1
|
Li Y, Kong M, Qiu T, Ji Y. Targeting ESM1 via SOX4 promotes the progression of infantile hemangioma through the PI3K/AKT signaling pathway. PRECISION CLINICAL MEDICINE 2024; 7:pbae026. [PMID: 39507292 PMCID: PMC11540160 DOI: 10.1093/pcmedi/pbae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Background Infantile hemangioma (IH) is the most prevalent benign vascular tumor in children, yet its pathogenesis remains incompletely understood. Research has established a strong association between SOX4 and tumor blood vessel formation. The objective of this study was to investigate the function and underlying mechanism of SOX4 in IH development with the aim of identifying novel therapeutic targets. Methods We identified the transcription factor SOX4 associated with IH through RNA-seq screening of IH microtumors and validated it in IH tissues. The effect of SOX4 on the biological behavior of CD31+ hemangioma-derived endothelial cells (HemECs) was investigated via in vitro cell experiments. In addition, RNA-seq analysis was performed on CD31+ HemECs with low expression levels of SOX4, and the target genes of SOX4 were identified. Finally, the effect of SOX4 on tumor angiogenesis was further elucidated through 3D microtumor and animal experiments. Results SOX4 is highly expressed in IH tissues and promotes the proliferation, migration, and angiogenesis of CD31+ HemECs. In addition, SOX4 binds to the endothelial cell-specific molecule 1 (ESM1) promoter to promote the progression of the PI3K/AKT signaling pathway. Finally, through IH 3D microtumor and animal experiments, SOX4 and ESM1 are shown to be tumorigenic genes that independently promote tumor progression. Conclusions SOX4 plays a crucial role in the progression of IH, and the SOX4/ESM1 axis may serve as a novel biomarker and potential therapeutic target for IH.
Collapse
Affiliation(s)
- Yanan Li
- Division of Oncology, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Kong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Pediatric Surgery, Children's Hospital Affiliated to Shandong University, Jinan 25002, China
| | - Tong Qiu
- Division of Oncology, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Zhou W, Li X, Yang X, Ye B. The In Vitro Promoting Angiogenesis Roles of Exosomes Derived from the Protoscoleces of Echinococcus multilocularis. J Microbiol Biotechnol 2024; 34:1410-1418. [PMID: 38858095 PMCID: PMC11294651 DOI: 10.4014/jmb.2403.03042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
Alveolar echinococcosis (AE) is a persistent parasite condition that causes the formation of tumor-like growths. It is a challenge to treat the disease. These growths need neovascularization to get their oxygen and nutrients, and the disease is prolonged and severe. Considerable research has been conducted on exosomes and their interactions with Echinococcus multilocularis in the context of immunological evasion by the host. However, the extent of their involvement in angiogenesis needs to be conducted. The primary objective of this investigation was to preliminarily explore the effect of exosomes produced from E. multilocularis protoscoleces (PSC-exo) on angiogenesis, to elucidate the mechanism of their roles in the regulation of the downstream pathway of VEGFA activation, and to provide ideas for the development of novel treatments for AE. The study evaluated the impact of PSC-exo increases proliferation, migration, invasion, and tube formation of HUVECs at concentrations of up to 50 μg/ml. In addition, the study sought to validate the findings in vivo. This effect involved increased VEGFA expression at gene and protein levels and AKT/mTOR pathway activation. PSC-exo are crucial in promoting angiogenesis through VEGFA upregulation and AKT/mTOR signaling. This research contributes to our knowledge of neovascularization in AE.
Collapse
Affiliation(s)
- Wenjing Zhou
- Department of Pathogen Biology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiang Li
- Department of Pathogen Biology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xinqi Yang
- Department of Pathogen Biology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bin Ye
- Department of Pathogen Biology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
3
|
Kang K, Wang Y, Zhang B, Xie Z, Qing S, Di Y. ESM1 May Be Used as a New Indicator for the Diagnosis and Prognosis of Early and Advanced Stage Digestive Tract Cancers. Int J Gen Med 2024; 17:2809-2820. [PMID: 38912330 PMCID: PMC11193464 DOI: 10.2147/ijgm.s456973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/09/2024] [Indexed: 06/25/2024] Open
Abstract
Background The biological function and prognostic significance of endothelial cell specific molecule 1 (ESM1) in various cancers have been validated. This study aimed to explore the expression and clinical diagnosis values in patients with stomach adenocarcinoma (STAD) and esophageal carcinoma (ESCA). Methods Online database Gene Expression Omnibus was used to screen for abnormally expressed genes in STAD and ESCA. Besides, 36 STAD and 36 ESCA patients were enrolled, and their corresponding control groups were also 36 people each. Reverse transcription-quantitative polymerase chain reaction and Western blot were performed to analyze the expression of ESM1. Overall survival (OS) curve and receiver operating characteristics curve (ROC) analysis were used to assess the prognosis, and the sensitivity and specificity of ESM1 for the diagnosis of STAD and ESCA, respectively. Additionally, the effects of ESM1 on cell viability, migration, and invasion were analyzed by cell counting kit-8, transwell migration and invasion assays. Results The results showed that the poor OS of STAD and ESCA patients was correlated with high ESM1. Besides, ESM1 was increased in ESCA and STAD in in vivo and in vitro studies. ESM1 has a high accuracy [area under the curve (AUC) > 0.79] at stage I and IV of STAD and ESCA. Knockdown of ESM1 suppressed the cell viability, migration, and invasion and increased the apoptosis rate of AGS and TE1 cells. Conclusion Our study suggested that ESM1 might be used as a new indicator for the diagnosis and prognosis of early and advanced stage digestive tract cancers.
Collapse
Affiliation(s)
- Kui Kang
- Department of Gastroenterology, Beijing Aerospace General Hospital, Beijing, People’s Republic of China
| | - Ying Wang
- Department of Endocrinology, Air Force Specialty Medical Center, Beijing, People’s Republic of China
| | - Bo Zhang
- Department of Gastroenterology, Beijing Aerospace General Hospital, Beijing, People’s Republic of China
| | - Zhengxing Xie
- Department of Gastroenterology, Beijing Aerospace General Hospital, Beijing, People’s Republic of China
| | - Sheng Qing
- Department of Gastroenterology, Beijing Aerospace General Hospital, Beijing, People’s Republic of China
| | - Yanan Di
- Department of Gastroenterology, Beijing Aerospace General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Zhou J, Zhou P, Wang J, Song J. Roles of endothelial cell specific molecule‑1 in tumor angiogenesis (Review). Oncol Lett 2024; 27:137. [PMID: 38357478 PMCID: PMC10865172 DOI: 10.3892/ol.2024.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Angiogenesis plays a crucial role in tumor growth and metastasis, and is heavily influenced by the tumor microenvironment (TME). Endothelial cell dysfunction is a key factor in tumor angiogenesis and is characterized by the aberrant expression of pro-angiogenic factors. Endothelial cell specific molecule-1 (ESM1), also known as endocan, is a marker of endothelial cell dysfunction. Although ESM1 is primarily expressed in normal endothelial cells, dysregulated ESM1 expression has been observed in human tumors and animal tumor models, and implicated in tumor growth, metastasis and angiogenesis. The precise role of ESM1 in tumor angiogenesis and its potential regulatory mechanisms are not yet conclusively defined. However, the aim of the present review was to explore the involvement of ESM1 in the process of tumor angiogenesis in the TME and the characteristics of neovascularization. In addition, the present review discusses the interaction between ESM1 and angiogenic factors, as well as the mechanisms through which ESM1 contributes to tumor angiogenesis. Furthermore, the reciprocal regulation between ESM1 and the TME is explored. Finally, the potential of targeting ESM1 as a therapeutic strategy for tumor angiogenesis is presented.
Collapse
Affiliation(s)
- Jie Zhou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Ping Zhou
- College of Chinese Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Jinfang Wang
- College of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Jie Song
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| |
Collapse
|
5
|
Wen CY, Hsiao JH, Tzeng YDT, Chang R, Tsang YL, Kuo CH, Li CJ. Single-cell landscape and spatial transcriptomic analysis reveals macrophage infiltration and glycolytic metabolism in kidney renal clear cell carcinoma. Aging (Albany NY) 2023; 15:11298-11312. [PMID: 37847178 PMCID: PMC10637799 DOI: 10.18632/aging.205128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
The present study investigates the clinical relevance of glycolytic factors, specifically PGAM1, in the tumor microenvironment of kidney renal clear cell carcinoma (KIRC). Despite the established role of glycolytic metabolism in cancer pathophysiology, the prognostic implications and key targets in KIRC remain elusive. We analyzed GEO and TCGA datasets to identify DEGs in KIRC and studied their relationship with immune gene expression, survival, tumor stage, gene mutations, and infiltrating immune cells. We explored Pgam1 gene expression in different kidney regions using spatial transcriptomics after mouse kidney injury analysis. Single-cell RNA-sequencing was used to assess the association of PGAM1 with immune cells. Findings were validated with tumor specimens from 60 KIRC patients, correlating PGAM1 expression with clinicopathological features and prognosis using bioinformatics and immunohistochemistry. We demonstrated the expression of central gene regulators in renal cancer in relation to genetic variants, deletions, and tumor microenvironment. Mutations in these hub genes were positively associated with distinct immune cells in six different immune datasets and played a crucial role in immune cell infiltration in KIRC. Single-cell RNA-sequencing revealed that elevated PGAM1 was associated with immune cell infiltration, specifically macrophages. Furthermore, pharmacogenomic analysis of renal cancer cell lines indicated that inactivation of PGAM1 was associated with increased sensitivity to specific small-molecule drugs. Altered PGAM1 in KIRC is associated with disease progression and immune microenvironment. It has diagnostic and prognostic implications, indicating its potential in precision medicine and drug screening.
Collapse
Affiliation(s)
- Chen-Yueh Wen
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Jui-Hu Hsiao
- Department of Surgery, Kaohsiung Municipal Minsheng Hospital, Kaohsiung 802, Taiwan
| | - Yen-Dun Tony Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Renin Chang
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 802, Taiwan
| | - Yi-Ling Tsang
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion Interfaculty Centre (CiMIC), University of Münster, Münster 48149, Germany
| | - Chen-Hsin Kuo
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|