1
|
Yang S, Leung AYP, Wang Z, Yiu CKY, Dissanayaka WL. Proanthocyanidin surface preconditioning of dental pulp stem cell spheroids enhances dimensional stability and biomineralization in vitro. Int Endod J 2024; 57:1639-1654. [PMID: 39046812 DOI: 10.1111/iej.14126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/15/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
AIM Lack of adequate mechanical strength and progressive shrinkage over time remain challenges in scaffold-free microtissue-based dental pulp regeneration. Surface collagen cross-linking holds the promise to enhance the mechanical stability of microtissue constructs and trigger biological regulations. In this study, we proposed a novel strategy for surface preconditioning microtissues using a natural collagen cross-linker, proanthocyanidin (PA). We evaluated its effects on cell viability, tissue integrity, and biomineralization of dental pulp stem cell (DPSCs)-derived 3D cell spheroids. METHODOLOGY Microtissue and macrotissue spheroids were fabricated from DPSCs and incubated with PA solution for surface collagen cross-linking. Microtissue viability was examined by live/dead staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, with transverse dimension change monitored. Microtissue surface stiffness was measured by an atomic force microscope (AFM). PA-preconditioned microtissues and macrotissues were cultured under basal or osteogenic conditions. Immunofluorescence staining of PA-preconditioned microtissues was performed to detect dentin sialophosphoprotein (DSPP) and F-actin expressions. PA-preconditioned macrotissues were subjected to histological analysis, including haematoxylin-eosin (HE), alizarin red, and Masson trichrome staining. Immunohistochemistry staining was used to detect alkaline phosphatase (ALP) and dentin matrix acidic phosphoprotein 1 (DMP-1) expressions. RESULTS PA preconditioning had no adverse effects on microtissue spheroid viability and increased surface stiffness. It reduced dimensional shrinkage for over 7 days in microtissues and induced a larger transverse-section area in the macrotissue. PA preconditioning enhanced collagen formation, mineralized nodule formation, and elevated ALP and DMP-1 expressions in macrotissues. Additionally, PA preconditioning induced higher F-actin and DSPP expression in microtissues, while inhibition of F-actin activity by cytochalasin B attenuated PA-induced dimensional change and DSPP upregulation. CONCLUSION PA surface preconditioning of DPSCs spheroids demonstrates excellent biocompatibility while effectively enhancing tissue structure stability and promoting biomineralization. This strategy strengthens tissue integrity in DPSC-derived spheroids and amplifies osteogenic differentiation potential, advancing scaffold-free tissue engineering applications in regenerative dentistry.
Collapse
Affiliation(s)
- Shengyan Yang
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Andy Yu Pan Leung
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Zheng Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Cynthia Kar Yung Yiu
- Paediatric Dentistry & Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Kim Y, Lee JO, Lee JM, Lee MH, Kim HM, Chung HC, Kim DU, Lee JH, Kim BJ. Low Molecular Weight Collagen Peptide (LMWCP) Promotes Hair Growth by Activating the Wnt/GSK-3β/β-Catenin Signaling Pathway. J Microbiol Biotechnol 2024; 34:17-28. [PMID: 37830229 PMCID: PMC10840484 DOI: 10.4014/jmb.2308.08013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023]
Abstract
Low molecular weight collagen peptide (LMWCP) is a collagen hydrolysate derived from fish. We investigated the effects of LMWCP on hair growth using human dermal papilla cells (hDPCs), human hair follicles (hHFs), patch assay, and telogenic C57BL/6 mice, while also examining the underlying mechanisms of its action. LMWCP promoted proliferation and mitochondrial potential, and the secretion of hair growth-related factors, such as EGF, HB-EGF, FGF-4, and FGF-6 in hDPCs. Patch assay showed that LMWCP increased the neogeneration of new HFs in a dose-dependent manner. This result correlated with an increase in the expression of dermal papilla (DP) signature genes such as, ALPL, SHH, FGF7, and BMP-2. LMWCP upregulated phosphorylation of glycogen synthase kinase-3β (GSK-3β) and β-catenin, and nuclear translocation of β-catenin, and it increased the expression of Wnt3a, LEF1, VEGF, ALP, and β-catenin. LMWCP promoted the growth of hHFs and increased the expression of β-catenin and VEGF. Oral administration of LMWCP to mice significantly stimulated hair growth. The expression of Wnt3a, β-catenin, PCNA, Cyclin D1, and VEGF was also elevated in the back skin of the mice. Furthermore, LMWCP increased the expression of cytokeratin and Keratin Type I and II. Collectively, these findings demonstrate that LMWCP has the potential to increase hair growth via activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Republic of Korea
| | - Jung Ok Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jung Min Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Mun-Hoe Lee
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul 05604, Republic of Korea
| | - Hyeong-Min Kim
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul 05604, Republic of Korea
| | - Hee-Chul Chung
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul 05604, Republic of Korea
| | - Do-Un Kim
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul 05604, Republic of Korea
| | - Jin-Hee Lee
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul 05604, Republic of Korea
| | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Republic of Korea
| |
Collapse
|
3
|
Ma C, Cheng M, Wu Y, Xu X. The Role of Mesenchymal Stem Cells in Hair Regeneration and Hair Cycle. Stem Cells Dev 2024; 33:1-10. [PMID: 37847179 DOI: 10.1089/scd.2023.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
The health of hair is directly related to people's health and appearance. Hair has key physiological functions, including skin protection and temperature regulation. Hair follicle (HF) is a vital mini-organ that directly impacts hair growth. Besides, various signaling pathways and molecules regulate the growth cycle transition of HFs. Hair and its regeneration studies have attracted much interest in recent years with the increasing rate of alopecia. Mesenchymal stem cells (MSCs), as pluripotent stem cells, can differentiate into fat, bone, and cartilage and stimulate regeneration and immunological regulation. MSCs have been widely employed to treat various clinical diseases, such as bone and cartilage injury, nerve injury, and lung injury. Besides, MSCs can be used for treatment of hair diseases due to their regenerative and immunomodulatory abilities. This review aimed to assess MSCs' treatment for alopecia, pertinent signaling pathways, and new material for hair regeneration in the last 5 years.
Collapse
Affiliation(s)
- Cong Ma
- Department of Dermatology, The First Hospital of Inner Mongolia University for Nationalities, Tongliao, China
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, Liaoning, China
| | - Ming Cheng
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, Liaoning, China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, Liaoning, China
| | - Xuegang Xu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Cedirian S, Bruni F, Quadrelli F, Caro G, Fortuna M, Rossi A, Piraccini BM, Starace M. Clinical study on the efficacy and tolerability of a topical regenerative treatment in patients with telogen effluvium and mild androgenetic alopecia. J Cosmet Dermatol 2023; 22:3347-3351. [PMID: 37415302 DOI: 10.1111/jocd.15873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/19/2023] [Accepted: 06/04/2023] [Indexed: 07/08/2023]
Abstract
Hair loss may change the quality of life since modern society considers hair an essential element in beauty definition. The most common causes of hair loss are androgenetic alopecia (AGA) and telogen effluvium (TE). AGA requires a lifetime use of minoxidil or finasteride (and sometimes they lose efficacy over the years), whereas TE has no standardized therapy available. Our study focuses on a novel topical regenerative preparation that, by mimicking autologous PRP, can safely and efficiently improve hair loss in patients affected by TE and AGA.
Collapse
Affiliation(s)
- S Cedirian
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - F Bruni
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - F Quadrelli
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - G Caro
- Dermatology Unit, Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - M Fortuna
- Dermatology Unit, Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - A Rossi
- Dermatology Unit, Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - B M Piraccini
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - M Starace
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
He Y, Wang W, Ma X, Duan Z, Wang B, Li M, Xu H. Discovery and Potential Functional Characterization of Long Noncoding RNAs Associated with Familial Acne Inversa with NCSTN Mutation. Dermatology 2023; 240:119-131. [PMID: 37490873 DOI: 10.1159/000531978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 07/06/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are associated with many dermatologic diseases. However, little is known about the regulatory function of lncRNAs in familial acne inversa (AI) patients with nicastrin (NCSTN) mutation. OBJECTIVES The aim of this study was to explore the regulatory function of lncRNAs in familial AI patients with NCSTN mutation. METHODS The expression profiles of lncRNAs and mRNAs in skin tissues from familial AI patients with NCSTN mutation and healthy individuals were analysed in this study via RNA sequencing (RNA-seq). RESULTS In total, 359 lncRNAs and 1,863 mRNAs were differentially expressed between the two groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the dysregulated mRNAs targeted by lncRNAs were mainly associated with the immune regulation, Staphylococcus aureus infection and B cell receptor signalling pathways. The lncRNA-miRNA-mRNA coexpression network contained 265 network pairs comprising 55 dysregulated lncRNAs, 11 miRNAs, and 74 mRNAs. Conservation analysis of the differentially expressed lncRNAs between familial AI patients with NCSTN mutation and Ncstn keratinocyte-specific knockout (NcstnΔKC) mice identified 6 lncRNAs with sequence conservation; these lncRNAs may participate in apoptosis, proliferation, and skin barrier function. CONCLUSIONS These findings provide a direction for exploring the regulatory mechanisms underlying the progression of familial AI patients with NCSTN mutation.
Collapse
Affiliation(s)
- Yanyan He
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China,
| | - Wenzhu Wang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xiao Ma
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Zhimin Duan
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Baoxi Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Li
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haoxiang Xu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Sung JH. Effective and economical cell therapy for hair regeneration. Biomed Pharmacother 2023; 157:113988. [PMID: 36370520 DOI: 10.1016/j.biopha.2022.113988] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
We reviewed and summarized the latest reports on the characteristics of stem cells and follicular cells that are under development for hair loss treatment. Compared with conventional medicine, cell therapy could be effective in the long term with a single treatment while having mild adverse effects. Adipose-derived stem cells (ASCs) have the advantages of easy access and large isolation amount compared with dermal papilla cells (DPCs) and dermal sheath cup cells (DSCs), and promote hair growth through the paracrine effect. ASCs have a poor potential in hair neogenesis, therefore, methods to enhance trichogenecity of ASCs should be developed. DSCs can be isolated from the peribulbar dermal sheath cup, while having immune tolerance, and hair inductivity. Therefore, DSCs were first developed and finished the phase II clinical trial; however, the hair growth was not satisfactory. Considering that a single injection of DSCs is effective for at least 9 months in the clinical setting, they can be an alternative therapy for hair regeneration. Though DPCs are not yet studied in clinical trials, we should pay attention to DPCs, as hair loss is associated with gradual reduction of DPCs and DP cell numbers fluctuate over the hair cycle. DPCs could make new hair follicles with epidermal cells, and have an immunomodulatory function to enable allogeneic transplantation. In addition, we can expand large quantities of DPCs with hair inductivity using spheroid culture, hypoxia condition, and growth factor supplement. 'Off-the-shelf' DPC therapy could be effective and economical, and therefore promising for hair regeneration.
Collapse
Affiliation(s)
- Jong-Hyuk Sung
- Epi Biotech Co., Ltd., Incheon, South Korea; College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea.
| |
Collapse
|
7
|
Xu K, Yu E, Wu M, Wei P, Yin J. Cells, growth factors and biomaterials used in tissue engineering for hair follicles regeneration. Regen Ther 2022; 21:596-610. [DOI: 10.1016/j.reth.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
|
8
|
You J, Woo J, Roh KB, Ryu D, Jang Y, Cho E, Park D, Jung E. Assessment of the anti-hair loss potential of Camellia japonica fruit shell extract in vitro. Int J Cosmet Sci 2022; 45:155-165. [PMID: 36411959 DOI: 10.1111/ics.12827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/28/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Hair loss is caused by various factors. Impacts of these factors are often overlapped and intensified. Currently, mitigation of hair loss is being studied by proliferating dermal papilla cells (DPCs) and inhibiting deleterious factors such as dihydrotestosterone (DHT) and oxidative stress on hair growth. Camellia japonica (C. japonica) fruit shell is a discarded part. Its biological activity remains to be elucidated. In this study, we investigated the capacity of C. japonica fruit shell extract (CJFSE) for hair loss mitigation. METHODS MTT assay, spheroid culture and quantitative RT-PCR were performed to observe the proliferative effect of CJFSE on hair follicle dermal papilla cells (HFDPCs). Effects of CJFSE on DHT-induced hair loss were confirmed by Dkk-1 ELISA, β-galactosidase (β-gal) and 5α-reductase activity assay. In addition, effects of CJFSE on oxidative stress were confirmed through DPPH and ROS production assays. RESULTS CJFSE increased the proliferation and spheroid size of HFDPCs. Expression levels of VEGF-A, Wnt-1, c-Myc and Cyclin D1 were upregulated by CJFSE. CJFSE also suppressed 5α-reductase activity and DHT-induced decrease in cell proliferation, Dkk-1 secretion and β-gal activity. Moreover, CJFSE showed DPPH scavenging activity and ameliorated hydrogen peroxide-induced ROS production and β-gal activity. Finally, gallic acid and protocatechuic acid were observed in CJFSE through HPLC analysis. CONCLUSION CJFSE has the potential to alleviate hair loss by promoting hair cell growth and suppressing effects of DHT and oxidative stress on hair.
Collapse
Affiliation(s)
- Jiyoung You
- Biospectrum Life Science Institute, Yongin-si, Korea
| | - Jieun Woo
- Biospectrum Life Science Institute, Yongin-si, Korea
| | | | - Dehun Ryu
- Biospectrum Life Science Institute, Yongin-si, Korea
| | - Youngsu Jang
- Biospectrum Life Science Institute, Yongin-si, Korea
| | - Eunae Cho
- Biospectrum Life Science Institute, Yongin-si, Korea
| | - Deokhoon Park
- Biospectrum Life Science Institute, Yongin-si, Korea
| | - Eunsun Jung
- Biospectrum Life Science Institute, Yongin-si, Korea
| |
Collapse
|
9
|
Lu C, Lv Y, Kou G, Liu Y, Liu Y, Chen Y, Wu X, Yang F, Luo J, Yang X. Silver nanoparticles induce developmental toxicity via oxidative stress and mitochondrial dysfunction in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113993. [PMID: 35994909 DOI: 10.1016/j.ecoenv.2022.113993] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023]
Abstract
Sliver nanoparticles (AgNPs) are widely used in industry, agriculture, and medicine, potentially resulting in adverse effects on human health and aquatic environments. Here, we investigated the developmental toxicity of zebrafish embryos with acute exposure to AgNPs. Our results demonstrated developmental defects in 4 hpf zebrafish embryos after exposure to different concentrations of AgNPs for 72 h. In addition, RNA-seq profiling of zebrafish embryos after AgNPs treatment. Further Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the differentially expressed genes (DEGs) were enriched in DNA replication initiation, oxidoreductase activity, DNA replication, cellular senescence, and oxidative phosphorylation signaling pathways in the AgNPs-treated group. Notably, we also found that AgNPs exposure could result in the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), the inhibition of superoxide dismutase (SOD), catalase (CAT), and mitochondrial complex I-V activities, and the downregulated expression of SOD, CAT, and mitochondrial complex I-IV chain-related genes. Moreover, the expression of mitochondrion-mediated apoptosis signaling pathway-related genes, such as bax, bcl2, caspase-3, and caspase-9, was significantly regulated after AgNPs exposure in zebrafish. Therefore, these findings demonstrated that AgNPs exposure could cause oxidative stress, induce mitochondrial dysfunction, and ultimately lead to developmental toxicity.
Collapse
Affiliation(s)
- Chunjiao Lu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yuhang Lv
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Guanhua Kou
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yao Liu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yi Liu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Xuewei Wu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Juanjuan Luo
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Xiaojun Yang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| |
Collapse
|
10
|
Yamane M, Seo J, Zhou Y, Asaba T, Tu S, Nanmo A, Kageyama T, Fukuda J. Effects of the PI3K/Akt signaling pathway on the hair inductivity of human dermal papilla cells in hair beads. J Biosci Bioeng 2022; 134:55-61. [DOI: 10.1016/j.jbiosc.2022.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/18/2022]
|