1
|
Vashishth S, Ambasta RK, Kumar P. Deciphering the microbial map and its implications in the therapeutics of neurodegenerative disorder. Ageing Res Rev 2024; 100:102466. [PMID: 39197710 DOI: 10.1016/j.arr.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Every facet of biological anthropology, including development, ageing, diseases, and even health maintenance, is influenced by gut microbiota's significant genetic and metabolic capabilities. With current advancements in sequencing technology and with new culture-independent approaches, researchers can surpass older correlative studies and develop mechanism-based studies on microbiome-host interactions. The microbiota-gut-brain axis (MGBA) regulates glial functioning, making it a possible target for the improvement of development and advancement of treatments for neurodegenerative diseases (NDDs). The gut-brain axis (GBA) is accountable for the reciprocal communication between the gastrointestinal and central nervous system, which plays an essential role in the regulation of physiological processes like controlling hunger, metabolism, and various gastrointestinal functions. Lately, studies have discovered the function of the gut microbiome for brain health-different microbiota through different pathways such as immunological, neurological and metabolic pathways. Additionally, we review the involvement of the neurotransmitters and the gut hormones related to gut microbiota. We also explore the MGBA in neurodegenerative disorders by focusing on metabolites. Further, targeting the blood-brain barrier (BBB), intestinal barrier, meninges, and peripheral immune system is investigated. Lastly, we discuss the therapeutics approach and evaluate the pre-clinical and clinical trial data regarding using prebiotics, probiotics, paraprobiotics, fecal microbiota transplantation, personalised medicine, and natural food bioactive in NDDs. A comprehensive study of the GBA will felicitate the creation of efficient therapeutic approaches for treating different NDDs.
Collapse
Affiliation(s)
- Shrutikirti Vashishth
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, School of Medicine, VUMC, Vanderbilt University, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
2
|
Hernandez CM, McCuiston MA, Davis K, Halls Y, Carcamo Dal Zotto JP, Jackson NL, Dobrunz LE, King PH, McMahon LL. In a circuit necessary for cognition and emotional affect, Alzheimer's-like pathology associates with neuroinflammation, cognitive and motivational deficits in the young adult TgF344-AD rat. Brain Behav Immun Health 2024; 39:100798. [PMID: 39022628 PMCID: PMC11253229 DOI: 10.1016/j.bbih.2024.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 07/20/2024] Open
Abstract
In addition to extracellular amyloid plaques, intracellular neurofibrillary tau tangles, and inflammation, cognitive and emotional affect perturbations are characteristic of Alzheimer's disease (AD). The cognitive and emotional domains impaired by AD include several forms of decision making (such as intertemporal choice), blunted motivation (increased apathy), and impaired executive function (such as working memory and cognitive flexibility). However, the interaction between these domains of the mind and their supporting neurobiological substrates at prodromal stages of AD, or whether these interactions can be predictive of AD severity (individual variability), remain unclear. In this study, we employed a battery of cognitive and emotional tests in the young adult (5-7 mo) transgenic Fisher-344 AD (TgF344-AD; TgAD) rat model of AD. We also assessed whether markers of inflammation or AD-like pathology in the prelimbic cortex (PrL) of the medial prefrontal cortex (mPFC), basolateral amygdala (BLA), or nucleus accumbens (NAc), all structures that directly support the aforementioned behaviors, were predictive of behavioral deficits. We found TgAD rats displayed maladaptive decision making, greater apathy, and impaired working memory that was indeed predicted by AD-like pathology in the relevant brain structures, even at an early age. Moreover, we report that the BLA is an early epicenter of inflammation, and notably, AD-like pathology in the PrL, BLA, and NAc was predictive of BLA inflammation. These results suggest that operant-based battery testing may be sensitive enough to determine pathology trajectories, including neuroinflammation, from early stages of AD.
Collapse
Affiliation(s)
- Caesar M. Hernandez
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, USA
| | - Macy A. McCuiston
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristian Davis
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yolanda Halls
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Juan Pablo Carcamo Dal Zotto
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nateka L. Jackson
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, USA
- Department of Neuroscience, Medical University of South Carolina, USA
| | - Lynn E. Dobrunz
- Department of Neurobiology, The University of Alabama at Birmingham, USA
| | - Peter H. King
- Department of Neurology, The University of Alabama at Birmingham, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| | - Lori L. McMahon
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, USA
- Department of Neuroscience, Medical University of South Carolina, USA
| |
Collapse
|
3
|
Fekete M, Lehoczki A, Major D, Fazekas-Pongor V, Csípő T, Tarantini S, Csizmadia Z, Varga JT. Exploring the Influence of Gut-Brain Axis Modulation on Cognitive Health: A Comprehensive Review of Prebiotics, Probiotics, and Symbiotics. Nutrients 2024; 16:789. [PMID: 38542700 PMCID: PMC10975805 DOI: 10.3390/nu16060789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
Recent research exploring the relationship between the gut and the brain suggests that the condition of the gut microbiota can influence cognitive health. A well-balanced gut microbiota may help reduce inflammation, which is linked to neurodegenerative conditions. Prebiotics, probiotics, and symbiotics are nutritional supplements and functional food components associated with gastrointestinal well-being. The bidirectional communication of the gut-brain axis is essential for maintaining homeostasis, with pre-, pro-, and symbiotics potentially affecting various cognitive functions such as attention, perception, and memory. Numerous studies have consistently shown that incorporating pre-, pro-, and symbiotics into a healthy diet can lead to improvements in cognitive functions and mood. Maintaining a healthy gut microbiota can support optimal cognitive function, which is crucial for disease prevention in our fast-paced, Westernized society. Our results indicate cognitive benefits in healthy older individuals with probiotic supplementation but not in healthy older individuals who have good and adequate levels of physical activity. Additionally, it appears that there are cognitive benefits in patients with mild cognitive impairment and Alzheimer's disease, while mixed results seem to arise in younger and healthier individuals. However, it is important to acknowledge that individual responses may vary, and the use of these dietary supplements should be tailored to each individual's unique health circumstances and needs.
Collapse
Affiliation(s)
- Mónika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Andrea Lehoczki
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
- National Institute for Haematology and Infectious Diseases, Department of Haematology and Stem Cell Transplantation, South Pest Central Hospital, 1097 Budapest, Hungary
| | - Dávid Major
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Tamás Csípő
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Stefano Tarantini
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK 73104, USA
| | - Zoltán Csizmadia
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - János Tamás Varga
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
4
|
Nagarajan A, Lasher AT, Morrow CD, Sun LY. Long term methionine restriction: Influence on gut microbiome and metabolic characteristics. Aging Cell 2024; 23:e14051. [PMID: 38279509 PMCID: PMC10928566 DOI: 10.1111/acel.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 01/28/2024] Open
Abstract
The Methionine restriction (MR) diet has been shown to delay aging and extend lifespan in various model organisms. However, the long-term effects of MR diet on the gut microbiome composition remain unclear. To study this, male mice were started on MR and control diet regimens at 6 months and continued until 22 months of age. MR mice have reduced body weight, fat mass percentage, and bone mineral density while having increased lean mass percentage. MR mice also have increased insulin sensitivity along with increasing indirect calorimetry markers such as energy expenditure, oxygen consumption, carbon dioxide production, and glucose oxidation. Fecal samples were collected at 1 week, 18 weeks, and 57 weeks after the diet onset for 16S rRNA amplicon sequencing to study the gut microbiome composition. Alpha and beta diversity metrics detected changes occurring due to the timepoint variable, but no changes were detected due to the diet variable. The results from LEfSe analysis surprisingly showed that more bacterial taxa changes were linked to age rather than diet. Interestingly, we found that the long-term MR diet feeding induced smaller changes compared to short-term feeding. Specific taxa changes due to the diet were observed at the 1 or 18-week time points, including Ileibacterium, Odoribacter, Lachnoclostridium, Marinifilaceae, and Lactobacillaceae. Furthermore, there were consistent aging-associated changes across both groups, with an increase in Ileibacterium and Erysipelotrichaceae with age, while Eubacterium_coprostanoligenes_group, Ruminococcaceae, Peptococcaceae, and Peptococcus decreased with age.
Collapse
Affiliation(s)
- Akash Nagarajan
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | | | - Casey D. Morrow
- Department of Cell, Developmental and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Liou Y. Sun
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
5
|
Kim G, Park C, Yoon YK, Park D, Lee JE, Lee D, Sun P, Park S, Yun C, Kang DH, Chung C. Prediction of lung cancer using novel biomarkers based on microbiome profiling of bronchoalveolar lavage fluid. Sci Rep 2024; 14:1691. [PMID: 38242941 PMCID: PMC10799071 DOI: 10.1038/s41598-024-52296-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024] Open
Abstract
There is an unmet need for biomarkers for the diagnosis of lung cancer and decision criteria for lung biopsy. We comparatively investigated the lung microbiomes of patients with lung cancer and benign lung diseases. Patients who underwent bronchoscopy at Chungnam National University Hospital between June 2021 and June 2022 were enrolled. Bronchoalveolar lavage fluid (BALF) was collected from 24 patients each with lung cancer and benign lung diseases. The samples were analyzed using 16S rRNA-based metagenomic sequencing. We found that alpha diversity and the beta diversity distribution (P = 0.001) differed significantly between patients with benign lung diseases and those with lung cancer. Firmicutes was the most abundant phylum in patients with lung cancer (33.39% ± 17.439), whereas Bacteroidota was the most abundant phylum in patients with benign lung disease (31.132% ± 22.505), respectively. In differential abundance analysis, the most differentially abundant microbiota taxon was unclassified_SAR202_clade, belonging to the phylum Chloroflexi. The established prediction model distinguished patients with benign lung disease from those with lung cancer with a high accuracy (micro area under the curve [AUC] = 0.98 and macro AUC = 0.99). The BALF microbiome may be a novel biomarker for the detection of lung cancer.
Collapse
Affiliation(s)
- Gihyeon Kim
- Genome and Company, Pangyo-ro 255, Bundang-gu, Seongnam, Korea
| | - Changho Park
- Genome and Company, Pangyo-ro 255, Bundang-gu, Seongnam, Korea
| | | | - Dongil Park
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jeong Eun Lee
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Dahye Lee
- Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Pureum Sun
- Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Shinyoung Park
- Genome and Company, Pangyo-ro 255, Bundang-gu, Seongnam, Korea
| | - Changhee Yun
- Genome and Company, Pangyo-ro 255, Bundang-gu, Seongnam, Korea
| | - Da Hyun Kang
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Korea.
| | - Chaeuk Chung
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Korea.
| |
Collapse
|
6
|
Qian X, Hai W, Chen S, Zhang M, Jiang X, Tang H. Multi-omics data reveals aberrant gut microbiota-host glycerophospholipid metabolism in association with neuroinflammation in APP/PS1 mice. Gut Microbes 2023; 15:2282790. [PMID: 37992400 PMCID: PMC10730179 DOI: 10.1080/19490976.2023.2282790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
Numerous studies have described the notable impact of gut microbiota on the brain in Alzheimer's disease (AD) via the gut - brain axis. However, the molecular mechanisms underlying the involvement of gut microbiota in the development of AD are limited. This study aimed to explore the potential mechanisms of gut microbiota in AD by integrating multi-omics data. In this study, APP/PS1 and WT mice at nine months of age were used as study mouse model. Cognitive function was assessed using the Morris water maze test. The levels of Aβ plaque and neuroinflammation in the brain were detected using immunofluorescence and PET/CT. In addition, we not only used 16S rRNA gene sequencing and metabolomics to explore the variation characteristics of gut microbiota and serum metabolism abundance, but also combined spatial metabolomics and transcriptomics to explore the change in the brain and identify their potential correlation. APP/PS1 mice showed significant cognitive impairment and amyloid-β deposits in the brain. The abundance of gut microbiota was significantly changed in APP/PS1 mice, including decreased Desulfoviobrio, Enterococcus, Turicibacter, and Ruminococcus and increased Pseudomonas. The integration of serum untargeted metabolomics and brain spatial metabolomics showed that glycerophospholipid metabolism was a common alteration pathway in APP/PS1 mice. Significant proliferation and activation of astrocyte and microglia were observed in APP/PS1 mice, accompanied by alterations in immune pathways. Integration analysis and fecal microbiota transplantation (FMT) intervention revealed potential association of gut microbiota, host glycerophospholipid metabolism, and neuroinflammation levels in APP/PS1 mice.
Collapse
Affiliation(s)
- Xiaohang Qian
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wangxi Hai
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyue Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miao Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xufeng Jiang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huidong Tang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Yuan C, He Y, Xie K, Feng L, Gao S, Cai L. Review of microbiota gut brain axis and innate immunity in inflammatory and infective diseases. Front Cell Infect Microbiol 2023; 13:1282431. [PMID: 37868345 PMCID: PMC10585369 DOI: 10.3389/fcimb.2023.1282431] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
The microbiota gut brain (MGB) axis has been shown to play a significant role in the regulation of inflammatory and infective diseases. Exploring the structure and communication mode of MGB axis is crucial for understanding its role in diseases, and studying the signaling pathways and regulatory methods of MGB axis regulation in diseases is also of profound significance for future clinical research. This article reviews the composition, communication mechanism of MGB axis and its role in inflammatory and infective diseases, including Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), autism spectrum disorder (ASD), depression, psoriasis, irritable bowel syndrome (IBS), and inflammatory bowel diseases (IBD). In addition, our investigation delved into the regulatory functions of the inflammasome, IFN-I, NF-κB, and PARK7/DJ-1 innate immune signaling pathway in the context of inflammatory and infective diseases. Ultimately, we discussed the efficacy of various interventions, including fecal microbiota transplantation (FMT), antibiotics, probiotics, prebiotics, synbiotics, and postbiotics, in the management of inflammatory and infective diseases. Understanding the role and mechanism of the MGB axis might make positive effects in the treatment of inflammatory and infective diseases.
Collapse
Affiliation(s)
- Chongshan Yuan
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yuhong He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Kunyu Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shouyang Gao
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lifu Cai
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Shi Y, Zhao E, Li L, Zhao S, Mao H, Deng J, Ji W, Li Y, Gao Q, Zeng S, Ma L, Xi G, You Y, Shao J, Fang X, Wang F. Alteration and clinical potential in gut microbiota in patients with cerebral small vessel disease. Front Cell Infect Microbiol 2023; 13:1231541. [PMID: 37496806 PMCID: PMC10366612 DOI: 10.3389/fcimb.2023.1231541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
Background Cerebral small vessel disease (CSVD) is a cluster of microvascular disorders with unclear pathological mechanisms. The microbiota-gut-brain axis is an essential regulatory mechanism between gut microbes and their host. Therefore, the compositional and functional gut microbiota alterations lead to cerebrovascular disease pathogenesis. The current study aims to determine the alteration and clinical value of the gut microbiota in CSVD patients. Methods Sixty-four CSVD patients and 18 matched healthy controls (HCs) were included in our study. All the participants underwent neuropsychological tests, and the multi-modal magnetic resonance imaging depicted the changes in brain structure and function. Plasma samples were collected, and the fecal samples were analyzed with 16S rRNA gene sequencing. Results Based on the alpha diversity analysis, the CSVD group had significantly decreased Shannon and enhanced Simpson compared to the HC group. At the genus level, there was a significant increase in the relative abundances of Parasutterella, Anaeroglobus, Megasphaera, Akkermansia, Collinsella, and Veillonella in the CSVD group. Moreover, these genera with significant differences in CSVD patients revealed significant correlations with cognitive assessments, plasma levels of the blood-brain barrier-/inflammation-related indexes, and structural/functional magnetic resonance imaging changes. Functional prediction demonstrated that lipoic acid metabolism was significantly higher in CSVD patients than HCs. Additionally, a composite biomarker depending on six gut microbiota at the genus level displayed an area under the curve of 0.834 to distinguish CSVD patients from HCs using the least absolute shrinkage and selection operator (LASSO) algorithm. Conclusion The evident changes in gut microbiota composition in CSVD patients were correlated with clinical features and pathological changes of CSVD. Combining these gut microbiota using the LASSO algorithm helped identify CSVD accurately.
Collapse
Affiliation(s)
- Yachen Shi
- Department of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - En Zhao
- Department of Gastroenterology, Xishan People’s Hospital of Wuxi City, Wuxi, China
| | - Lei Li
- Department of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Songyun Zhao
- Department of Neurosurgery, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Haixia Mao
- Department of Radiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Jingyu Deng
- Department of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Wei Ji
- Department of Neurosurgery, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Functional Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Yang Li
- Department of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Qianqian Gao
- Department of Radiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Siyuan Zeng
- Department of Radiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Lin Ma
- Department of Radiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Guangjun Xi
- Department of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Yiping You
- Department of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Functional Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Junfei Shao
- Department of Neurosurgery, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xiangming Fang
- Department of Radiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Feng Wang
- Department of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
9
|
The Role of the Oral Microbiome in the Development of Diseases. Int J Mol Sci 2023; 24:ijms24065231. [PMID: 36982305 PMCID: PMC10048844 DOI: 10.3390/ijms24065231] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Periodontal disease (PD) is a complex and infectious illness that begins with a disruption of bacterial homeostasis. This disease induces a host inflammatory response, leading to damage of the soft and connective tooth-supporting tissues. Moreover, in advanced cases, it can contribute to tooth loss. The aetiological factors of PDs have been widely researched, but the pathogenesis of PD has still not been totally clarified. There are a number of factors that have an effect on the aetiology and pathogenesis of PD. It is purported that microbiological, genetic susceptibility and lifestyle can determine the development and severity of the disease. The human body’s defence response to the accumulation of plaque and its enzymes is known to be a major factor for PD. The oral cavity is colonised by a characteristic and complex microbiota that grows as diverse biofilms on all mucosal and dental surfaces. The aim of this review was to provide the latest updates in the literature regarding still-existing problems with PD and to highlight the role of the oral microbiome in periodontal health and disease. Better awareness and knowledge of the causes of dysbiosis, environmental risk factors and periodontal therapy can reduce the growing worldwide prevalence of PDs. The promotion of good oral hygiene, limiting smoking, alcohol consumption and exposure to stress and comprehensive treatment to decrease the pathogenicity of oral biofilm can help reduce PD as well as other diseases. Evidence linking disorders of the oral microbiome to various systemic diseases has increased the understanding of the importance of the oral microbiome in regulating many processes in the human body and, thus, its impact on the development of many diseases.
Collapse
|
10
|
MicroRNAs and MAPKs: Evidence of These Molecular Interactions in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054736. [PMID: 36902178 PMCID: PMC10003111 DOI: 10.3390/ijms24054736] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder known to be the leading cause of dementia worldwide. Many microRNAs (miRNAs) were found deregulated in the brain or blood of AD patients, suggesting a possible key role in different stages of neurodegeneration. In particular, mitogen-activated protein kinases (MAPK) signaling can be impaired by miRNA dysregulation during AD. Indeed, the aberrant MAPK pathway may facilitate the development of amyloid-beta (Aβ) and Tau pathology, oxidative stress, neuroinflammation, and brain cell death. The aim of this review was to describe the molecular interactions between miRNAs and MAPKs during AD pathogenesis by selecting evidence from experimental AD models. Publications ranging from 2010 to 2023 were considered, based on PubMed and Web of Science databases. According to obtained data, several miRNA deregulations may regulate MAPK signaling in different stages of AD and conversely. Moreover, overexpressing or silencing miRNAs involved in MAPK regulation was seen to improve cognitive deficits in AD animal models. In particular, miR-132 is of particular interest due to its neuroprotective functions by inhibiting Aβ and Tau depositions, as well as oxidative stress, through ERK/MAPK1 signaling modulation. However, further investigations are required to confirm and implement these promising results.
Collapse
|