1
|
Saamarthy K, Ahlqvist K, Daams R, Balagunaseelan N, Rinaldo-Matthis A, Kazi JU, Sime W, Massoumi R. Discovery of a small molecule that inhibits Bcl-3-mediated cyclin D1 expression in melanoma cells. BMC Cancer 2024; 24:103. [PMID: 38238702 PMCID: PMC10795364 DOI: 10.1186/s12885-023-11663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/21/2023] [Indexed: 01/22/2024] Open
Abstract
Molecular targeted therapy using a drug that suppresses the growth and spread of cancer cells via inhibition of a specific protein is a foundation of precision medicine and treatment. High expression of the proto-oncogene Bcl-3 promotes the proliferation and metastasis of cancer cells originating from tissues such as the colon, prostate, breast, and skin. The development of novel drugs targeting Bcl-3 alone or in combination with other therapies can cure these patients or prolong their survival. As a proof of concept, in the present study, we focused on metastatic melanoma as a model system. High-throughput screening and in vitro experiments identified BCL3ANT as a lead molecule that could interfere with Bcl-3-mediated cyclin D1 expression and cell proliferation and migration in melanoma. In experimental animal models of melanoma, it was demonstrated that the use of a Bcl-3 inhibitor can influence the survival of melanoma cells. Since there are no other inhibitors against Bcl-3 in the clinical pipeline for cancer treatment, this presents a unique opportunity to develop a highly specific drug against malignant melanoma to meet an urgent clinical need.
Collapse
Affiliation(s)
- Karunakar Saamarthy
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumor Pathology, Lund University, Medicon Village, 22383, Lund, Sweden
| | - Kristofer Ahlqvist
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumor Pathology, Lund University, Medicon Village, 22383, Lund, Sweden
| | - Renée Daams
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumor Pathology, Lund University, Medicon Village, 22383, Lund, Sweden
| | - Navisraj Balagunaseelan
- Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Agnes Rinaldo-Matthis
- Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Julhash U Kazi
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumor Pathology, Lund University, Medicon Village, 22383, Lund, Sweden
| | - Wondossen Sime
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumor Pathology, Lund University, Medicon Village, 22383, Lund, Sweden
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumor Pathology, Lund University, Medicon Village, 22383, Lund, Sweden.
| |
Collapse
|
2
|
Al-Rashidi RR, Noraldeen SAM, Kareem AK, Mahmoud AK, Kadhum WR, Ramírez-Coronel AA, Iswanto AH, Obaid RF, Jalil AT, Mustafa YF, Nabavi N, Wang Y, Wang L. Malignant function of nuclear factor-kappaB axis in prostate cancer: Molecular interactions and regulation by non-coding RNAs. Pharmacol Res 2023; 194:106775. [PMID: 37075872 DOI: 10.1016/j.phrs.2023.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Prostate carcinoma is a malignant situation that arises from genomic alterations in the prostate, leading to changes in tumorigenesis. The NF-κB pathway modulates various biological mechanisms, including inflammation and immune responses. Dysregulation of NF-κB promotes carcinogenesis, including increased proliferation, invasion, and therapy resistance. As an incurable disease globally, prostate cancer is a significant health concern, and research into genetic mutations and NF-κB function has the efficacy to facilitate the introduction of novel therapies. NF-κB upregulation is observed during prostate cancer progression, resulting in increased cell cycle progression and proliferation rates. Additionally, NF-κB endorses resistance to cell death and enhances the capacity for metastasis, particularly bone metastasis. Overexpression of NF-κB triggers chemoresistance and radio-resistance, and inhibition of NF-κB by anti-tumor compounds can reduce cancer progression. Interestingly, non-coding RNA transcripts can regulate NF-κB level and its nuclear transfer, offering a potential avenue for modulating prostate cancer progression.
Collapse
Affiliation(s)
| | | | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, 51001, Hillah, Iraq
| | | | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut 52001, Wasit, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; University of Palermo, Buenos Aires, Argentina; Epidemiology and Biostatistics Research Group, CES University, Colombia
| | - Acim Heri Iswanto
- Department of Public Health, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Research Institute, V5Z1L3 Vancouver, BC, Canada.
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an 710032, China.
| |
Collapse
|
3
|
Dulińska-Litewka J, Felkle D, Dykas K, Handziuk Z, Krzysztofik M, Gąsiorkiewicz B. The role of cyclins in the development and progression of prostate cancer. Biomed Pharmacother 2022; 155:113742. [PMID: 36179490 DOI: 10.1016/j.biopha.2022.113742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/10/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022] Open
Abstract
The role of cyclins in hormone-dependent neoplasms is crucial in the development of the disease that is resistant to first-line therapy, as the example of breast cancer shows. However, in prostate cancer, cyclins are studied to a lesser extent. There are some well-described molecular pathways, including cyclins A1 and D1 signaling, however the role of other cyclins, e.g., D2, D3, E, and H, still requires further investigation. Recent studies indicate that cyclins regulate various cellular processes, not only the cell cycle. Furthermore, they remain in cross-talk with many other signaling pathways, e.g., MAPK/ERK, PI3K/Akt, and Notch. The androgen signaling axis, which is pivotal in prostate cancer progression, interferes with cyclin pathways at many levels. This article summarizes current knowledge on the influence of cyclins on prostate cancer progression by describing interactions between the androgen receptor and cyclins, as well as mechanisms underlying the development of resistance to currently used therapies.
Collapse
Affiliation(s)
- Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Mikołaja Kopernika Street 7C, Poland.
| | - Dominik Felkle
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Mikołaja Kopernika Street 7C, Poland
| | - Kacper Dykas
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Mikołaja Kopernika Street 7C, Poland
| | - Zuzanna Handziuk
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Mikołaja Kopernika Street 7C, Poland
| | - Marta Krzysztofik
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Mikołaja Kopernika Street 7C, Poland
| | - Bartosz Gąsiorkiewicz
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Mikołaja Kopernika Street 7C, Poland
| |
Collapse
|
4
|
Huang W, Randhawa R, Jain P, Hubbard S, Eickhoff J, Kummar S, Wilding G, Basu H, Roy R. A Novel Artificial Intelligence-Powered Method for Prediction of Early Recurrence of Prostate Cancer After Prostatectomy and Cancer Drivers. JCO Clin Cancer Inform 2022; 6:e2100131. [PMID: 35192404 DOI: 10.1200/cci.21.00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To develop a novel artificial intelligence (AI)-powered method for the prediction of prostate cancer (PCa) early recurrence and identification of driver regions in PCa of all Gleason Grade Group (GGG). MATERIALS AND METHODS Deep convolutional neural networks were used to develop the AI model. The AI model was trained on The Cancer Genome Atlas Prostatic Adenocarcinoma (TCGA-PRAD) whole slide images (WSI) and data set (n = 243) to predict 3-year biochemical recurrence after radical prostatectomy (RP) and was subsequently validated on WSI from patients with PCa (n = 173) from the University of Wisconsin-Madison. RESULTS Our AI-powered platform can extract visual and subvisual morphologic features from WSI to identify driver regions predictive of early recurrence of PCa (regions of interest [ROIs]) after RP. The ROIs were ranked with AI-morphometric scores, which were prognostic for 3-year biochemical recurrence (area under the curve [AUC], 0.78), which is significantly better than the GGG overall (AUC, 0.62). The AI-morphometric scores also showed high accuracy in the prediction of recurrence for low- or intermediate-risk PCa-AUC, 0.76, 0.84, and 0.81 for GGG1, GGG2, and GGG3, respectively. These patients could benefit the most from timely adjuvant therapy after RP. The predictive value of the high-scored ROIs was validated by known PCa biomarkers studied. With this focused biomarker analysis, a potentially new STING pathway-related PCa biomarker-TMEM173-was identified. CONCLUSION Our study introduces a novel approach for identifying patients with PCa at risk for early recurrence regardless of their GGG status and for identifying cancer drivers for focused evolution-aware novel biomarker discovery.
Collapse
Affiliation(s)
- Wei Huang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI.,PathomIQ, Inc, Cupertino, CA
| | - Ramandeep Randhawa
- PathomIQ, Inc, Cupertino, CA.,University of Southern California Marshall School of Business, Los Angeles, CA
| | | | - Samuel Hubbard
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI
| | - Jens Eickhoff
- Department of Biostatistics and Informatics, University of Wisconsin-Madison, Madison, WI
| | - Shivaani Kummar
- PathomIQ, Inc, Cupertino, CA.,Division of Hematology & Medical Oncology, Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | | | - Hirak Basu
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
5
|
NF-κB signaling promotes castration-resistant prostate cancer initiation and progression. Pharmacol Ther 2020; 211:107538. [PMID: 32201312 DOI: 10.1016/j.pharmthera.2020.107538] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
Prostate Cancer (PCa) is the second leading cause of cancer-related death in men. Adenocarcinoma of the prostate is primarily composed of Androgen Receptor-positive (AR+) luminal cells that require AR transcriptional activity for survival and proliferation. As a consequence, androgen deprivation and anti-androgens are used to treat PCa patients whose disease progresses following attempted surgical or radiation interventions. Unfortunately, patients with advanced PCa can develop incurable castration-resistant PCa (CRPCa) due to mutated, variant, or overexpressed AR. Conversely, low or no AR accumulation or activity can also underlie castration resistance. Whether CRPCa is due to aberrant AR activity or AR independence, NF-κB signaling is also implicated in the initiation and maintenance of CRPCa and, thus, the NF-κB pathway may be a promising alternative therapeutic target. In this review, we present evidence that NF-κB signaling promotes CRPCa initiation and progression, describe the dichotomic role of NF-κB in the regulation of AR expression and activity and outline studies that explore NF-κB inhibitors as PCa therapies.
Collapse
|
6
|
Wang X, Fang Y, Sun W, Xu Z, Zhang Y, Wei X, Ding X, Xu Y. Endocrinotherapy resistance of prostate and breast cancer: Importance of the NF‑κB pathway (Review). Int J Oncol 2020; 56:1064-1074. [PMID: 32319568 DOI: 10.3892/ijo.2020.4990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/24/2020] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) and breast cancer (BCa) are two common sex hormone‑related cancer types with high rates of morbidity, and are leading causes of cancer death globally in men and women, respectively. The biological function of androgen or estrogen is a key factor for PCa or BCa tumorigenesis, respectively. Nevertheless, after hormone deprivation therapy, the majority of patients ultimately develop hormone‑independent malignancies that are resistant to endocrinotherapy. It is widely recognized, therefore, that understanding of the mechanisms underlying the process from hormone dependence towards hormone independence is critical to discover molecular targets for the control of advanced PCa and BCa. This review aimed to dissect the important mechanisms involved in the therapeutic resistance of PCa and BCa. It was concluded that activation of the NF‑κB pathway is an important common mechanism for metastasis and therapeutic resistance of the two types of cancer; in particular, the RelB‑activated noncanonical NF‑κB pathway appears to be able to lengthen and strengthen NF‑κB activity, which has been a focus of recent investigations.
Collapse
Affiliation(s)
- Xiumei Wang
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Yao Fang
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Wenbo Sun
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Zhi Xu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Yanyan Zhang
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaowei Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Yong Xu
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
7
|
Deb B, George IA, Sharma J, Kumar P. Phosphoproteomics Profiling to Identify Altered Signaling Pathways and Kinase-Targeted Cancer Therapies. Methods Mol Biol 2020; 2051:241-264. [PMID: 31552632 DOI: 10.1007/978-1-4939-9744-2_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Phosphorylation is one of the most extensively studied posttranslational modifications (PTM), which regulates cellular functions like cell growth, differentiation, apoptosis, and cell signaling. Kinase families cover a wide number of oncoproteins and are strongly associated with cancer. Identification of driver kinases is an intense area of cancer research. Thus, kinases serve as the potential target to improve the efficacy of targeted therapies. Mass spectrometry-based phosphoproteomic approach has paved the way to the identification of a large number of altered phosphorylation events in proteins and signaling cascades that may lead to oncogenic processes in a cell. Alterations in signaling pathways result in the activation of oncogenic processes predominantly regulated by kinases and phosphatases. Therefore, drugs such as kinase inhibitors, which target dysregulated pathways, represent a promising area for cancer therapy.
Collapse
Affiliation(s)
- Barnali Deb
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Irene A George
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Jyoti Sharma
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India. .,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India.
| |
Collapse
|
8
|
Staal J, Beyaert R. Inflammation and NF-κB Signaling in Prostate Cancer: Mechanisms and Clinical Implications. Cells 2018; 7:E122. [PMID: 30158439 PMCID: PMC6162478 DOI: 10.3390/cells7090122] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is a highly prevalent form of cancer that is usually slow-developing and benign. Due to its high prevalence, it is, however, still the second most common cause of death by cancer in men in the West. The higher prevalence of prostate cancer in the West might be due to elevated inflammation from metabolic syndrome or associated comorbidities. NF-κB activation and many other signals associated with inflammation are known to contribute to prostate cancer malignancy. Inflammatory signals have also been associated with the development of castration resistance and resistance against other androgen depletion strategies, which is a major therapeutic challenge. Here, we review the role of inflammation and its link with androgen signaling in prostate cancer. We further describe the role of NF-κB in prostate cancer cell survival and proliferation, major NF-κB signaling pathways in prostate cancer, and the crosstalk between NF-κB and androgen receptor signaling. Several NF-κB-induced risk factors in prostate cancer and their potential for therapeutic targeting in the clinic are described. A better understanding of the inflammatory mechanisms that control the development of prostate cancer and resistance to androgen-deprivation therapy will eventually lead to novel treatment options for patients.
Collapse
Affiliation(s)
- Jens Staal
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
9
|
Kaskova ZM, Tsarkova AS, Yampolsky IV. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem Soc Rev 2018; 45:6048-6077. [PMID: 27711774 DOI: 10.1039/c6cs00296j] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioluminescence (BL) is a spectacular phenomenon involving light emission by live organisms. It is caused by the oxidation of a small organic molecule, luciferin, with molecular oxygen, which is catalysed by the enzyme luciferase. In nature, there are approximately 30 different BL systems, of which only 9 have been studied to various degrees in terms of their reaction mechanisms. A vast range of in vitro and in vivo analytical techniques have been developed based on BL, including tests for different analytes, immunoassays, gene expression assays, drug screening, bioimaging of live organisms, cancer studies, the investigation of infectious diseases and environmental monitoring. This review aims to cover the major existing applications for bioluminescence in the context of the diversity of luciferases and their substrates, luciferins. Particularly, the properties and applications of d-luciferin, coelenterazine, bacterial, Cypridina and dinoflagellate luciferins and their analogues along with their corresponding luciferases are described. Finally, four other rarely studied bioluminescent systems (those of limpet Latia, earthworms Diplocardia and Fridericia and higher fungi), which are promising for future use, are also discussed.
Collapse
Affiliation(s)
- Zinaida M Kaskova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Aleksandra S Tsarkova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Ilia V Yampolsky
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| |
Collapse
|
10
|
Ardito F, Giuliani M, Perrone D, Troiano G, Lo Muzio L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int J Mol Med 2017; 40:271-280. [PMID: 28656226 PMCID: PMC5500920 DOI: 10.3892/ijmm.2017.3036] [Citation(s) in RCA: 722] [Impact Index Per Article: 103.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022] Open
Abstract
Protein phosphorylation is an important cellular regulatory mechanism as many enzymes and receptors are activated/deactivated by phosphorylation and dephosphorylation events, by means of kinases and phosphatases. In particular, the protein kinases are responsible for cellular transduction signaling and their hyperactivity, malfunction or overexpression can be found in several diseases, mostly tumors. Therefore, it is evident that the use of kinase inhibitors can be valuable for the treatment of cancer. In this review, we discuss the mechanism of action of phosphorylation, with particular attention to the importance of phosphorylation under physiological and pathological conditions. We also discuss the possibility of using kinase inhibitors in the treatment of tumors.
Collapse
Affiliation(s)
- Fatima Ardito
- Department of Clinical and Experimental Medicine, Foggia University, I-71122 Foggia, Italy
| | - Michele Giuliani
- Department of Clinical and Experimental Medicine, Foggia University, I-71122 Foggia, Italy
| | - Donatella Perrone
- Department of Clinical and Experimental Medicine, Foggia University, I-71122 Foggia, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, Foggia University, I-71122 Foggia, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, Foggia University, I-71122 Foggia, Italy
| |
Collapse
|
11
|
Hu J, Wang G, Sun T. Dissecting the roles of the androgen receptor in prostate cancer from molecular perspectives. Tumour Biol 2017; 39:1010428317692259. [PMID: 28475016 DOI: 10.1177/1010428317692259] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Androgen receptor plays a pivotal role in prostate cancer progression, and androgen deprivation therapy to intercept androgen receptor signal pathway is an indispensable treatment for most advanced prostate cancer patients to delay cancer progression. However, the emerging of castration-resistant prostate cancer reminds us the alteration of androgen receptor, which includes androgen receptor mutation, the formation of androgen receptor variants, and androgen receptor distribution in cancer cells. In this review, we introduce the process of androgen receptor and also its variants' formation, translocation, and function alteration by protein modification or interaction with other pathways. We dissect the roles of androgen receptor in prostate cancer from molecular perspective to provide clues for battling prostate cancer, especially castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Jieping Hu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|