1
|
Wang J, Zhu D, Cui H, Xu Y, Shang S, Miao Y, Xu Z, Li R. Molecular mechanism of culinary herb Artemisia argyi in promoting lifespan and stress tolerance. NPJ Sci Food 2024; 8:111. [PMID: 39719452 DOI: 10.1038/s41538-024-00358-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
Artemisia argyi Lévl. et Vant. (A. argyi) leaf possesses various health promoting functions contributed by its main bioactive flavonoids. In this study, the anti-aging effect and mechanism of Artemisia argyi leaf extract (AALE) were identified using Caenorhabditis elegans (C. elegans) as a model. The results showed that the AALE promoted the lifespan and stress resistance of C. elegans. It was found that the AALE boosted the expression of oxidative stress-related proteins by regulating the insulin/ IGF-1 signaling (IIS) pathway, which then activated the transcription factors DAF-16/FOXO. The results of RNA-sequence analysis indicated that the changes of genes in nematodes treated with AALE were associated with the responses against oxidative stress, cell maturation, and immune reaction, and stress. The positive results suggest that Artemisia argyi leaf could have the robust benefits for improving healthy aging as well as preventing aging-related diseases in the human body.
Collapse
Affiliation(s)
- Jinsong Wang
- Institute of Agricultural Biotechnology, Jingchu University of Technology, Jingmen, China
- Characteristic food function mining and comprehensive utilization research center, Jingchu University of Technology, Jingmen, China
| | - Deyan Zhu
- Institute of Agricultural Biotechnology, Jingchu University of Technology, Jingmen, China
| | - Hailin Cui
- Characteristic food function mining and comprehensive utilization research center, Jingchu University of Technology, Jingmen, China
| | - Yan Xu
- Characteristic food function mining and comprehensive utilization research center, Jingchu University of Technology, Jingmen, China
| | - Shuyou Shang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yuanxin Miao
- Characteristic food function mining and comprehensive utilization research center, Jingchu University of Technology, Jingmen, China
| | - Zhimin Xu
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, USA.
| | - Rong Li
- Institute of Agricultural Biotechnology, Jingchu University of Technology, Jingmen, China.
| |
Collapse
|
2
|
Ho TJ, Tsai BCK, Debakshee G, Shibu MA, Kuo CH, Lin CH, Lin PY, Lin SZ, Kuo WW, Huang CY. Ohwia caudata aqueous extract attenuates senescence in aging adipose-derived mesenchymal stem cells. Heliyon 2024; 10:e29729. [PMID: 38698985 PMCID: PMC11064092 DOI: 10.1016/j.heliyon.2024.e29729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Stem cells exhibit pluripotency and self-renewal abilities. Adipose-derived mesenchymal stem cells can potentially be used to reconstruct various tissues. They possess significant versatility and alleviate various aging-related diseases. Unfortunately, aging leads to senescence, apoptosis, and a decline in regenerative capacity in adipose-derived mesenchymal stem cells. These changes necessitate a strategy to mitigate the effects of aging on stem cells. Ohwia caudata (O. caudata) has therapeutic effects against several illnesses. However, studies on whether O. caudata has therapeutic effects against aging are lacking. In this study, we aimed to identify potential therapeutic anti-aging effects in the crude aqueous extract of O. caudata on adipose-derived mesenchymal stem cells. Using 0.1 μM doxorubicin, we induced aging in human adipose-derived mesenchymal stem cells (hADMSCs) and evaluated whether various concentrations of O. caudata aqueous extract exhibit anti-aging effects on them. The O. caudata extract exhibited significant antioxidant effects on hADMSCs without any toxicity. Furthermore, after treatment with the O. caudata aqueous extract, the levels of mitochondrial superoxide, DNA double-strand breaks, and telomere shortening were reduced in the hADMSCs subjected to doxorubicin-induced aging. The extract also suppressed doxorubicin-induced aging by upregulating klotho and downregulating p21 in hADMSCs. These findings indicated that the O. caudata extract exhibited anti-aging properties that modulated hADMSC homeostasis. Therefore, it could be a potential candidate for restoring the self-renewal ability and multipotency of aging hADMSCs.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Goswami Debakshee
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
- Laboratory of Exercise Biochemistry, University of Taipei, Tianmu Campus, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
| | - Chih-Hsueh Lin
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
3
|
Wang Q, Wang L, Li L, Sun M, Li P, Yu Y, Zhang Y, Xu Z, Gao P, Ma J, Liu X. Effects of dietary supplementation of fermented Artemisia argyi on growth performance, slaughter performance, and meat quality in broilers. Poult Sci 2024; 103:103545. [PMID: 38387294 PMCID: PMC10899031 DOI: 10.1016/j.psj.2024.103545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Artemisia argyi (AA) is promising as a potential feed additive. Microbial fermentation is beneficial to the degradation of cell walls and the better release of bioactive compounds of AA. However, there are few reports on the application of fermented AA as a feed additive for broilers. The present study intended to evaluate the application value of fermented AA as a feed additive for broilers by examining the effects of the dietary supplementation of Aspergillus niger-fermented AA and unfermented AA on growth performance, slaughter performance, and meat quality of brokers. A total of 360 newly hatched (1-day-old) broilers with similar body weight were randomly divided into the following 5 groups: basal diet group as control (C) group, basal diet +3% unfermented AA (E1) group, basal diet + 1% fermented AA (E2) group, basal diet + 3% fermented AA (E3) group, basal diet + 5% fermented AA (E4) group. Each group included 6 replicates with 12 broilers per replicate, and the feeding trail lasted for 48 d. Body weight and feed intake were recorded every 2 wk, and the feed gain ratio was calculated to assess growth performance. At 42 d, 6 broilers from each group were slaughtered, and the carcass traits were calculated. The results showed that compared with the control group, Aspergillus Niger could effectively destroy AA fiber, which contributed to better release of AA bioactive compounds. Moreover, dietary supplementation with AA could improve the growth performance of broilers (P < 0.05), and the effect of fermented AA was better than unfermented AA, especially 3% fermented AA. From 28 to 42 d, compared with the control group, the average daily gain of broilers in the group supplementation with 3% fermented AA was significantly increased (P < 0.05), and the feed-to-gain ratio was decreased (P < 0.05). At 42 d, the dressing percentage, half-eviscerated carcass percentage, eviscerated carcass percentage, and breast muscle percentage of broilers in the groups of 1, 3, and 5% fermented AA diets were significantly improved (P < 0.05), and the thigh muscle percentage of broilers in the group with 3% fermented AA diets was significantly improved (P < 0.05). Meanwhile, the meat quality of broilers in the group with fermented AA diets was also significantly improved. Birds in AA groups had higher a* value and lower shear force of breast muscle, especially the group supplementation with 3% fermented AA (P < 0.05). In conclusion, fermented AA has good application value as a potential feed additive for broilers, dietary supplementation of fermented AA can improve the production performance and meat quality of broiler chickens, of which 3% fermented AA is more effective.
Collapse
Affiliation(s)
- Qiuxia Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Li Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Lingwei Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Mengqiao Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Peng Li
- College of Life Science, Xinxiang University, Xinxiang 453003, Henan, China
| | - Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Yanhong Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Zhiyong Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Pei Gao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Xingyou Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China; College of Life Science, Xinxiang University, Xinxiang 453003, Henan, China.
| |
Collapse
|
4
|
Wang Y, Wu M, Xiang L, Liu S, Luo G, Lin Q, Xiao L. Association of Dietary Vitamin C Consumption with Serum Klotho Concentrations. Foods 2023; 12:4230. [PMID: 38231677 DOI: 10.3390/foods12234230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Klotho is widely recognized as a protein that combats aging and possesses antioxidative characteristics, which have been implicated in the pathophysiology of numerous diseases. There is emerging evidence suggesting that the consumption of dietary nutrients, particularly those rich in antioxidants, could be associated with serum Klotho concentrations. Dietary vitamin C is one of the critical nutrients that possesses antioxidant properties. Nonetheless, the association between dietary vitamin C consumption and serum Klotho concentrations remains unclear. OBJECTIVE Aiming to evaluate the relationship between serum Klotho concentrations and dietary vitamin C consumption among Americans aged 40 to 79, we conducted a population-based study. METHODS From the National Health and Nutrition Examination Survey (NHANES) conducted between 2007 and 2016, a grand total of 11,282 individuals who met the criteria were selected as eligible participants for the study. Serum Klotho concentrations were measured using an ELISA kit that is commercially available. Trained interviewers evaluated the consumption of dietary vitamin C in the diet through a 24-hour dietary recall technique. A generalized linear model was used to evaluate the correlation between the consumption of dietary vitamin C in the diet and serum Klotho concentrations. Further examination was conducted using restricted cubic spline (RCS) analysis to explore the non-linear correlation between dietary vitamin C consumption in the diet and serum Klotho concentrations. RESULTS After accounting for possible confounding factors, serum Klotho concentrations rose by 1.17% (95% confidence interval (CI): 0.37%, 1.99%) with every standard deviation (SD) rise in dietary vitamin C consumption. With the first quintile of dietary vitamin C consumption as a reference, the percentage change of serum Klotho concentrations in the fifth quintile of dietary vitamin C consumption was 3.66% higher (95% CI: 1.05%, 6.32%). In older, normal-weight, and male participants, the subgroup analysis revealed a stronger correlation between dietary vitamin C consumption and serum Klotho concentrations. Analysis of RCS showed a linear positive association between dietary vitamin C consumption and the levels of serum Klotho concentrations. CONCLUSION The findings of this research indicate a strong and positive correlation between dietary vitamin C consumption and serum Klotho concentrations among the general adult population in the United States. Further studies are needed to validate the present findings and to explore specific mechanisms.
Collapse
Affiliation(s)
- Yan Wang
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Mingyang Wu
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Lu Xiang
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Si Liu
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Gang Luo
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Qian Lin
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Lin Xiao
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| |
Collapse
|
5
|
Lee PY, Tsai BCK, Sitorus MA, Lin PY, Lin SZ, Shih CY, Lu SY, Lin YM, Ho TJ, Huang CY. Ohwia caudata aqueous extract attenuates doxorubicin-induced mitochondrial dysfunction in Wharton's jelly-derived mesenchymal stem cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:2450-2461. [PMID: 37461261 DOI: 10.1002/tox.23880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/18/2023] [Accepted: 06/29/2023] [Indexed: 09/19/2023]
Abstract
Mitochondrial dysfunction has been linked to many diseases, including organ degeneration and cancer. Wharton's jelly-derived mesenchymal stem cells provide a valuable source for stem cell-based therapy and represent an emerging therapeutic approach for tissue regeneration. This study focused on screening the senomorphic properties of Ohwia caudata aqueous extract as an emerging strategy for preventing or treating mitochondrial dysfunction in stem cells. Wharton's jelly-derived mesenchymal stem cells were incubated with 0.1 μM doxorubicin, for 24 h to induce mitochondrial dysfunction. Next, the cells were treated with a series concentration of Ohwia caudata aqueous extract (25, 50, 100, and 200 μg/mL) for another 24 h. In addition, an untreated control group and a doxorubicin-induced mitochondrial dysfunction positive control group were maintained under the same conditions. Our data showed that Ohwia caudata aqueous extract markedly suppressed doxorubicin-induced mitochondrial dysfunction by increasing Tid1 and Tom20 expression, decreased reactive oxygen species production, and maintained mitochondrial membrane potential to promote mitochondrial stability. Ohwia caudata aqueous extract retained the stemness of Wharton's jelly-derived mesenchymal stem cells and reduced the apoptotic rate. These results indicate that Ohwia caudata aqueous extract protects Wharton's jelly-derived mesenchymal stem cells against doxorubicin-induced mitochondrial dysfunction and can potentially prevent mitochondrial dysfunction in other cells. This study provides new directions for the medical application of Ohwia caudata.
Collapse
Affiliation(s)
- Pei-Ying Lee
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Maria Angelina Sitorus
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Shang-Yeh Lu
- College of Medicine, China Medical University, Taichung, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yueh-Min Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
6
|
Shen Z, Wang Y, Wang G, Gu W, Zhao S, Hu X, Liu W, Cai Y, Ma Z, Gautam RK, Jia J, Wan CC, Yan T. Research progress of small-molecule drugs in targeting telomerase in human cancer and aging. Chem Biol Interact 2023; 382:110631. [PMID: 37451664 DOI: 10.1016/j.cbi.2023.110631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Telomeres are unique structures located at the ends of linear chromosomes, responsible for stabilizing chromosomal structures. They are synthesized by telomerase, a reverse transcriptase ribonucleoprotein complex. Telomerase activity is generally absent in human somatic cells, except in stem cells and germ cells. Every time a cell divides, the telomere sequence is shortened, eventually leading to replicative senescence and cell apoptosis when the telomeres reach a critical limit. However, most human cancer cells exhibit increased telomerase activity, allowing them to divide continuously. The importance of telomerase in cancer and aging has made developing drugs targeting telomerase a focus of research. Such drugs can inhibit cancer cell growth and delay aging by enhancing telomerase activity in telomere-related syndromes or diseases. This review provides an overview of telomeres, telomerase, and their regulation in cancer and aging, and highlights small-molecule drugs targeting telomerase in these fields.
Collapse
Affiliation(s)
- Ziyi Shen
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yuanhui Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Guanzhen Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Wei Gu
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Shengchao Zhao
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Xiaomeng Hu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China; Huzhou Central Hospital, Huzhou, 313000, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhihong Ma
- Huzhou Central Hospital, Huzhou, 313000, China
| | - Rupesh K Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, Indore, 453331, India
| | - Jia Jia
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine&Nursing, Huzhou University, Huzhou, 313099, China.
| | - Chunpeng Craig Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine&Nursing, Huzhou University, Huzhou, 313099, China.
| |
Collapse
|