1
|
De Falco A, De Gregorio F, Abate ME, Paolella C, Nigro V, Scala I, Brunetti-Pierri N. Expansion of the Phenotype of You-Hoover-Fong Syndrome and Possible Increased Risk of Cancer. Am J Med Genet A 2025; 197:e63966. [PMID: 39704248 DOI: 10.1002/ajmg.a.63966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
You-Hoover-Fong syndrome (YHFS) is a rare autosomal recessive disorder characterized by global developmental delay, microcephaly, dysmorphic facial features, and a spectrum of neurodevelopmental abnormalities. YHFS is caused by pathogenic variants in TELO2, a gene involved in regulation of the cell cycle. To date, 29 individuals with YHFS have been reported and none of them has been reported to develop tumors. We describe two siblings with YHFS both presenting with bilateral acoustic nerve agenesis, microcephaly, and dysmorphic features. Notably, one sibling developed hepatoblastoma at the age of 7.5 years. Clinical exome sequencing revealed in both siblings compound heterozygous variants in the TELO2 gene. Although the development of hepatoblastoma might be coincidental, given the role of TELO2 in cell cycle, we suspect YHFS might be associated with an increased cancer susceptibility. Further cases are needed to confirm whether YHFS is associated with an increased risk of cancer.
Collapse
Affiliation(s)
- Alessandro De Falco
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Fabiola De Gregorio
- Department of Pediatric Oncology, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Massimo Eraldo Abate
- Department of Pediatric Oncology, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Chiara Paolella
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Iris Scala
- Department of Maternal and Child Health, Federico II University Hospital, Naples, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Genomics and Experimental Medicine Program, Scuola Superiore Meridionale (SSM, School of Advanced Studies), Naples, Italy
| |
Collapse
|
2
|
Lieberman-Cribbin W, Domingo-Relloso A, Glabonjat RA, Schilling K, Cole SA, O'Leary M, Best LG, Zhang Y, Fretts AM, Umans JG, Goessler W, Navas-Acien A, Tellez-Plaza M, Kupsco A. An epigenome-wide study of selenium status and DNA methylation in the Strong Heart Study. ENVIRONMENT INTERNATIONAL 2024; 191:108955. [PMID: 39154409 PMCID: PMC11909799 DOI: 10.1016/j.envint.2024.108955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/19/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Selenium (Se) is an essential nutrient linked to adverse health endpoints at low and high levels. The mechanisms behind these relationships remain unclear and there is a need to further understand the epigenetic impacts of Se and their relationship to disease. We investigated the association between urinary Se levels and DNA methylation (DNAm) in the Strong Heart Study (SHS), a prospective study of cardiovascular disease (CVD) among American Indians adults. METHODS Selenium concentrations were measured in urine (collected in 1989-1991) using inductively coupled plasma mass spectrometry among 1,357 participants free of CVD and diabetes. DNAm in whole blood was measured cross-sectionally using the Illumina MethylationEPIC BeadChip (850 K) Array. We used epigenome-wide robust linear regressions and elastic net to identify differentially methylated cytosine-guanine dinucleotide (CpG) sites associated with urinary Se levels. RESULTS The mean (standard deviation) urinary Se concentration was 51.8 (25.1) μg/g creatinine. Across 788,368 CpG sites, five differentially methylated positions (DMP) (hypermethylated: cg00163554, cg18212762, cg11270656, and hypomethylated: cg25194720, cg00886293) were significantly associated with Se in linear regressions after accounting for multiple comparisons (false discovery rate p-value: 0.10). The top hypermethylated DMP (cg00163554) was annotated to the Disco Interacting Protein 2 Homolog C (DIP2C) gene, which relates to transcription factor binding. Elastic net models selected 425 hypo- and hyper-methylated DMPs associated with urinary Se, including three sites (cg00163554 [DIP2C], cg18212762 [MAP4K2], cg11270656 [GPIHBP1]) identified in linear regressions. CONCLUSIONS Urinary Se was associated with minimal changes in DNAm in adults from American Indian communities across the Southwest and the Great Plains in the United States, suggesting that other mechanisms may be driving health impacts. Future analyses should explore other mechanistic biomarkers in human populations, determine these relationships prospectively, and investigate the potential role of differentially methylated sites with disease endpoints.
Collapse
Affiliation(s)
- Wil Lieberman-Cribbin
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Arce Domingo-Relloso
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA; Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Ronald A Glabonjat
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Kathrin Schilling
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Marcia O'Leary
- Missouri Breaks Industries Research, Cheyenne River Sioux Tribe, Eagle Butte, SD 57625, USA
| | - Lyle G Best
- Missouri Breaks Industries Research, Cheyenne River Sioux Tribe, Eagle Butte, SD 57625, USA
| | - Ying Zhang
- Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Amanda M Fretts
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, MD, USA; Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC, USA
| | | | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Maria Tellez-Plaza
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Allison Kupsco
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
3
|
Feng SW, Wu ZS, Chiu YL, Huang SM. Exploring the Functional Roles of Telomere Maintenance 2 in the Tumorigenesis of Glioblastoma Multiforme and Drug Responsiveness to Temozolomide. Int J Mol Sci 2023; 24:ijms24119256. [PMID: 37298208 DOI: 10.3390/ijms24119256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/13/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV human glioma. It is the most malignant primary central nervous system tumor in adults, accounting for around 15% of intracranial neoplasms and 40-50% of all primary malignant brain tumors. However, the median survival time of GBM patients is still less than 15 months, even after treatment with surgical resection, concurrent chemoradiotherapy, and adjuvant chemotherapy with temozolomide (TMZ). Telomere maintenance 2 (TELO2) mRNA is highly expressed in high-grade glioma patients, and its expression correlates with shorter survival outcomes. Hence, it is urgent to address the functional role of TELO2 in the tumorigenesis and TMZ treatment of GBM. In this study, we knocked down TELO2 mRNA in GBM8401 cells, a grade IV GBM, compared with TELO2 mRNA overexpression in human embryonic glial SVG p12 cells and normal human astrocyte (NHA) cells. We first analyzed the effect of TELO2 on the Elsevier pathway and Hallmark gene sets in GBM8401, SVG p12, and NHA via an mRNA array analysis. Later, we further examined and analyzed the relationship between TELO2 and fibroblast growth factor receptor 3, cell cycle progression, epithelial-mesenchymal transient (EMT), reactive oxygen species (ROS), apoptosis, and telomerase activity. Our data showed that TELO2 is involved in several functions of GBM cells, including cell cycle progression, EMT, ROS, apoptosis, and telomerase activity. Finally, we examined the crosstalk between TELO2 and the responsiveness of TMZ or curcumin mediated through the TELO2-TTI1-TTI2 complex, the p53-dependent complex, the mitochondrial-related complex, and signaling pathways in GBM8401 cells. In summary, our work provides new insight that TELO2 might modulate target proteins mediated through the complex of phosphatidylinositol 3-kinase-related kinases in its involvement in cell cycle progression, EMT, and drug response in GBM patients.
Collapse
Affiliation(s)
- Shao-Wei Feng
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Zih-Syuan Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan
| | - Shih-Ming Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
4
|
Saad MN, Mabrouk MS, Eldeib AM, Shaker OG. Studying the effects of haplotype partitioning methods on the RA-associated genomic results from the North American Rheumatoid Arthritis Consortium (NARAC) dataset. J Adv Res 2019; 18:113-126. [PMID: 30891314 PMCID: PMC6403413 DOI: 10.1016/j.jare.2019.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/03/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Haplotype blocks methods plays a complementary role to the single-SNP approaches. CIT, FGT, SSLD, and single-SNP methods should be applied to discover the markers. Selection of the method used for the association has an impact on the biomarkers. SSLD method detected more significant SNPs than CIT, FGT, and single-SNP methods. The 383 SNPs discovered by all methods are significantly associated with RA.
The human genome, which includes thousands of genes, represents a big data challenge. Rheumatoid arthritis (RA) is a complex autoimmune disease with a genetic basis. Many single-nucleotide polymorphism (SNP) association methods partition a genome into haplotype blocks. The aim of this genome wide association study (GWAS) was to select the most appropriate haplotype block partitioning method for the North American Rheumatoid Arthritis Consortium (NARAC) dataset. The methods used for the NARAC dataset were the individual SNP approach and the following haplotype block methods: the four-gamete test (FGT), confidence interval test (CIT), and solid spine of linkage disequilibrium (SSLD). The measured parameters that reflect the strength of the association between the biomarker and RA were the P-value after Bonferroni correction and other parameters used to compare the output of each haplotype block method. This work presents a comparison among the individual SNP approach and the three haplotype block methods to select the method that can detect all the significant SNPs when applied alone. The GWAS results from the NARAC dataset obtained with the different methods are presented. The individual SNP, CIT, FGT, and SSLD methods detected 541, 1516, 1551, and 1831 RA-associated SNPs respectively, and the individual SNP, FGT, CIT, and SSLD methods detected 65, 156, 159, and 450 significant SNPs respectively, that were not detected by the other methods. Three hundred eighty-three SNPs were discovered by the haplotype block methods and the individual SNP approach, while 1021 SNPs were discovered by all three haplotype block methods. The 383 SNPs detected by all the methods are promising candidates for studying RA susceptibility. A hybrid technique involving all four methods should be applied to detect the significant SNPs associated with RA in the NARAC dataset, but the SSLD method may be preferred because of its advantages when only one method was used.
Collapse
Affiliation(s)
- Mohamed N Saad
- Biomedical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt
| | - Mai S Mabrouk
- Biomedical Engineering Department, Faculty of Engineering, Misr University for Science and Technology, 6th of October City, Egypt
| | - Ayman M Eldeib
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Olfat G Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Chi KC, Tsai WC, Wu CL, Lin TY, Hueng DY. An Adult Drosophila Glioma Model for Studying Pathometabolic Pathways of Gliomagenesis. Mol Neurobiol 2018; 56:4589-4599. [DOI: 10.1007/s12035-018-1392-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/11/2018] [Indexed: 11/28/2022]
|
6
|
Muñoz-Hernández H, Pal M, Rodríguez CF, Prodromou C, Pearl LH, Llorca O. Advances on the Structure of the R2TP/Prefoldin-like Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:73-83. [DOI: 10.1007/978-3-030-00737-9_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|