∼ 1.545) and the risk of IPF persisted even after adjusting for smoking. CONCLUSIONS Increased serum levels of testosterone are associated with a reduced risk of IPF, while increased levels of serum estrogen sulfotransferase are associated with an increased risk. No causal relationship was found between estradiol and the development of IPF. No causal relationship was identified between IPF and testosterone, estradiol, or estrogen sulfotransferase.
Collapse
Affiliation(s)
- Qingying Xu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Guangwang Hu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Qunying Lin
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
- Department of Respiratory Medicine, Putian Pulmonary Hospital, Putian, China.
- Department of Respiratory Medicine, Affiliated Hospital of Putian University, Putian, China.
| | - Menghang Wu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Kenan Tang
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Yuyu Zhang
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Feng Chen
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
Piragine E, De Felice M, Germelli L, Brinkmann V, Flori L, Martini C, Calderone V, Ventura N, Da Pozzo E, Testai L. The Citrus flavanone naringenin prolongs the lifespan in C. elegans and slows signs of brain aging in mice. Exp Gerontol 2024; 194:112495. [PMID: 38897393 DOI: 10.1016/j.exger.2024.112495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Aging is one of the main risk factors for neurodegenerative disorders, which represent a global burden on healthcare systems. Therefore, identifying new strategies to slow the progression of brain aging is a compelling challenge. In this article, we first assessed the potential anti-aging effects of the Citrus flavanone naringenin (NAR), an activator of the enzyme sirtuin-1 (SIRT1), in a 3R-compliant and short-lived aging model (i.e., the nematode C. elegans). Then, we investigated the preventive effects of a 6-month treatment with NAR (100 mg/kg, orally) against brain aging and studied its mechanism of action in middle-aged mice. We demonstrated that NAR (100 μM) extends lifespan and improves healthspan in C. elegans. In the brain of middle-aged mice, NAR promotes the activity of metabolic enzymes (citrate synthase, cytochrome C oxidase) and increases the expression of the SIRT1 enzyme. Consistently, NAR up-regulates the expression of downstream antioxidant (Foxo3, Nrf2, Ho-1), anti-senescence (p16), and anti-inflammatory (Il-6, Il-18) markers. Our findings support NAR supplementation to slow the signs of brain aging.
Collapse
Affiliation(s)
- Eugenia Piragine
- Department of Pharmacy, University of Pisa, Italy; Interdepartmental Research Center "Nutrafood-Nutraceuticals and Food for Health", University of Pisa, Italy.
| | | | | | - Vanessa Brinkmann
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany.
| | | | - Claudia Martini
- Department of Pharmacy, University of Pisa, Italy; Interdepartmental Research Center "Nutrafood-Nutraceuticals and Food for Health", University of Pisa, Italy.
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Italy; Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, Italy; Interdepartmental Research Center "Nutrafood-Nutraceuticals and Food for Health", University of Pisa, Italy.
| | - Natascia Ventura
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany.
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, Italy; Interdepartmental Research Center "Nutrafood-Nutraceuticals and Food for Health", University of Pisa, Italy.
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Italy; Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, Italy; Interdepartmental Research Center "Nutrafood-Nutraceuticals and Food for Health", University of Pisa, Italy.
| |
Collapse
|
4
|
Cucinotta L, Mannino D, Filippone A, Romano A, Esposito E, Paterniti I. The role of autophagy in Parkinson's disease: a gender difference overview. Front Pharmacol 2024; 15:1408152. [PMID: 38933683 PMCID: PMC11199695 DOI: 10.3389/fphar.2024.1408152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Recent studies have demonstrated dysregulation of the autophagy pathway in patients with Parkinson's disease (PD) and in animal models of PD, highlighting its emerging role in disease. In particular, several studies indicate that autophagy, which is an essential degradative process for the damaged protein homeostasis and the management of cell balance, can manifest significant variations according to gender. While some evidence suggests increased autophagic activation in men with PD, women may have distinct regulatory patterns. In this review, we examined the existing literature on gender differences in PD-associated autophagic processes, focusing on the autophagy related proteins (ATGs) and leucine rich repeat kinase 2 (LRRK2) genes. Also, this review would suggest that an in-depth understanding of these gender differences in autophagic processes could open new perspectives for personalized therapeutic strategies, promoting more effective and targeted management of PD.
Collapse
Affiliation(s)
- Laura Cucinotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
5
|
Zhang T, Chu Y, Wang Y, Wang Y, Wang J, Ji X, Zhang G, Shi G, Cui R, Kang Y. Testosterone deficiency worsens mitochondrial dysfunction in APP/PS1 mice. Front Aging Neurosci 2024; 16:1390915. [PMID: 38752208 PMCID: PMC11094339 DOI: 10.3389/fnagi.2024.1390915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Background Recent studies show testosterone (T) deficiency worsens cognitive impairment in Alzheimer's disease (AD) patients. Mitochondrial dysfunction, as an early event of AD, is becoming critical hallmark of AD pathogenesis. However, currently, whether T deficiency exacerbates mitochondrial dysfunction of men with AD remains unclear. Objective The purpose of this study is to explore the effects of T deficiency on mitochondrial dysfunction of male AD mouse models and its potential mechanisms. Methods Alzheimer's disease animal model with T deficiency was performed by castration to 3-month-old male APP/PS1 mice. Hippocampal mitochondrial function of mice was analyzed by spectrophotometry and flow cytometry. The gene expression levels related to mitochondrial biogenesis and mitochondrial dynamics were determined through quantitative real-time PCR (qPCR) and western blot analysis. SH-SY5Y cells treated with flutamide, T and/or H2O2 were processed for analyzing the potential mechanisms of T on mitochondrial dysfunction. Results Testosterone deficiency significantly aggravated the cognitive deficits and hippocampal pathologic damage of male APP/PS1 mice. These effects were consistent with exacerbated mitochondrial dysfunction by gonadectomy to male APP/PS1 mice, reflected by further increase in oxidative damage and decrease in mitochondrial membrane potential, complex IV activity and ATP levels. More importantly, T deficiency induced the exacerbation of compromised mitochondrial homeostasis in male APP/PS1 mice by exerting detrimental effects on mitochondrial biogenesis and mitochondrial dynamics at mRNA and protein level, leading to more defective mitochondria accumulated in the hippocampus. In vitro studies using SH-SY5Y cells validated T's protective effects on the H2O2-induced mitochondrial dysfunction, mitochondrial biogenesis impairment, and mitochondrial dynamics imbalance. Administering androgen receptor (AR) antagonist flutamide weakened the beneficial effects of T pretreatment on H2O2-treated SH-SY5Y cells, demonstrating a critical role of classical AR pathway in maintaining mitochondrial function. Conclusion Testosterone deficiency exacerbates hippocampal mitochondrial dysfunction of male APP/PS1 mice by accumulating more defective mitochondria. Thus, appropriate T levels in the early stage of AD might be beneficial in delaying AD pathology by improving mitochondrial biogenesis and mitochondrial dynamics.
Collapse
Affiliation(s)
- Tianyun Zhang
- Postdoctoral Research Station of Biology, Hebei Medical University, Shijiazhuang, China
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Yun Chu
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Yue Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Yu Wang
- Postdoctoral Research Station of Biology, Hebei Medical University, Shijiazhuang, China
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Jinyang Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, China
- Department of Neurology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoming Ji
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Guoliang Zhang
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Geming Shi
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Rui Cui
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Yunxiao Kang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Sun S, Mei X. Effect of CASC15 on apoptosis and oxidative stress of cardiomyocytes after hypoxia/reperfusion injury. Rev Port Cardiol 2024; 43:77-84. [PMID: 37652115 DOI: 10.1016/j.repc.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 09/02/2023] Open
Abstract
INTRODUCTION AND OBJECTIVES The increasing incidence of ischemic heart disease is a serious threat to human health. Increased CASC15, a long non-coding RNA, has been shown to adversely affect cardiac muscle. The objective of this paper was to explore the effect of CASC15 on a cell model of myocardial infarction and its possible mechanism. METHODS H9c2 cells were selected to establish the myocardial infarction model through hypoxia/reoxygenation (H/R) treatment. The expression of CASC15 was attenuated by cell transfection in vitro. The level of CASC15 was detected by RT-qPCR. Cell viability was detected by CCK-8 assay, and cell apoptosis was assessed by flow cytometry. The content of MDA and the activity of SOD and GSH-Px were measured by ELISA. Luciferase reporter gene assay was used to determine the relationship between CASC15 and miRNA. RESULTS CASC15 expression was increased in H/R-treated H9c2 cells. Overexpression of CASC15 adversely affected cell viability and promoted H/R-induced oxidative stress. Inhibition of CASC15 promoted cell viability and suppressed cell apoptosis and oxidative stress damage. Additionally, luciferase reporter gene assay confirmed the targeting relationship between CASC15 and miR-542-3p, and attenuating CASC15 expression enhanced the level of miR-542-3p. Reduction of miR-542-3p weakened the viability of the H/R cell model, increased apoptosis, and enhanced oxidative stress damage. CONCLUSION This study suggests that overexpression of CASC15 may inhibit the viability of H9c2 cells, promote apoptosis and induce oxidative stress through targeted regulation of miR-542-3p expression.
Collapse
Affiliation(s)
- Shuai Sun
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Xue Mei
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China.
| |
Collapse
|
7
|
Aitken RJ. Male reproductive ageing: a radical road to ruin. Hum Reprod 2023; 38:1861-1871. [PMID: 37568254 PMCID: PMC10546083 DOI: 10.1093/humrep/dead157] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
In modern post-transition societies, we are reproducing later and living longer. While the impact of age on female reproductive function has been well studied, much less is known about the intersection of age and male reproduction. Our current understanding is that advancing age brings forth a progressive decline in male fertility accompanied by a reduction in circulating testosterone levels and the appearance of age-dependent reproductive pathologies including benign prostatic hypertrophy and erectile dysfunction. Paternal ageing is also associated with a profound increase in sperm DNA damage, the appearance of multiple epigenetic changes in the germ line and an elevated mutational load in the offspring. The net result of such changes is an increase in the disease burden carried by the progeny of ageing males, including dominant genetic diseases such as Apert syndrome and achondroplasia, as well as neuropsychiatric conditions including autism and spontaneous schizophrenia. The genetic basis of these age-related effects appears to involve two fundamental mechanisms. The first is a positive selection mechanism whereby stem cells containing mutations in a mitogen-activated protein kinase pathway gain a selective advantage over their non-mutant counterparts and exhibit significant clonal expansion with the passage of time. The second is dependent on an age-dependent increase in oxidative stress which impairs the steroidogenic capacity of the Leydig cells, disrupts the ability of Sertoli cells to support the normal differentiation of germ cells, and disrupts the functional and genetic integrity of spermatozoa. Given the central importance of oxidative stress in defining the impact of chronological age on male reproduction, there may be a role for antioxidants in the clinical management of this process. While animal studies are supportive of this strategy, carefully designed clinical trials are now needed if we are to realize the therapeutic potential of this approach in a clinical context.
Collapse
Affiliation(s)
- R John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
8
|
Kang J, Yan J, Yan W. Testosterone ameliorated the behavioural deficits of gonadectomised rats and counteracted free radicals in a dosage-dependent manner. Behav Brain Res 2023; 450:114501. [PMID: 37207980 DOI: 10.1016/j.bbr.2023.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Testosterone deficiency may induce behavioural changes in individuals. Oxidative stress resulting from a redox imbalance may be implicated in the initiation and progression of neurobehavioural disorders. However, whether exogenous testosterone intervention in male gonadectomised (GDX) rats ameliorates oxidative stress and plays a neuroprotective role remains unknown. Therefore, we examined this hypothesis by performing sham or gonadectomy surgeries on Sprague-Dawley rats with or without supplementation with different doses of testosterone propionate (TP). Open field and Morris water maze tests were performed, the serum and brain testosterone levels, and oxidative stress markers were analysed. GDX and lower TP doses (0.5mg/kg) induced reduced exploratory and motor behaviours, but impaired spatial learning and memory compared to Sham rats. Administration of physiological TP levels (0.75-1.25mg/kg) to the GDX rats restored the behaviour observed in the intact rats. However, higher TP doses (1.5-3.0mg/kg) induced increased exploratory and motor behaviours but impaired spatial learning and memory. These behavioural impairments were accompanied by a marked decrease in levels of antioxidant enzymes (superoxide dismutase and catalase) and an increase in lipid peroxidation levels in the substantia nigra and hippocampus. These findings indicate that TP administration can alter behavioural performance and induce memory and learning impairment, which may result from changes in redox homeostasis in male GDX animals.
Collapse
Affiliation(s)
- Jie Kang
- Affiliated Yiling Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Jixing Yan
- College of Rehabilitation Sciences, Shanghai University of Medicine & Health Sciences, Shanghai, PR China
| | - Wensheng Yan
- Department of Sports Medicine, Hebei Sport University, Shijiazhuang, PR China.
| |
Collapse
|
9
|
Ganouna-Cohen G, Marcouiller F, Bairam A, Joseph V. Orchiectomy exacerbates sleep-disordered breathing induced by intermittent hypoxia in mice. Respir Physiol Neurobiol 2023; 313:104052. [PMID: 36990336 DOI: 10.1016/j.resp.2023.104052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
We tested the hypothesis that low testosterone levels alter the regulation of breathing in mice exposed to intermittent hypoxia (IH). We used orchiectomized (ORX) or control (Sham-operated) mice exposed to normoxia or IH (12h/day, 10 cycles/h, 6% O2) for 14 days. Breathing was measured by whole-body plethysmography to asses the stability of the breathing pattern (frequency distribution of total cycle time - Ttot) and the frequency and duration of spontaneous and post-sigh apneas (PSA). We characterized sighs as inducing one (S1) or more (S2) apnea and determined the sigh parameters (volume, peak inspiratory and expiratory flows, cycle times) associated with PSA. IH increased the frequency and duration of PSA and the proportion of S1 and S2 sighs. The PSA frequency was mostly related to the sigh expiratory time. The effects of IH on PSA frequency were amplified in ORX-IH mice. Our experiments using ORX support the hypothesis that testosterone is involved in the regulation of breathing in mice following IH.
Collapse
|
10
|
D'Acunzo P, Ungania JM, Kim Y, Barreto BR, DeRosa S, Pawlik M, Canals-Baker S, Erdjument-Bromage H, Hashim A, Goulbourne CN, Neubert TA, Saito M, Sershen H, Levy E. Cocaine perturbs mitovesicle biology in the brain. J Extracell Vesicles 2023; 12:e12301. [PMID: 36691887 PMCID: PMC9871795 DOI: 10.1002/jev2.12301] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/06/2022] [Accepted: 12/26/2022] [Indexed: 01/25/2023] Open
Abstract
Cocaine, an addictive psychostimulant, has a broad mechanism of action, including the induction of a wide range of alterations in brain metabolism and mitochondrial homeostasis. Our group recently identified a subpopulation of non-microvesicular, non-exosomal extracellular vesicles of mitochondrial origin (mitovesicles) and developed a method to isolate mitovesicles from brain parenchyma. We hypothesised that the generation and secretion of mitovesicles is affected by mitochondrial abnormalities induced by chronic cocaine exposure. Mitovesicles from the brain extracellular space of cocaine-administered mice were enlarged and more numerous when compared to controls, supporting a model in which mitovesicle biogenesis is enhanced in the presence of mitochondrial alterations. This interrelationship was confirmed in vitro. Moreover, cocaine affected mitovesicle protein composition, causing a functional alteration in mitovesicle ATP production capacity. These data suggest that mitovesicles are previously unidentified players in the biology of cocaine addiction and that target therapies to fine-tune brain mitovesicle functionality may be beneficial to mitigate the effects of chronic cocaine exposure.
Collapse
Affiliation(s)
- Pasquale D'Acunzo
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
| | - Jonathan M Ungania
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Yohan Kim
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
| | - Bryana R Barreto
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Steven DeRosa
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Monika Pawlik
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Stefanie Canals-Baker
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, USA
| | - Audrey Hashim
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Thomas A Neubert
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, USA
| | - Mariko Saito
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Henry Sershen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Department of Biochemistry & Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
11
|
Metabolic and Cellular Compartments of Acetyl-CoA in the Healthy and Diseased Brain. Int J Mol Sci 2022; 23:ijms231710073. [PMID: 36077475 PMCID: PMC9456256 DOI: 10.3390/ijms231710073] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
The human brain is characterised by the most diverse morphological, metabolic and functional structure among all body tissues. This is due to the existence of diverse neurons secreting various neurotransmitters and mutually modulating their own activity through thousands of pre- and postsynaptic interconnections in each neuron. Astroglial, microglial and oligodendroglial cells and neurons reciprocally regulate the metabolism of key energy substrates, thereby exerting several neuroprotective, neurotoxic and regulatory effects on neuronal viability and neurotransmitter functions. Maintenance of the pool of mitochondrial acetyl-CoA derived from glycolytic glucose metabolism is a key factor for neuronal survival. Thus, acetyl-CoA is regarded as a direct energy precursor through the TCA cycle and respiratory chain, thereby affecting brain cell viability. It is also used for hundreds of acetylation reactions, including N-acetyl aspartate synthesis in neuronal mitochondria, acetylcholine synthesis in cholinergic neurons, as well as divergent acetylations of several proteins, peptides, histones and low-molecular-weight species in all cellular compartments. Therefore, acetyl-CoA should be considered as the central point of metabolism maintaining equilibrium between anabolic and catabolic pathways in the brain. This review presents data supporting this thesis.
Collapse
|
12
|
Ahmad I, Newell-Fugate AE. Androgen and androgen receptor control of mitochondrial function. Am J Physiol Cell Physiol 2022; 323:C835-C846. [PMID: 35704694 DOI: 10.1152/ajpcell.00205.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of androgens have been extensively studied in a variety of organs and cell types with increasing focus on the sexually dimorphic role androgens play not only with respect to cellular functions but also in metabolism. Although the classical mechanism of androgen action is via ligand-dependent binding with the nuclear transcription factor, androgen receptor (AR), cytosolic AR can also activate second messenger signaling pathways. Given that cytosolic AR can signal in this manner, there has been increased interest in the mechanisms by which androgens may control cellular organelle function. This review highlights the effects that androgens have on mitochondrial structure and function with emphasis on biogenesis, fusion/fission, mitophagy, bioenergetics (oxidative phosphorylation), and reactive oxygen species production. There are a number of publications on the effects of androgens in these general areas of mitochondrial function. However, the precise mechanisms by which androgens cause these effects are not known. Additionally, given that the nucleus and mitochondria work in tandem to control mitochondrial function and the mitochondria has its own DNA, future research efforts should focus on the direct, mechanistic effects of androgens on mitochondrial function.
Collapse
Affiliation(s)
- Irshad Ahmad
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Annie E Newell-Fugate
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
13
|
Nrf2 Deficiency Attenuates Testosterone Efficiency in Ameliorating Mitochondrial Function of the Substantia Nigra in Aged Male Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3644318. [PMID: 35222795 PMCID: PMC8881137 DOI: 10.1155/2022/3644318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
Reduced testosterone level is a common feature of aging in men. Aging, as a risk factor for several neurodegenerative disorders, shows declined mitochondrial function and downregulated mitochondrial biogenesis and mitochondrial dynamics. Mitochondrial biogenesis and mitochondrial dynamics are crucial in maintaining proper mitochondrial function. Supplementation with testosterone is conducive to improving mitochondrial function of males during aging. Nuclear factor erythroid 2-related factor 2 (Nrf2), a regulator of redox homeostasis, is involved in the ameliorative effects of testosterone supplementation upon aging. To explore Nrf2 role in the effects of testosterone supplementation on mitochondrial function during aging, we studied the efficiency of testosterone supplementation in improving mitochondrial function of Nrf2 knockout- (KO-) aged male mice by analyzing the changes of mitochondrial biogenesis and mitochondrial dynamics. It was found that wild-type- (WT-) aged male mice showed low mitochondrial function and expression levels of PGC-1α, NRF-1\NRF-2, and TFAM regulating mitochondrial biogenesis, as well as Drp1, Mfn1, and OPA1 controlling mitochondrial dynamics in the substantia nigra (SN). Nrf2 KO aggravated the defects above in SN of aged male mice. Testosterone supplementation to WT-aged male mice significantly ameliorated mitochondrial function and upregulated mitochondrial biogenesis and mitochondrial dynamics, which were not shown in Nrf2 KO-aged male mice due to Nrf2 deficiency. Testosterone deficiency by gonadectomy (GDX) decreased mitochondrial function, downregulated mitochondrial biogenesis, and altered mitochondrial dynamics balance in young male mice. Supplementation with testosterone to Nrf2 KO-GDX mice only ameliorated the alterations above but did not reverse them to sham level. Nrf2 deficiency attenuated testosterone efficiency in ameliorating mitochondrial function in the SN of aged male mice through mitochondrial biogenesis and mitochondrial dynamics to some extent. Activation of Nrf2 might contribute to testosterone-upregulating mitochondrial biogenesis and mitochondrial dynamics in the SN during aging to produce efficient mitochondria for ATP production.
Collapse
|