1
|
Hu L, Dai K, Gong C, Huang C, Jiao S, Zhang J. Endophytic fungus Umbelopsis sp. TM01 as high-activity alternative to Tricholoma matsutake. BIORESOURCE TECHNOLOGY 2025; 422:132216. [PMID: 39952620 DOI: 10.1016/j.biortech.2025.132216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Tricholoma matsutake, a rare fungus, is highly valued for its remarkable nutritional content, making it a sought-after biomass resource in both the cosmetics and food sectors. However, its scarcity and restricted natural growth impede large-scale utilization. An endophytic fungus, Umbelopsis sp. TM01, was successfully isolated from the fruiting body of T. matsutake. Research on the biological activity and cytotoxicity of the extract from Umbelopsis sp. TM01 (UFE) and the extract from T. matsutake (TME) showed that UFE outperformed TME in biological activity and had lower cytotoxicity. In the cosmetics-relevant bio-functions, UFE exhibited more potent anti-tyrosinase activity, greater anti-wrinkle efficacy and comparable wound-healing effect to that of TME. UFE was safe for human dermal fibroblasts even at 10% concentration. Metabolomic analysis revealed UFE had diverse secondary metabolites. All in all, Umbelopsis sp. TM01 has great potential as a substitute for T. matsutake in the cosmetics industry.
Collapse
Affiliation(s)
- Lu Hu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; SHE LOG (Guangzhou) Biotechnology Co., Ltd, Guangzhou 510080, China
| | - Kun Dai
- Hangzhou Jajale Biotech Co., Ltd, Hangzhou 310000, China
| | - Chenhui Gong
- Hangzhou Jajale Biotech Co., Ltd, Hangzhou 310000, China
| | - Chujie Huang
- SHE LOG (Guangzhou) Biotechnology Co., Ltd, Guangzhou 510080, China.
| | - Song Jiao
- Hangzhou Jajale Biotech Co., Ltd, Hangzhou 310000, China.
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Wei H, Wang Z, Huang Y, Gao L, Wang W, Liu S, Sun Y, Liu H, Weng Y, Fan H, Zhang M. DCAF2 regulates the proliferation and differentiation of mouse progenitor spermatogonia by targeting p21 and thymine DNA glycosylase. Cell Prolif 2024; 57:e13676. [PMID: 38837535 PMCID: PMC11471390 DOI: 10.1111/cpr.13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/24/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024] Open
Abstract
DDB1-Cullin-4-associated factor-2 (DCAF2, also known as DTL or CDT2), a conserved substrate recognition protein of Cullin-RING E3 ligase 4 (CRL4), recognizes and degrades several substrate proteins during the S phase to maintain cell cycle progression and genome stability. Dcaf2 mainly expressed in germ cells of human and mouse. Our study found that Dcaf2 was expressed in mouse spermatogonia and spermatocyte. The depletion of Dcaf2 in germ cells by crossing Dcaf2fl/fl mice with stimulated by retinoic acid gene 8(Stra8)-Cre mice caused a reduction in progenitor spermatogonia and differentiating spermatogonia, eventually leading to the failure of meiosis initiation and male infertility. Further studies showed that depletion of Dcaf2 in germ cells caused abnormal accumulation of the substrate proteins, cyclin-dependent kinase inhibitor 1A (p21) and thymine DNA glycosylase (TDG), decreasing of cell proliferation, increasing of DNA damage and apoptosis. Overexpression of p21 or TDG attenuates proliferation and increases DNA damage and apoptosis in GC-1 cells, which is exacerbated by co-overexpression of p21 and TDG. The findings indicate that DCAF2 maintains the proliferation and differentiation of progenitor spermatogonia by targeting the substrate proteins p21 and TDG during the S phase.
Collapse
Affiliation(s)
- Hongwei Wei
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Zhijuan Wang
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Yating Huang
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Longwei Gao
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Weiyong Wang
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Shuang Liu
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Yan‐Li Sun
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Huiyu Liu
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Yashuang Weng
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Heng‐Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling NetworkLife Sciences Institute, Zhejiang UniversityHangzhouChina
| | - Meijia Zhang
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| |
Collapse
|
3
|
Shen F, Zhang Y, Li C, Yang H, Yuan P. Network pharmacology and experimental verification of the mechanism of licochalcone A against Staphylococcus aureus pneumonia. Front Microbiol 2024; 15:1369662. [PMID: 38803378 PMCID: PMC11128579 DOI: 10.3389/fmicb.2024.1369662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Staphylococcus aureus strains cause the majority of pneumonia cases and are resistant to various antibiotics. Given this background, it is very important to discover novel host-targeted therapies. Licochalcone A (LAA), a natural plant product, has various biological activities, but its primary targets in S. aureus pneumonia remain unclear. Therefore, the purpose of this study was to identify its molecular target against S. aureus pneumonia. Network pharmacology analysis, histological assessment, enzyme-linked immunosorbent assays, and Western blotting were used to confirm the pharmacological effects. Network pharmacology revealed 33 potential targets of LAA and S. aureus pneumonia. Enrichment analysis revealed that these potential genes were enriched in the Toll-like receptor and NOD-like receptor signaling pathways. The results were further verified by experiments in which LAA alleviated histopathological changes, inflammatory infiltrating cells and inflammatory cytokines (TNF, IL-6, and IL-1β) in the serum and bronchoalveolar lavage fluid in vivo. Moreover, LAA treatment effectively reduced the expression levels of NF-κB, p-JNK, p-p38, NLRP3, ASC, caspase 1, IL-1β, and IL-18 in lung tissue. The in vitro experimental results were consistent with the in vivo results. Thus, our findings demonstrated that LAA exerts anti-infective effects on S. aureus-induced lung injury via suppression of the Toll-like receptor and NOD-like receptor signaling pathways, which provides a theoretical basis for understanding the function of LAA against S. aureus pneumonia and implies its potential clinical application.
Collapse
Affiliation(s)
- Fengge Shen
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yinghua Zhang
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chunjie Li
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Hongyan Yang
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Peng Yuan
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
4
|
Ahmad K, Lee EJ, Ali S, Han KS, Hur SJ, Lim JH, Choi I. Licochalcone A and B enhance muscle proliferation and differentiation by regulating Myostatin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155350. [PMID: 38237512 DOI: 10.1016/j.phymed.2024.155350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Myostatin (MSTN) inhibition has demonstrated promise for the treatment of diseases associated with muscle loss. In a previous study, we discovered that Glycyrrhiza uralensis (G. uralensis) crude water extract (CWE) inhibits MSTN expression while promoting myogenesis. Furthermore, three specific compounds of G. uralensis, namely liquiritigenin, tetrahydroxymethoxychalcone, and Licochalcone B (Lic B), were found to promote myoblast proliferation and differentiation, as well as accelerate the regeneration of injured muscle tissue. PURPOSE The purpose of this study was to build on our previous findings on G. uralensis and demonstrate the potential of its two components, Licochalcone A (Lic A) and Lic B, in muscle mass regulation (by inhibiting MSTN), aging and muscle formation. METHODS G. uralensis, Lic A, and Lic B were evaluated thoroughly using in silico, in vitro and in vivo approaches. In silico analyses included molecular docking, and dynamics simulations of these compounds with MSTN. Protein-protein docking was carried out for MSTN, as well as for the docked complex of MSTN-Lic with its receptor, activin type IIB receptor (ACVRIIB). Subsequent in vitro studies used C2C12 cell lines and primary mouse muscle stem cells to acess the cell proliferation and differentiation of normal and aged cells, levels of MSTN, Atrogin 1, and MuRF1, and plasma MSTN concentrations, employing techniques such as western blotting, immunohistochemistry, immunocytochemistry, cell proliferation and differentiation assays, and real-time RT-PCR. Furthermore, in vivo experiments using mouse models focused on measuring muscle fiber diameters. RESULTS CWE of G. uralensis and two of its components, namely Lic A and B, promote myoblast proliferation and differentiation by inhibiting MSTN and reducing Atrogin1 and MuRF1 expressions and MSTN protein concentration in serum. In silico interaction analysis revealed that Lic A (binding energy -6.9 Kcal/mol) and B (binding energy -5.9 Kcal/mol) bind to MSTN and reduce binding between it and ACVRIIB, thereby inhibiting downstream signaling. The experimental analysis, which involved both in vitro and in vivo studies, demonstrated that the levels of MSTN, Atrogin 1, and MuRF1 were decreased when G. uralensis CWE, Lic A, or Lic B were administered into mice or treated in the mouse primary muscle satellite cells (MSCs) and C2C12 myoblasts. The diameters of muscle fibers increased in orally treated mice, and the differentiation and proliferation of C2C12 cells were enhanced. G. uralensis CWE, Lic A, and Lic B also promoted cell proliferation in aged cells, suggesting that they may have anti-muslce aging properties. They also reduced the expression and phosphorylation of SMAD2 and SMAD3 (MSTN downstream effectors), adding to the evidence that MSTN is inhibited. CONCLUSION These findings suggest that CWE and its active constituents Lic A and Lic B have anti-mauscle aging potential. They also have the potential to be used as natural inhibitors of MSTN and as therapeutic options for disorders associated with muscle atrophy.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Ki Soo Han
- Neo Cremar Co., Ltd., Seoul 05702, South Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea.
| |
Collapse
|
5
|
Gurumayum N, Sarma PP, Khound P, Jana UK, Devi R. Nutritional Composition and Pharmacological Activity of Musa balbisiana Colla Seed: An Insight into Phytochemical and Cellular Bioenergetic Profiling. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:520-525. [PMID: 37477732 DOI: 10.1007/s11130-023-01080-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
Musa balbisiana Colla belongs to the family Musaceae which is well-known for its nutritional and pharmacological properties. Here, we have analysed the phytochemical content and evaluated the nutritional, antioxidant, anti-glycation, α-amylase, and α-glucosidase inhibition potential. Moreover, for the first time, we have studied the bioenergetic profiles of the bioactive fractions of M. balbisiana seeds extract against oxidative stress-related mitochondrial and cellular dysfunction using XFe24 extracellular flux analyzer. M. balbisiana seeds have high nutritional values with significant levels of carbohydrates, starch, protein, and minerals (Ca, Na, Mg, Cu, Fe, and Zn). Bioactivity-guided fractionation of the methanolic extract of M. balbisiana seeds revealed that the ethyl acetate fraction (EAF) showed the highest antioxidant, anti-glycation, and phytochemical content as compared to other fractions. Moreover, the EAF showed a lower α-amylase inhibition and a higher α-glucosidase inhibitory activity. Most importantly, our GC-MS analyses of EAF revealed the presence of unique and previously unreported 14 phytochemical compounds. A strong correlation between the biological activities and total phenolic/tannin content was observed. In addition, the bioactive fraction of M. balbisiana seeds (EAF) improved the bioenergetic profiles of free fatty acid-induced oxidative stress with a concomitant increase in ATP production, and respiratory and glycolytic capacity. Altogether, our findings suggest that M. balbisiana seeds can be used as a natural supplement to boost antioxidant levels and combat oxidative stress and non-enzymatic glycation.
Collapse
Affiliation(s)
- Nonibala Gurumayum
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
- Department of Zoology, Gauhati University, Guwahati, 781014, India
| | - Partha Pratim Sarma
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
| | - Puspanjali Khound
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
- Department of Zoology, Gauhati University, Guwahati, 781014, India
| | - Uttam Kumar Jana
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India
| | - Rajlakshmi Devi
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India.
- Department of Zoology, Gauhati University, Guwahati, 781014, India.
| |
Collapse
|