1
|
Li L, Sun J, Chen F, Xiong L, She L, Hao T, Zeng Y, Li L, Wang W, Zhao X, Liang G. Pedunculoside alleviates cognitive deficits and neuronal cell apoptosis by activating the AMPK signaling cascade. Chin Med 2024; 19:163. [PMID: 39574131 PMCID: PMC11583384 DOI: 10.1186/s13020-024-01033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction emerges as an early pathological hallmark of Alzheimer's disease (AD). The reduction in mitochondrial membrane potential and the elevation of reactive oxygen species (ROS) production are pivotal in the initiation of neuronal cell apoptosis. Pedunculoside(Ped), a novel triterpene saponin derived from the dried barks of Ilex rotunda Thunb, exhibits a potent anti-inflammatory effect. In the course of drug screening, we discovered that Ped offers significant protection against apoptosis induced by Aβ1-42. Nevertheless, the role and mechanism of Ped in AD are yet to be elucidated. METHODS Oxidative stress was evaluated by measuring mitochondrial membrane potential and intracellular ROS production. The expression of proteins associated with apoptosis was determined using western blot analysis and flow cytometry. In vivo, the pathological characteristics of AD were investigated through Western blot and tissue immunofluorescence techniques. Cognitive function was assessed using the Morris Water Maze and Novel Object Recognition tests. RESULTS We demonstrated that Ped decreased apoptosis in PC12 cells, reduced the generation of intracellular ROS, and restored mitochondrial membrane potential. Mechanistically, we found that the protective effect of Ped against Aβ-induced neurotoxicity was associated with activation of the AMPK/GSK-3β/Nrf2 signaling pathway. In vivo, Ped alleviated memory deficits and inhibited neuronal apoptosis, inflammation, and oxidative stress in the hippocampus of 3 × Tg AD mice, along with the activation of the AMPK signaling pathway. CONCLUSION The findings indicate that Ped exerts its neuroprotective effects against oxidative stress and apoptosis through the AMPK signaling cascade. The results demonstrate that Ped is a potential candidate for the treatment of AD.
Collapse
Affiliation(s)
- Liwei Li
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Jinfeng Sun
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People's Republic of China
| | - Fan Chen
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Li Xiong
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Lingyu She
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People's Republic of China
| | - Tang Hao
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yuqing Zeng
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Luyao Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, 325035, Zhejiang, China
| | - Wei Wang
- Affiliated Yongkang First People's Hospital, Hangzhou Medical College, Yongkang, 321399, Zhejiang, China
| | - Xia Zhao
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China.
| | - Guang Liang
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China.
| |
Collapse
|
2
|
He Y, Deng J, Zhong X, Dai S, Song X, Zou Y, Ye G, Zhou X, Yin Z, Wan H, Zhao X. Engineered Hybrid Lantibiotic that Selectively Combats Infections Caused by Staphylococcus aureus. ACS Infect Dis 2024; 10:3891-3901. [PMID: 39512095 DOI: 10.1021/acsinfecdis.4c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The rapid emergence of antibiotic-resistant strains of Staphylococcus aureus presents a substantial challenge to global public health, underscoring the urgent need for novel antibiotics with diverse mechanisms of action. In this study, we conducted mutagenesis on the C-terminal region of the lantibiotic ripcin C to enhance its antimicrobial efficacy against S. aureus. The resulting optimized variant, ripcin CP23A, demonstrated potent and selective antimicrobial activity, with a minimal inhibitory concentration of 2-4 mg/L against S. aureus. Beyond its strong antimicrobial properties, ripcin CP23A exhibited significant antibiofilm activity against methicillin-resistant S. aureus (MRSA). Mechanistic studies revealed that, in addition to targeting lipid II, ripcin CP23A disrupts bacterial membranes, a capability absent in ripcin C, which may contribute to its superior antimicrobial and antibiofilm effects. Moreover, ripcin CP23A displayed favorable biosafety and plasma stability profiles. Notably, in a mouse model of MRSA-induced mastitis, ripcin CP23A effectively reduced bacterial load, alleviated inflammation, and preserved the normal histomorphology of mammary glands. This study introduces ripcin CP23A as a promising antibiotic candidate for the treatment of MRSA-related infections.
Collapse
Affiliation(s)
- Yongcheng He
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiarong Deng
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinyi Zhong
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shujun Dai
- Xinjiang Tycoon Group, Xinjiang, Changji 831199, China
| | - Xu Song
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanfeng Zou
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Ye
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Zhou
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongqiong Yin
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Wan
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinghong Zhao
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Xie Y, Li X, Xu D, He D, Wang J, Bi J, Liu J, Fu S. Hordenine Alleviates Lipopolysaccharide-Induced Mastitis by Suppressing Inflammation and Oxidative Stress, Modulating Intestinal Microbiota, and Preserving the Blood-Milk Barrier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21503-21519. [PMID: 39289834 DOI: 10.1021/acs.jafc.4c02867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Mastitis is a common mammalian disease occurring in the mammary tissue and poses a major threat to agriculture and the dairy industry. Hordenine (HOR), a phenylethylamine alkaloid naturally extracted from malt, has various pharmacological effects, but its role in mastitis is unknown. The aim of this study was to investigate the role of HOR and its underlying mechanism in a lipopolysaccharide (LPS)-induced inflammatory response model of mouse mammary epithelial cells (EpH4-Ev) and mouse mastitis model. The experimental results showed that HOR attenuated LPS-induced mammary tissue damage (from 3.75 ± 0.25 to 1.75 ± 0.25) and restored the integrity of the blood-milk barrier. Further mechanistic studies revealed that HOR inhibited LPS-induced overactivation of the TLR4-MAPK/NF-κB signaling pathway and activated the AMPK/Nrf2/HO-1 signaling pathway. Additionally, HOR altered the composition of the intestinal microbiota in mice, ultimately reducing the extent of inflammatory injury (from 3.33 ± 0.33 to 0.67 ± 0.33) and upregulating the expression of tight junction proteins (ZO-1, occludin, and claudin-3). The findings of this study provide a theoretical basis in the rational use of HOR for the prevention and treatment of mastitis and the maintenance of mammalian mammary gland health.
Collapse
Affiliation(s)
- Yachun Xie
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinyi Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Dianwen Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Dewei He
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Jiaxin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Junlong Bi
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
4
|
Li X, Xu R, Zhou K, Cao Q. Ameliorative effect of pedunculoside on sepsis-induced acute lung injury, inflammation and pulmonary fibrosis in mice model via suppressing AKT/NF-κB pathway. J Mol Histol 2024; 55:687-698. [PMID: 39042216 DOI: 10.1007/s10735-024-10222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND/OBJECTIVES Sepsis-induced acute lung injury (ALI) is the typical complications of sepsis with a high global incidence and mortality. Inhibition of inflammatory response is a crucial and effective strategy for sepsis-induced ALI. Pedunculoside (PE) has been shown to have an anti-inflammatory effect on various diseases. However, the effect and mechanism of PE on sepsis-induced ALI remain unknown. MATERIALS/METHODS A mice model of sepsis-induced ALI was constructed by cecal ligation and puncture (CLP). The effect of PE on the CLP-induced mice were assessed using pathological staining, terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), reverse transcription quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA) and western blot assays. RESULTS PE reduced pathological symptoms and scores, apoptosis and the W/D ratio of lung tissues in CLP-induced mice. Besides, PE decreased the level of interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α), pulmonary fibrosis and the expression of fibrosis markers. Mechanically, PE inhibited AKT/NF-κB signaling in CLP-induced mice. Activation of AKT/NF-κB pathway abolished the ameliorative effect of PE on the pathological symptoms, the release of inflammatory factors and pulmonary fibrosis of CLP-induced mice. CONCLUSION PE improved inflammation and pulmonary fibrosis by inhibiting AKT/NF-κB pathway in CLP-induced mice.
Collapse
Affiliation(s)
- Xiangbo Li
- Emergency Department, Beijing Tongren Hospital, Capital Medical University, No. 2, Xihuan South Road, Economic and Technological Development Zone, Daxing District, Beijing, 100176, China
| | - Ruiming Xu
- Emergency Department, Beijing Tongren Hospital, Capital Medical University, No. 2, Xihuan South Road, Economic and Technological Development Zone, Daxing District, Beijing, 100176, China
| | - Kaiguo Zhou
- Emergency Department, Beijing Tongren Hospital, Capital Medical University, No. 2, Xihuan South Road, Economic and Technological Development Zone, Daxing District, Beijing, 100176, China
| | - Qiumei Cao
- Emergency Department, Beijing Tongren Hospital, Capital Medical University, No. 2, Xihuan South Road, Economic and Technological Development Zone, Daxing District, Beijing, 100176, China.
| |
Collapse
|
5
|
Yang H, Liu H, Zheng Y, Li B, Wang S, Zhang J, Wang J. Cornus Officinalis Total Glycosides Alleviate Granulomatous Lobular Mastitis via the B7-CD28/CTLA-4 Costimulatory Pathway. Chem Biodivers 2024:e202401539. [PMID: 39344790 DOI: 10.1002/cbdv.202401539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/01/2024]
Abstract
Cornus officinalis total glycosides (COTG) derived from the traditional Chinese medicine Cornus officinalis, is a natural immunosuppressant and has been extensively studied in immunomodulation and immunosuppression. This study aimed to explore the effects of COTG on granulomatous lobular mastitis (GLM) and its associated mechanisms. Compared to the model group, COTG effectively ameliorated histopathological damage to breast tissue, reduced mammary gland suppuration, and enhanced the blood-milk barrier. Additionally, COTG treatment reduced the total number of T cells and B cells in GLM rats, significantly improving clinical indicators such as P-selectin, E-selectin, and intercellular cell adhesion molecule-1. We also observed downregulation of CD28 and B7 expression levels, an upregulation of cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) expression, and a significant decrease in inflammatory marker levels in the COTG group. COTG exerts an anti-inflammatory effect in GLM by stimulating CTLA-4, inhibiting the B7-CD28 signaling pathway affecting T cell activation, and promoting the blood-milk barrier. These findings suggest that COTG could be a promising therapeutic option for managing GLM, potentially improving patient outcomes by modulating immune responses and reinforcing the blood-milk barrier.
Collapse
Affiliation(s)
- Huafeng Yang
- Department of Breast Surgery, Punan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Liu
- Department of Breast Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Zheng
- Department of Breast Surgery, Punan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bo Li
- Department of Breast Surgery, Punan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shujing Wang
- Department of Breast Surgery, Punan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of Breast Surgery, Punan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiandong Wang
- Department of Breast Surgery, Punan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Khan MZ, Li L, Wang T, Liu X, Chen W, Ma Q, Zahoor M, Wang C. Bioactive Compounds and Probiotics Mitigate Mastitis by Targeting NF-κB Signaling Pathway. Biomolecules 2024; 14:1011. [PMID: 39199398 PMCID: PMC11352841 DOI: 10.3390/biom14081011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Mastitis is a significant inflammatory condition of the mammary gland in dairy cows. It is caused by bacterial infections and leads to substantial economic losses worldwide. The disease can be either clinical or sub-clinical and presents challenges such as reduced milk yield, increased treatment costs, and the need to cull affected cows. The pathogenic mechanisms of mastitis involve the activation of Toll-like receptors (TLRs), specifically TLR2 and TLR4. These receptors play crucial roles in recognizing pathogen-associated molecular patterns (PAMPs) and initiating immune responses through the NF-κB signaling pathway. Recent in vitro studies have emphasized the importance of the TLR2/TLR4/NF-κB signaling pathway in the development of mastitis, suggesting its potential as a therapeutic target. This review summarizes recent research on the role of the TLR2/TLR4/NF-κB signaling pathway in mastitis. It focuses on how the activation of TLRs leads to the production of proinflammatory cytokines, which, in turn, exacerbate the inflammatory response by activating the NF-κB signaling pathway in mammary gland tissues. Additionally, the review discusses various bioactive compounds and probiotics that have been identified as potential therapeutic agents for preventing and treating mastitis by targeting TLR2/TLR4/NF-κB signaling pathway. Overall, this review highlights the significance of targeting the TLR2/TLR4/NF-κB signaling pathway to develop effective therapeutic strategies against mastitis, which can enhance dairy cow health and reduce economic losses in the dairy industry.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Liangliang Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Tongtong Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Xiaotong Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Qingshan Ma
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien, 90372 Oslo, Norway
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
7
|
Gao Y, Hao Z, Zhang H, Liu J, Zhou G, Wen H, Su Q, Tong C, Huang S, Wang X. Forsythiaside A attenuates lipopolysaccharide-induced mouse mastitis by activating autophagy and regulating gut microbiota and metabolism. Chem Biol Interact 2024; 396:111044. [PMID: 38729284 DOI: 10.1016/j.cbi.2024.111044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/12/2024]
Abstract
Mastitis is an inflammatory disease of the mammary gland with a high incidence in lactating animals, significantly impacting their health and breastfeeding. Moreover, mastitis adversely affects milk quality and yield, resulting in substantial economic losses for the dairy farming industry. Forsythiaside A (FTA), a phenylethanol glycoside analog extracted from Forsythia, exhibits notable anti-inflammatory and antioxidant properties. However, its protective effects and specific mechanisms against mastitis remain unclear. In this study, a lipopolysaccharide (LPS)-induced mouse mastitis model was used to investigate the protective effect of FTA on LPS-induced mastitis and its potential mechanism using histological assays, Western blot, qRT-PCR, FITC-albumin permeability test, 16s rRNA gene sequencing analysis and non-targeted metabolomics assays to investigate the protective effect of FTA on LPS-induced mastitis model and its potential mechanism. The results demonstrated that FTA significantly mitigated LPS-induced mouse mastitis by reducing inflammation and apoptosis levels, modulating the PI3K/AKT/mTOR signaling pathways, inducing autophagy, and enhancing antioxidant capacity and the expression of tight junction proteins. Furthermore, FTA increased the abundance of beneficial microbiota while decreasing the levels of harmful microbiota in mice, thus counteracting the gut microbiota disruption induced by LPS stimulation. Intestinal metabolomics analysis revealed that FTA primarily regulated LPS-induced metabolite alterations through key metabolic pathways, such as tryptophan metabolism. This study confirms the anti-inflammatory and antioxidant effects of FTA on mouse mastitis, which are associated with key metabolic pathways, including the restoration of gut microbiota balance and the regulation of tryptophan metabolism. These findings provide a novel foundation for the treatment and prevention of mammalian mastitis using FTA.
Collapse
Affiliation(s)
- Yingkui Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China.
| | - Zhonghua Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China.
| | - Huaqiang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China.
| | - Jingjing Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China.
| | - Guangwei Zhou
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China.
| | - Haojie Wen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China.
| | - Qing Su
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China.
| | - Chao Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China; Zhengzhou Key Laboratory of Research and Evaluation of Traditional Chinese Veterinary Medicine, Zhengzhou, 450046, PR China.
| | - Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Zhengzhou Key Laboratory of Research and Evaluation of Traditional Chinese Veterinary Medicine, Zhengzhou, 450046, PR China.
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China; Zhengzhou Key Laboratory of Research and Evaluation of Traditional Chinese Veterinary Medicine, Zhengzhou, 450046, PR China.
| |
Collapse
|
8
|
Chen K, Hu B, Ren J, Deng X, Li Q, Zhang R, Zhang Y, Shen G, Liu S, Zhang J, Lu P. Enhanced protein-metabolite correlation analysis: To investigate the association between Staphylococcus aureus mastitis and metabolic immune pathways. FASEB J 2024; 38:e23587. [PMID: 38568835 DOI: 10.1096/fj.202302242rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Mastitis is a disease characterized by congestion, swelling, and inflammation of the mammary gland and usually caused by infection with pathogenic microorganisms. Furthermore, the development of mastitis is closely linked to the exogenous pathway of the gastrointestinal tract. However, the regulatory mechanisms governing the gut-metabolism-mammary axis remain incompletely understood. The present study revealed alterations in the gut microbiota of mastitis rats characterized by an increased abundance of the Proteobacteria phylum. Plasma analysis revealed significantly higher levels of L-isoleucine and cholic acid along with 7-ketodeoxycholic acid. Mammary tissue showed elevated levels of arachidonic acid metabolites and norlithocholic acid. Proteomic analysis showed increased levels of IFIH1, Tnfaip8l2, IRGM, and IRF5 in mastitis rats, which suggests that mastitis triggers an inflammatory response and immune stress. Follistatin (Fst) and progesterone receptor (Pgr) were significantly downregulated, raising the risk of breast cancer. Extracellular matrix (ECM) receptors and focal adhesion signaling pathways were downregulated, while blood-milk barrier integrity was disrupted. Analysis of protein-metabolic network regulation revealed that necroptosis, protein digestion and absorption, and arachidonic acid metabolism were the principal regulatory pathways involved in the development of mastitis. In short, the onset of mastitis leads to changes in the microbiota and alterations in the metabolic profiles of various biological samples, including colonic contents, plasma, and mammary tissue. Key manifestations include disturbances in bile acid metabolism, amino acid metabolism, and arachidonic acid metabolism. At the same time, the integrity of the blood-milk barrier is compromised while inflammation is promoted, thereby reducing cell adhesion in the mammary glands. These findings contribute to a more comprehensive understanding of the metabolic status of mastitis and provide new insights into its impact on the immune system.
Collapse
Affiliation(s)
- Kuo Chen
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Binhong Hu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Jingyuan Ren
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Xin Deng
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Qing Li
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Rong Zhang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Gengyu Shen
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Songqing Liu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Jiacheng Zhang
- Department of Hepatobiliary, Pancreatic and Liver Transplantation Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengwei Lu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Xiao HH, Zhang FR, Li S, Guo FF, Hou JL, Wang SC, Yu J, Li XY, Yang HJ. Xinshubao tablet rescues cognitive dysfunction in a mouse model of vascular dementia: Involvement of neurogenesis and neuroinflammation. Biomed Pharmacother 2024; 172:116219. [PMID: 38310654 DOI: 10.1016/j.biopha.2024.116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024] Open
Abstract
Vascular dementia (VaD) represents a severe cognitive dysfunction syndrome closed linked to cardiovascular function. In the present study, we assessed the potential of Xinshubao tablet (XSB), a traditional Chinese prescription widely used for cardiovascular diseases, to mitigate neuropathological damage in a mouse model of VaD and elucidated the underlying mechanisms. Our findings revealed that oral administration of XSB rescued the cardiac dysfunction resulting from bilateral common carotid artery stenosis (BCAS), improved the cerebral blood flow (CBF) and cognitive function, reduced white matter injury, inhibited excessive microglial and astrocytic activation, stimulated hippocampal neurogenesis, and reduced neural apoptosis in the brains of BCAS mice. Mechanistically, RNA-seq analysis indicated that XSB treatment was significantly associated with neuroinflammation, vasculature development, and synaptic transmission, which were further confirmed by q-PCR assays. Western blot results revealed that XSB treatment hindered the nuclear translocation of nuclear factor-κB (NF-κB), thereby suppressing the NF-κB signaling pathway. These results collectively demonstrated that XSB could ameliorate cognitive dysfunction caused by BCAS through regulating CBF, reducing white matter lesions, suppressing glial activation, promoting neurogenesis, and mitigating neuroinflammation. Notably, the NF-κB signaling pathway emerged as a pivotal player in this mechanism.
Collapse
Affiliation(s)
- Hong-He Xiao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, Fujian Province 363099, China
| | - Feng-Rong Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Sen Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei-Fei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jin-Li Hou
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shi-Cong Wang
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, Fujian Province 363099, China
| | - Juan Yu
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, Fujian Province 363099, China.
| | - Xian-Yu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hong-Jun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
10
|
Lu Y, Lin M, Ou S, Sun L, Qian K, Kuang H, Wu Y. Astragalus polysaccharides ameliorate epileptogenesis, cognitive impairment, and neuroinflammation in a pentylenetetrazole-induced kindling mouse model. Front Pharmacol 2024; 15:1336122. [PMID: 38405667 PMCID: PMC10884767 DOI: 10.3389/fphar.2024.1336122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/31/2024] [Indexed: 02/27/2024] Open
Abstract
Background: Epilepsy is a prevalent neurological disease where neuroinflammation plays a significant role in epileptogenesis. Recent studies have suggested that Astragalus polysaccharides (APS) have anti-inflammatory properties, which make them a potential candidate for neuroprotection against central nervous system disease. Nevertheless, the extent of their effectiveness in treating epilepsy remains enigmatic. Therefore, our study aims to investigate the potential of APS to mitigate epileptogenesis and its comorbidities by exploring its underlying mechanism. Methods: Initially, we employed pentylenetetrazol-induced seizure mice to validate APS' effectiveness. Subsequently, we employed network pharmacology analysis to probe the possible targets and signaling pathways of APS in treating epilepsy. Ultimately, we verified the key targets and signaling pathways experimentally, predicting their mechanisms of action. Results: APS have been observed to disturb the acquisition process of kindling, leading to reduced seizure scores and a lower incidence of complete kindling. Moreover, APS has been found to improve cognitive impairments and prevent hippocampal neuronal damage during the pentylenetetrazole (PTZ)-kindling process. Subsequent network pharmacology analysis revealed that APS potentially exerted their anti-epileptic effects by targeting cytokine and toll-like receptor 4/nuclear factor kappa B (TLR4/NF-κB) signaling pathways. Finally, experimental findings showed that APS efficiently inhibited the activation of astrocytes and reduced the release of pro-inflammatory mediators, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). In addition, APS impeded the activation of the TLR4/NF-κB signaling cascade in a PTZ-induced kindling mouse model. Conclusion: The outcomes of our study suggest that APS exerts an impact on epileptogenesis and mitigates cognitive impairment by impeding neuroinflammatory processes. The mechanism underlying these observations may be attributed to the modulation of the TLR4/NF-κB signaling pathway, resulting in a reduction of the release of inflammatory mediators. These findings partially agree with the predictions derived from network pharmacology analyses. As such, APS represents a potentially innovative and encouraging adjunct therapeutic option for epileptogenesis and cognitive deficit.
Collapse
Affiliation(s)
- Yuling Lu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Minglin Lin
- Department of Colorectal and Anal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Sijie Ou
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lanfeng Sun
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Kai Qian
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Huimin Kuang
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yuan Wu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
11
|
Li K, Ran X, Zeng Y, Li S, Hu G, Wang X, Li Y, Yang Z, Liu J, Fu S. Maslinic acid alleviates LPS-induced mice mastitis by inhibiting inflammatory response, maintaining the integrity of the blood-milk barrier and regulating intestinal flora. Int Immunopharmacol 2023; 122:110551. [PMID: 37406397 DOI: 10.1016/j.intimp.2023.110551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Mastitis occurs frequently in breastfeeding women and not only affects the women's health but also hinders breastfeeding. Maslinic acid is a type of pentacyclic triterpenoid widely found in olives that has good anti-inflammatory activity. This study aims to discuss the protective function of maslinic acid against mastitis and its underlying mechanism. For this, mice models of mastitis were established using lipopolysaccharide (LPS). The results revealed that maslinic acid reduced the pathological lesions in the mammary gland. In addition, it reduced the generation of pro-inflammatory factors and enzymes (IL-6, IL-1β, TNF-α, iNOS, and COX2) in both mice mammary tissue and mammary epithelial cells. The high-throughput 16S rDNA sequencing of intestinal flora showed that in mice with mastitis, maslinic acid treatment altered β-diversity and regulated microbial structure by increasing the abundance of probiotics such as Enterobacteriaceae and downregulating harmful bacteria such as Streptococcaceae. In addition, maslinic acid protected the blood-milk barrier by maintaining tight-junction protein expression. Furthermore, maslinic acid downregulated mammary inflammation by inhibiting the activation of NLRP3 inflammasome, AKT/NF-κB, and MAPK signaling pathways. Thus, in a mice model of LPS-induced mastitis, maslinic acid can inhibit the inflammatory response, protect the blood-milk barrier, and regulate the constitution of intestinal flora.
Collapse
Affiliation(s)
- Kefei Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xin Ran
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yiruo Zeng
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shubo Li
- Liaoning Center for Animal Disease Control and Prevention, Liaoning Agricultural Development Service Center, Shenyang 110164, China
| | - Guiqiu Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiaoxuan Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Ying Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhanqing Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Juxiong Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shoupeng Fu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
12
|
Lyu CC, Yuan B, Che HY, Meng Y, Zheng Y, He YT, Ji ZH, Cong S, Ji XY, Jiang H, Zhang JB. WITHDRAWN: RNA binding protein Musashi2 regulates dairy cows' mastitis by activating the TGFβ signaling pathway. Int J Biol Macromol 2023:125331. [PMID: 37315671 DOI: 10.1016/j.ijbiomac.2023.125331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Chen-Chen Lyu
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, 130062, Jilin, PR China
| | - Bao Yuan
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, 130062, Jilin, PR China
| | - Hao-Yu Che
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, 130062, Jilin, PR China
| | - Yu Meng
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, 130062, Jilin, PR China
| | - Yi Zheng
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, 130062, Jilin, PR China
| | - Yun-Tong He
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, 130062, Jilin, PR China
| | - Zhong-Hao Ji
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, 130062, Jilin, PR China
| | - Shuai Cong
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, 130062, Jilin, PR China
| | - Xing-Yu Ji
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, 130062, Jilin, PR China
| | - Hao Jiang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, 130062, Jilin, PR China.
| | - Jia-Bao Zhang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, 130062, Jilin, PR China.
| |
Collapse
|
13
|
Feng Y, Jiang Y, Zhou Y, Li ZH, Yang QQ, Mo JF, Wen YY, Shen LP. Combination of BFHY with Cisplatin Relieved Chemotherapy Toxicity and Altered Gut Microbiota in Mice. Int J Genomics 2023; 2023:3568416. [PMID: 37252635 PMCID: PMC10219777 DOI: 10.1155/2023/3568416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/17/2023] [Accepted: 03/17/2023] [Indexed: 05/31/2023] Open
Abstract
Aim We sought to profile gut microbiota's role in combination of Bu Fei Hua Yu (BFHY) with cisplatin treatment. Methods Non-small cell lung cancer (NSCLC) mice model were constructed followed by treatment with cisplatin alone or combined with BFHY. Mice weight and tumor volume were measured during the experiment. And mice cecum were detected by hematoxylin and eosin, cecum contents were collected for Enzyme Linked ImmuneSorbent Assay, and stool were profiled for metagenomic sequencing. Results Combination of BFHY with cisplatin treatment decreased the tumor growth and relieved the damage of cecum. Expressions of interleukin-6 (IL-6), interleukin-1β (IL-1β), monocyte chemotactic protein 1 (MCP), and interferon-γ (IFN-γ) were decreased compared with cisplatin treatment alone. Linear discriminant analysis effect size analysis showed that g_Parabacteroides was downregulated and g_Escherichia and g_Blautia were upregulated after cisplatin treatment. After combination with BFHY, g_Bacteroides and g_Helicobacter were decreased. g_Klebsiella, g_Unclssified_Proteobacteria, and g_Unclssified_Clostridiates were increased. Moreover, heatmap results showed that Bacteroides abundance was increased significantly after cisplatin treatment; BFHY combination treatment reversed this state. Function analysis revealed that multiple functions were slightly decreased in cisplatin treatment alone and increased significantly after combination with BFHY. Conclusion Our study provided evidence of an efficacy of combination of BFHY with cisplatin on treatment of NSCLC and revealed that gut microbiota plays a role in it. The above results provide new ideas on NSCLC treatment.
Collapse
Affiliation(s)
- Yuan Feng
- Department of Respiratory Medicine, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, 530011 Guangxi, China
| | - Ying Jiang
- Department of Neurology, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, 530011 Guangxi, China
| | - Ying Zhou
- Department of Radiation Oncology, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, 530011 Guangxi, China
| | - Zhan-hua Li
- Department of Respiratory Medicine, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, 530011 Guangxi, China
| | - Qi-qian Yang
- Department of Respiratory Medicine, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, 530011 Guangxi, China
| | - Jin-feng Mo
- Department of Respiratory Medicine, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, 530011 Guangxi, China
| | - Yu-yan Wen
- Department of Respiratory Medicine, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, 530011 Guangxi, China
| | - Li-ping Shen
- Department of Respiratory Medicine, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, 530011 Guangxi, China
| |
Collapse
|
14
|
Guan X, Li W, Wang Y, Zhao Q, Yu X, Jiang J, Bian W, Xu C, Sun Y, Zhang C. The mechanism of rh-endostatin-induced cardiotoxicity and its protection by dihydromyricetin[in vivo/in vitro, C57BL/6 mice, AC16 and hiPSC-CMs]. Toxicol Lett 2023; 377:29-37. [PMID: 36739041 DOI: 10.1016/j.toxlet.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Recombinant human endostatin (rh-endostatin) is an anti-angiogenic drug, which is used for the treatment of advanced non-small-cell lung cancer (NSCLC) and other cancers. However, its side effects, especially the cardiotoxicity with unclear mechanisms limit its wide application in clinical practice. In this study, human cardiomyocyte cell line AC16 and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) treated with different doses of rh-endostatin were used to analyze its effect on cardiac cell toxicity. The results revealed that rh-endostatin dose-dependently enhanced cardiomyocyte apoptosis through Apaf-1 apoptotic factor and apoptosis-related proteins such as p53. rh-endostatin-induced changes of mitochondrial function and mitophagy were involved in rh-endostatin-mediated cardiac cell toxicity. Rh-endostatin-induced cardiotoxicity was further verified in vivo in mice. Interestingly, Rh-endostatin-induced cardiotoxicity was inhibited by dihydromyricetin (DHM) both in cultured cells in vitro and in mouse hearts in vivo. The study provides new inside into rh-endostatin-induced cardiotoxicity and identified a novel potential medication DHM to overcome the serious adverse effect.
Collapse
Affiliation(s)
- Xiaoran Guan
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Wuquan Li
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yong Wang
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Qun Zhao
- Shandong Simcere Bio-Pharmaceutical Co., Ltd, Yantai 264006, China
| | - Xinru Yu
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Jing Jiang
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Weihua Bian
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Cong Xu
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yeying Sun
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Chunxiang Zhang
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China; Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Nucleic Acid Medicine of Luzhou Key Laboratory, Metabolic Vascular Disease Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
15
|
Che HY, Zhou CH, Lyu CC, Meng Y, He YT, Wang HQ, Wu HY, Zhang JB, Yuan B. Allicin Alleviated LPS-Induced Mastitis via the TLR4/NF-κB Signaling Pathway in Bovine Mammary Epithelial Cells. Int J Mol Sci 2023; 24:ijms24043805. [PMID: 36835218 PMCID: PMC9962488 DOI: 10.3390/ijms24043805] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Dairy farming is the most important economic activity in animal husbandry. Mastitis is the most common disease in dairy cattle and has a significant impact on milk quality and yield. The natural extract allicin, which is the main active ingredient of the sulfur-containing organic compounds in garlic, has anti-inflammatory, anticancer, antioxidant, and antibacterial properties; however, the specific mechanism underlying its effect on mastitis in dairy cows needs to be determined. Therefore, in this study, whether allicin can reduce lipopolysaccharide (LPS)-induced inflammation in the mammary epithelium of dairy cows was investigated. A cellular model of mammary inflammation was established by pretreating bovine mammary epithelial cells (MAC-T) with 10 µg/mL LPS, and the cultures were then treated with varying concentrations of allicin (0, 1, 2.5, 5, and 7.5 µM) added to the culture medium. MAC-T cells were examined using RT-qPCR and Western blotting to determine the effect of allicin. Subsequently, the level of phosphorylated nuclear factor kappa-B (NF-κB) was measured to further explore the mechanism underlying the effect of allicin on bovine mammary epithelial cell inflammation. Treatment with 2.5 µM allicin considerably decreased the LPS-induced increase in the levels of the inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) and inhibited activation of the NOD-like receptor protein 3 (NLRP3) inflammasome in cow mammary epithelial cells. Further research revealed that allicin also inhibited the phosphorylation of inhibitors of nuclear factor kappa-B-α (IκB-α) and NF-κB p65. In mice, LPS-induced mastitis was also ameliorated by allicin. Therefore, we hypothesize that allicin alleviated LPS-induced inflammation in the mammary epithelial cells of cows probably by affecting the TLR4/NF-κB signaling pathway. Allicin will likely become an alternative to antibiotics for the treatment of mastitis in cows.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jia-Bao Zhang
- Correspondence: (J.-B.Z.); (B.Y.); Tel.: +86-431-8783-6551 (J.-B.Z.); +86-431-8783-6536 (B.Y.)
| | - Bao Yuan
- Correspondence: (J.-B.Z.); (B.Y.); Tel.: +86-431-8783-6551 (J.-B.Z.); +86-431-8783-6536 (B.Y.)
| |
Collapse
|
16
|
Putman AK, Sordillo LM, Contreras GA. The Link Between 15-F2t-Isoprostane Activity and Acute Bovine Endothelial Inflammation Remains Elusive. Front Vet Sci 2022; 9:873544. [PMID: 35573419 PMCID: PMC9100427 DOI: 10.3389/fvets.2022.873544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/06/2022] [Indexed: 01/31/2023] Open
Abstract
Modern dairy cattle suffer from increased incidence and severity of mastitis during major physiological transitions of the lactation cycle. Oxidative stress, a condition resulting from inadequate antioxidant defense against reactive oxygen and nitrogen species, is a major underlying component of mastitis pathophysiology. Isoprostanes (IsoP) are molecules derived from cellular lipid membranes upon non-enzymatic interaction with reactive species during inflammation, and are regarded as highly sensitive and specific biomarkers of oxidative stress. Changes in IsoP concentrations have been noted during major physiological transitions and diseases such as coliform mastitis in dairy cattle. However, the biological role of IsoP during oxidative stress in dairy cows has not been well-elucidated. Therefore, this study aimed to characterize the impacts of IsoP on oxidative stress outcomes in a bovine model of acute endothelial inflammation. Bovine aortic endothelial cells (BAEC; n = 4) were stimulated with 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) or lipopolysaccharide (LPS) with or without 15-F2t-IsoP to determine how IsoP influence oxidative stress outcomes. Our endothelial inflammation model showed relatively decreased reactive metabolites and increased barrier integrity in cells treated with both the agonist and IsoP compared to agonist treatment alone. However, IsoP do not appear to affect oxidative stress outcomes during acute inflammation. Understanding the effect of IsoP on BAEC is an early step in elucidating how IsoP impact dairy cows during times of oxidative stress in the context of acute clinical mastitis. Future studies should define the optimal dosing and treatment timing of IsoP to maximize their cytoprotective potential during acute inflammation.
Collapse
|
17
|
Wang JP, Hu QC, Yang J, Luoreng ZM, Wang XP, Ma Y, Wei DW. Differential Expression Profiles of lncRNA Following LPS-Induced Inflammation in Bovine Mammary Epithelial Cells. Front Vet Sci 2021; 8:758488. [PMID: 34778437 PMCID: PMC8589037 DOI: 10.3389/fvets.2021.758488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022] Open
Abstract
Bovine mastitis is an inflammatory response of mammary glands caused by pathogenic microorganisms such as Escherichia coli (E. coli). As a key virulence factor of E. coli, lipopolysaccharide (LPS) triggers innate immune responses via activation of the toll-like-receptor 4 (TLR4) signaling pathway. However, the molecular regulatory network of LPS-induced bovine mastitis has yet to be fully mapped. In this study, bovine mammary epithelial cell lines MAC-T were exposed to LPS for 0, 6 and 12 h to assess the expression profiles of long non-coding RNAs (lncRNAs) using RNA-seq. Differentially expressed lncRNAs (DElncRNAs) were filtered out of the raw data for subsequent analyses. A total of 2,257 lncRNAs, including 210 annotated and 2047 novel lncRNAs were detected in all samples. A large proportion of lncRNAs were present in a high abundance, and 112 DElncRNAs were screened out at different time points. Compared with 0 h, there were 22 up- and 25 down-regulated lncRNAs in the 6 h of post-infection (hpi) group, and 27 up- and 22 down-regulated lncRNAs in the 12 hpi group. Compared with the 6 hpi group, 32 lncRNAs were up-regulated and 25 lncRNAs were down-regulated in the 12 hpi group. These DElncRNAs are involved in the regulation of a variety of immune-related processes including inflammatory responses bMECs exposed to LPS. Furthermore, lncRNA TCONS_00039271 and TCONS_00139850 were respectively significance down- and up-regulated, and their target genes involve in regulating inflammation-related signaling pathways (i.e.,Notch, NF-κB, MAPK, PI3K-Akt and mTOR signaling pathway), thereby regulating the occurrence and development of E. coli mastitis. This study provides a resource for lncRNA research on the molecular regulation of bovine mastitis.
Collapse
Affiliation(s)
- Jin-Peng Wang
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Qi-Chao Hu
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jian Yang
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Zhuo-Ma Luoreng
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Xing-Ping Wang
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Da-Wei Wei
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| |
Collapse
|