1
|
Altered protein profile of plasma extracellular vesicles in oral squamous cell carcinoma development. J Proteomics 2022; 251:104422. [PMID: 34775099 DOI: 10.1016/j.jprot.2021.104422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022]
Abstract
Extracellular vesicles (EVs) are involved in a wide range of pathological processes and recognized as potential and novel biomarkers for oral squamous cell carcinoma (OSCC). Here, we describe the plasma EV proteome of rats with 4-nitroquinoline-1-oxide (4NQO)-induced OSCC or moderate dysplasia (MD), which can progress to OSCC, by tandem mass tag (TMT)-labeled mass spectrometry. The proteomic profiles suggest the differential expression of various proteins in MD and OSCC, some well-recognized pathological changes (e.g., translation, ATP metabolism, and mesenchymal transition), and some novel pathological changes (e.g., podosome, focal adhesion, and S100 binding). We re-examined the presence of traditional exosomal markers and the reported novel pan-EV markers. In summary, these results suggest potential EV biomarkers and underlying pathological changes in early OSCC as well as the presence of oral-derived EVs in plasma and the need for pan-EV markers. SIGNIFICANCE: This research suggests potential EV biomarkers and underlying pathological changes in early OSCC as well as the presence of oral-derived EVs in plasma and the need for pan-EV markers.
Collapse
|
2
|
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010146. [PMID: 35008569 PMCID: PMC8745566 DOI: 10.3390/ijms23010146] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.
Collapse
|
3
|
Biofunctional supramolecular hydrogels fabricated from a short self-assembling peptide modified with bioactive sequences for the 3D culture of breast cancer MCF-7 cells. Bioorg Med Chem 2021; 46:116345. [PMID: 34416510 DOI: 10.1016/j.bmc.2021.116345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 11/24/2022]
Abstract
Self-assembling peptides are a type of molecule with promise as scaffold materials for cancer cell engineering. We have reported a short self-assembling peptide, (FFiK)2, that had a symmetric structure connected via a urea bond. In this study, we functionalized (FFiK)2 by conjugation with various bioactive sequences for the 3D culture of cancer cells. Four sequences, RGDS and PHSRN derived from fibronectin and AG73 and C16 derived from laminin, were selected as bioactive sequences to promote cell adhesion, proliferation or migration. (FFiK)2, and its derivatives could co-assemble into supramolecular nanofibers displaying bioactive sequences and form hydrogels. MCF-7 cells were encapsulated in functionalized peptide hydrogels without significant cytotoxicity. Encapsulated MCF-7 cells proliferated under 3D culture conditions. MCF-7 cells proliferated with spheroid formation in hydrogels that displayed RGDS or PHSRN sequences, which will be able to be applied to drug screening targeting cancer stem cells. On the other hand, since MCF-7 cells migrated in a 3D hydrogel that displayed AG73, we could construct the metastatic model of breast cancer cells, which is helpful for the elucidation of breast cancer cells and drug screening against cancer cells under metastatic state. Therefore, functionalized (FFiK)2 hydrogels with various bioactive sequences can be used to regulate cancer cell function for tumor engineering and drug screening.
Collapse
|
4
|
Speer JE, Barcellona MN, Lu MY, Zha Z, Jing L, Gupta MC, Buchowski JM, Kelly MP, Setton LA. Development of a library of laminin-mimetic peptide hydrogels for control of nucleus pulposus cell behaviors. J Tissue Eng 2021; 12:20417314211021220. [PMID: 34188794 PMCID: PMC8211742 DOI: 10.1177/20417314211021220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022] Open
Abstract
The nucleus pulposus (NP) of the intervertebral disc plays a critical role in
distributing mechanical loads to the axial skeleton. Alterations in NP cells and,
consequently, NP matrix are some of the earliest changes in the development of disc
degeneration. Previous studies demonstrated a role for laminin-presenting biomaterials in
promoting a healthy phenotype for human NP cells from degenerated tissue. Here we
investigate the use of laminin-mimetic peptides presented individually or in combination
on a poly(ethylene) glycol hydrogel as a platform to modulate the behaviors of
degenerative human NP cells. Data confirm that NP cells attach to select laminin-mimetic
peptides that results in cell signaling downstream of integrin and syndecan binding.
Furthermore, the peptide-functionalized hydrogels demonstrate an ability to promote cell
behaviors that mimic that of full-length laminins. These results identify a set of
peptides that can be used to regulate NP cell behaviors toward a regenerative engineering
strategy.
Collapse
Affiliation(s)
- Julie E Speer
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Marcos N Barcellona
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael Y Lu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Zizhen Zha
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Liufang Jing
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Munish C Gupta
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacob M Buchowski
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael P Kelly
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Lori A Setton
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.,Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Potential Therapeutic Significance of Laminin in Head and Neck Squamous Carcinomas. Cancers (Basel) 2021; 13:cancers13081890. [PMID: 33920762 PMCID: PMC8071176 DOI: 10.3390/cancers13081890] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Head and neck cancers (HNC) account for approximately 500,000 new cases of tumors annually worldwide and are represented by upper aerodigestive tract malignant neoplasms, which particularly arise in oral cavity, larynx, and pharynx tissues. Thus, due to the biological diversity between the upper aerodigestive organs, and to the heterogeneity of risk factors associated with their malignant transformation, HNC behavior, and prognosis seem to strongly vary according to the tumor site. However, despite to the heterogeneity which characterizes head and neck tumors, squamous cell carcinomas (SCC) represent the predominant histopathologic HNC subtype. In this sense, it has been reported that SCC tumor biology is strongly associated with deregulations within the extracellular matrix compartment. Accordingly, it has been shown that laminin plays a remarkable role in the regulation of crucial events associated with head and neck squamous cell carcinomas (HNSCC) progression, which opens the possibility that laminin may represent a convergence point in HNSCC natural history. Abstract Head and neck squamous cell carcinomas (HNSCC) are among the most common and lethal tumors worldwide, occurring mostly in oral cavity, pharynx, and larynx tissues. The squamous epithelia homeostasis is supported by the extracellular matrix (ECM), and alterations in this compartment are crucial for cancer development and progression. Laminin is a fundamental component of ECM, where it represents one of the main components of basement membrane (BM), and data supporting its contribution to HNSCC genesis and progression has been vastly explored in oral cavity squamous cell carcinoma. Laminin subtypes 111 (LN-111) and 332 (LN-332) are the main isoforms associated with malignant transformation, contributing to proliferation, adhesion, migration, invasion, and metastasis, due to its involvement in the regulation of several pathways associated with HNSCC carcinogenesis, including the activation of the EGFR/MAPK signaling pathway. Therefore, it draws attention to the possibility that laminin may represent a convergence point in HNSCC natural history, and an attractive potential therapeutic target for these tumors.
Collapse
|
6
|
Pedersen NM, Wenzel EM, Wang L, Antoine S, Chavrier P, Stenmark H, Raiborg C. Protrudin-mediated ER-endosome contact sites promote MT1-MMP exocytosis and cell invasion. J Cell Biol 2021; 219:151827. [PMID: 32479595 PMCID: PMC7401796 DOI: 10.1083/jcb.202003063] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer cells break tissue barriers by use of small actin-rich membrane protrusions called invadopodia. Complete invadopodia maturation depends on protrusion outgrowth and the targeted delivery of the matrix metalloproteinase MT1-MMP via endosomal transport by mechanisms that are not known. Here, we show that the ER protein Protrudin orchestrates invadopodia maturation and function. Protrudin formed contact sites with MT1-MMP-positive endosomes that contained the RAB7-binding Kinesin-1 adaptor FYCO1, and depletion of RAB7, FYCO1, or Protrudin inhibited MT1-MMP-dependent extracellular matrix degradation and cancer cell invasion by preventing anterograde translocation and exocytosis of MT1-MMP. Moreover, when endosome translocation or exocytosis was inhibited by depletion of Protrudin or Synaptotagmin VII, respectively, invadopodia were unable to expand and elongate. Conversely, when Protrudin was overexpressed, noncancerous cells developed prominent invadopodia-like protrusions and showed increased matrix degradation and invasion. Thus, Protrudin-mediated ER-endosome contact sites promote cell invasion by facilitating translocation of MT1-MMP-laden endosomes to the plasma membrane, enabling both invadopodia outgrowth and MT1-MMP exocytosis.
Collapse
Affiliation(s)
- Nina Marie Pedersen
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eva Maria Wenzel
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ling Wang
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Sandra Antoine
- Research Center, Institut Curie, Membrane and Cytoskeleton Dynamics and Cell and Tissue Imaging Facility, Centre National de la Recherche Scientifique UMR 144, Paris, France
| | - Philippe Chavrier
- Research Center, Institut Curie, Membrane and Cytoskeleton Dynamics and Cell and Tissue Imaging Facility, Centre National de la Recherche Scientifique UMR 144, Paris, France
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Camilla Raiborg
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Luo Y, Hu J, Liu Y, Li L, Li Y, Sun B, Kong R. Invadopodia: A potential target for pancreatic cancer therapy. Crit Rev Oncol Hematol 2021; 159:103236. [PMID: 33482351 DOI: 10.1016/j.critrevonc.2021.103236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/05/2021] [Accepted: 01/16/2021] [Indexed: 02/08/2023] Open
Abstract
Dissemination of cancer cells is an intricate multistep process that represents the most deadly aspect of cancer. Cancer cells form F-actin-rich protrusions known as invadopodia to invade surrounding tissues, blood vessels and lymphatics. A number of studies have demonstrated the significant roles of invadopodia in cancer. Therefore, the specific cells and molecules involved in invadopodia activity can provide as therapeutic targets. In this review, we included a thorough overview of studies in invadopodia and discussed their functions in cancer metastasis. We then presented the specific cells and molecules involved in invadopodia activity in pancreatic cancer and analyzed their suitability to be effective therapeutic targets. Currently, drugs targeting invadopodia and relevant clinical trials are negligible. Here, we highlighted the significance of potential drugs and discussed future obstacles in implementing clinical trials. This review presents a new perspective on invadopodia-induced pancreatic cancer metastasis and may prosper the development of targeted therapeutics against pancreatic cancer.
Collapse
Affiliation(s)
- Yan Luo
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jisheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yilong Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Kong
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
8
|
Masi I, Caprara V, Bagnato A, Rosanò L. Tumor Cellular and Microenvironmental Cues Controlling Invadopodia Formation. Front Cell Dev Biol 2020; 8:584181. [PMID: 33178698 PMCID: PMC7593604 DOI: 10.3389/fcell.2020.584181] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
During the metastatic progression, invading cells might achieve degradation and subsequent invasion into the extracellular matrix (ECM) and the underlying vasculature using invadopodia, F-actin-based and force-supporting protrusive membrane structures, operating focalized proteolysis. Their formation is a dynamic process requiring the combined and synergistic activity of ECM-modifying proteins with cellular receptors, and the interplay with factors from the tumor microenvironment (TME). Significant advances have been made in understanding how invadopodia are assembled and how they progress in degradative protrusions, as well as their disassembly, and the cooperation between cellular signals and ECM conditions governing invadopodia formation and activity, holding promise to translation into the identification of molecular targets for therapeutic interventions. These findings have revealed the existence of biochemical and mechanical interactions not only between the actin cores of invadopodia and specific intracellular structures, including the cell nucleus, the microtubular network, and vesicular trafficking players, but also with elements of the TME, such as stromal cells, ECM components, mechanical forces, and metabolic conditions. These interactions reflect the complexity and intricate regulation of invadopodia and suggest that many aspects of their formation and function remain to be determined. In this review, we will provide a brief description of invadopodia and tackle the most recent findings on their regulation by cellular signaling as well as by inputs from the TME. The identification and interplay between these inputs will offer a deeper mechanistic understanding of cell invasion during the metastatic process and will help the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Ilenia Masi
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Caprara
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.,Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| |
Collapse
|
9
|
Inflammatory Reaction Induced by Two Metalloproteinases Isolated from Bothrops atrox Venom and by Fragments Generated from the Hydrolysis of Basement Membrane Components. Toxins (Basel) 2020; 12:toxins12020096. [PMID: 32024243 PMCID: PMC7076977 DOI: 10.3390/toxins12020096] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/21/2020] [Accepted: 01/30/2020] [Indexed: 12/23/2022] Open
Abstract
Snake venom metalloproteinases (SVMPs) play an important role in local tissue damage of snakebite patients, mostly by hydrolysis of basement membrane (BM) components. We evaluated the proinflammatory activity of SVMPs Atroxlysin-Ia (ATXL) and Batroxrhagin (BATXH) from Bothrops atrox venom and their hydrolysis products of Matrigel. BALB/c mice were injected with SVMPs (2 μg), for assessment of paw edema and peritoneal leukocyte accumulation. Both SVMPs induced edema, representing an increase of ~70% of the paw size. Leukocyte infiltrates reached levels of 6 × 106 with ATXL and 5 × 106 with BATXH. TNF-α was identified in the supernatant of BATXH—or venom-stimulated MPAC cells. Incubation of Matrigel with the SVMPs generated fragments, including peptides from Laminin, identified by LC–MS/MS. The Matrigel hydrolysis peptides caused edema that increased 30% the paw size and promoted leukocyte accumulation (4–5 × 106) to the peritoneal cavity, significantly higher than Matrigel control peptides 1 and 4 h after injection. Our findings suggest that ATXL and BATXH are involved in the inflammatory reaction observed in B. atrox envenomings by direct action on inflammatory cells or by releasing proinflammatory peptides from BM proteins that may amplify the direct action of SVMPs through activation of endogenous signaling pathways.
Collapse
|
10
|
HIF-1α is Overexpressed in Odontogenic Keratocyst Suggesting Activation of HIF-1α and NOTCH1 Signaling Pathways. Cells 2019; 8:cells8070731. [PMID: 31319505 PMCID: PMC6678339 DOI: 10.3390/cells8070731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022] Open
Abstract
Background: The odontogenic keratocyst (OKC) is an odontogenic cyst that shows aggressive and intriguing biological behavior. It is suggested that a hypoxic environment occurs in OKC, which led us to investigate the immunoexpression and location of hypoxia-inducible factor 1-alpha (HIF-1α) and other hypoxia-related proteins. Methods: Twenty cases of OKC were evaluated for the expression of Notch homolog 1 (NOTCH1), HIF-1α, disintegrin and metalloproteinase domain-containing protein 12 (ADAM-12), and heparin-binding epidermal growth factor-like growth factor (HBEGF) by immunohistochemistry and compared to eight control cases of calcifying odontogenic cystic (COC), orthokeratinized odontogenic cyst (OOC), and normal oral mucosa (OM) in basal and parabasal layers. Results: In OKC, all the proteins tested were expressed significantly higher in both basal (except for NOTCH1 and HBEGF in OOC) and suprabasal epithelial layers compared to controls. Looking at the epithelial layers within OKC, we observed an increased NOTCH1 and HIF-1α expression in parabasal layers. Conclusions: These results suggest that hypoxia occurs more intensively in OKC compared to COC, OM, and OOC. Hypoxia appeared to be stronger in parabasal layers as observed by higher HIF-1α expression in upper cells. Overexpression of NOTCH1, ADAM-12, and HBEGF in OKC was observed, which suggests that microenvironmental hypoxia could potentially regulate the expression of hypoxia-related proteins, and consequently, its clinical and biological behavior.
Collapse
|
11
|
Caires-Dos-Santos L, da Silva SV, Smuczek B, de Siqueira AS, Cruz KSP, Barbuto JAM, Augusto TM, Freitas VM, Carvalho HF, Jaeger RG. Laminin-derived peptide C16 regulates Tks expression and reactive oxygen species generation in human prostate cancer cells. J Cell Physiol 2019; 235:587-598. [PMID: 31254281 DOI: 10.1002/jcp.28997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 01/05/2023]
Abstract
Laminin peptides influence cancer biology. We investigated the role of a laminin-derived peptide C16 regulating invadopodia molecules in human prostate cancer cells (DU145). C16 augmented invadopodia activity of DU145 cells, and stimulated expression Tks4, Tks5, cortactin, and membrane-type matrix metalloproteinase 1. Reactive oxygen species generation is also related to invadopodia formation. This prompted us to address whether C16 would induce reactive oxygen species generation in DU145 cells. Quantitative fluorescence and flow cytometry showed that the peptide C16 increased reactive oxygen species in DU145 cells. Furthermore, significant colocalization between Tks5 and reactive oxygen species was observed in C16-treated cells. Results suggested that the peptide C16 increased Tks5 and reactive oxygen species in prostate cancer cells. The role of C16 increasing Tks and reactive oxygen species are novel findings on invadopodia activity.
Collapse
Affiliation(s)
- Livia Caires-Dos-Santos
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Suély V da Silva
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Basilio Smuczek
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Biology, UNICENTRO State University, Guarapuava, PR, Brazil
| | - Adriane S de Siqueira
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,School of Dentistry, Positivo University, Curitiba, PR, Brazil
| | - Karen S P Cruz
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil.,Cell Biology Laboratory, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceio, AL, Brazil.,Faculty of Nutrition, Federal University of Alagoas, Maceio, AL, Brazil
| | - José Alexandre M Barbuto
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Taize M Augusto
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.,Department of Morphology and Basic Pathology, School of Medicine of Jundiai, Jundiai, SP, Brazil
| | - Vanessa M Freitas
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Ruy G Jaeger
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
12
|
Truong DD, Kratz A, Park JG, Barrientos ES, Saini H, Nguyen T, Pockaj B, Mouneimne G, LaBaer J, Nikkhah M. A Human Organotypic Microfluidic Tumor Model Permits Investigation of the Interplay between Patient-Derived Fibroblasts and Breast Cancer Cells. Cancer Res 2019; 79:3139-3151. [PMID: 30992322 PMCID: PMC6664809 DOI: 10.1158/0008-5472.can-18-2293] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/11/2018] [Accepted: 04/11/2019] [Indexed: 12/21/2022]
Abstract
Tumor-stroma interactions significantly influence cancer cell metastasis and disease progression. These interactions are partly comprised of the cross-talk between tumor and stromal fibroblasts, but the key molecular mechanisms within the cross-talk that govern cancer invasion are still unclear. Here, we adapted our previously developed microfluidic device as a 3D in vitro organotypic model to mechanistically study tumor-stroma interactions by mimicking the spatial organization of the tumor microenvironment on a chip. We cocultured breast cancer and patient-derived fibroblast cells in 3D tumor and stroma regions, respectively, and combined functional assessments, including cancer cell migration, with transcriptome profiling to unveil the molecular influence of tumor-stroma cross-talk on invasion. This led to the observation that cancer-associated fibroblasts (CAF) enhanced invasion in 3D by inducing expression of a novel gene of interest, glycoprotein nonmetastatic B (GPNMB), in breast cancer cells, resulting in increased migration speed. Importantly, knockdown of GPNMB blunted the influence of CAF on enhanced cancer invasion. Overall, these results demonstrate the ability of our model to recapitulate patient-specific tumor microenvironments to investigate the cellular and molecular consequences of tumor-stroma interactions. SIGNIFICANCE: An organotypic model of tumor-stroma interactions on a microfluidic chip reveals that CAFs promote invasion by enhancing expression of GPNMB in breast cancer cells.
Collapse
Affiliation(s)
- Danh D Truong
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona
| | - Alexander Kratz
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona
| | - Jin G Park
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Eric S Barrientos
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona
| | - Harpinder Saini
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona
| | - Toan Nguyen
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona
| | | | | | - Joshua LaBaer
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona.
| |
Collapse
|
13
|
Zhang X, Xing XX, Cui JF. Invadopodia formation: An important step in matrix stiffness-regulated tumor invasion and metastasis. Shijie Huaren Xiaohua Zazhi 2019; 27:589-597. [DOI: 10.11569/wcjd.v27.i9.589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Highly motile and invasive abilities are symbolic features of metastatic tumor cells. Being a critical molecular event for maintaining the highly migratory and invasive capabilities of tumor cells, invadopodia formation undoubtedly determines the progression of tumor invasion and metastasis. Growing numbers of studies suggest that increased matrix stiffness, as a notable property of physical mechanics in solid tumors, participates in the regulation of tumor invasion and metastasis via different molecular mechanisms. However, to date the relevant mechanisms of matrix stiffness-induced invadopodia formation and activity in tumor cells remain largely unclear. This paper is to make a review on the structure and function of invadopodia, the stages and inductive factors of invadopodia formation, the regulatory mechanisms of matrix stiffness-induced invadopodia formation and so on, with an aim to reveal the important roles of invadopodia in matrix stiffness-regulated tumor invasion and metastasis.
Collapse
Affiliation(s)
- Xi Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiao-Xia Xing
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jie-Feng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
14
|
Peláez R, Pariente A, Pérez-Sala Á, Larrayoz IM. Integrins: Moonlighting Proteins in Invadosome Formation. Cancers (Basel) 2019; 11:cancers11050615. [PMID: 31052560 PMCID: PMC6562994 DOI: 10.3390/cancers11050615] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/24/2022] Open
Abstract
Invadopodia are actin-rich protrusions developed by transformed cells in 2D/3D environments that are implicated in extracellular matrix (ECM) remodeling and degradation. These structures have an undoubted association with cancer invasion and metastasis because invadopodium formation in vivo is a key step for intra/extravasation of tumor cells. Invadopodia are closely related to other actin-rich structures known as podosomes, which are typical structures of normal cells necessary for different physiological processes during development and organogenesis. Invadopodia and podosomes are included in the general term 'invadosomes,' as they both appear as actin puncta on plasma membranes next to extracellular matrix metalloproteinases, although organization, regulation, and function are slightly different. Integrins are transmembrane proteins implicated in cell-cell and cell-matrix interactions and other important processes such as molecular signaling, mechano-transduction, and cell functions, e.g., adhesion, migration, or invasion. It is noteworthy that integrin expression is altered in many tumors, and other pathologies such as cardiovascular or immune dysfunctions. Over the last few years, growing evidence has suggested a role of integrins in the formation of invadopodia. However, their implication in invadopodia formation and adhesion to the ECM is still not well known. This review focuses on the role of integrins in invadopodium formation and provides a general overview of the involvement of these proteins in the mechanisms of metastasis, taking into account classic research through to the latest and most advanced work in the field.
Collapse
Affiliation(s)
- Rafael Peláez
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Ana Pariente
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Álvaro Pérez-Sala
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| |
Collapse
|
15
|
Kumar S, Das A, Barai A, Sen S. MMP Secretion Rate and Inter-invadopodia Spacing Collectively Govern Cancer Invasiveness. Biophys J 2019; 114:650-662. [PMID: 29414711 DOI: 10.1016/j.bpj.2017.11.3777] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 11/11/2017] [Accepted: 11/20/2017] [Indexed: 01/10/2023] Open
Abstract
Invadopodia are micron-sized invasive structures that mediate extracellular matrix (ECM) degradation through a combination of membrane-bound and soluble matrix metalloproteinases (MMPs). However, how such localized degradation is converted into pores big enough for cancer cells to invade, and the relative contributions of membrane-bound versus soluble MMPs to this process remain unclear. In this article, we address these questions by combining experiments and simulations. We show that in MDA-MB-231 cells, an increase in ECM density enhances invadopodia-mediated ECM degradation and decreases inter-invadopodia spacing. ECM degradation is mostly mediated by soluble MMPs, which are activated by membrane-bound MT1-MMP. We present a computational model of invadopodia-mediated ECM degradation, which recapitulates the above observations and identifies MMP secretion rate as an important regulator of invadopodia stability. Simulations with multiple invadopodia suggest that inter-invadopodia spacing and MMP secretion rate collectively dictate the size of the degraded zones. Taken together, our results suggest that for creating pores conducive for cancer invasion, cells must tune inter-invadopodia spacing and MMP secretion rate in an ECM density-dependent manner, thereby striking a balance between invadopodia penetration and ECM degradation.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Alakesh Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Amlan Barai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shamik Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
16
|
Ramos-García P, González-Moles MÁ, González-Ruiz L, Ayén Á, Ruiz-Ávila I, Navarro-Triviño FJ, Gil-Montoya JA. An update of knowledge on cortactin as a metastatic driver and potential therapeutic target in oral squamous cell carcinoma. Oral Dis 2018; 25:949-971. [PMID: 29878474 DOI: 10.1111/odi.12913] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/15/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022]
Abstract
Cortactin is a protein encoded by the CTTN gene, localized on chromosome band 11q13. As a result of the amplification of this band, an important event in oral carcinogenesis, CTTN is also usually amplified, promoting the frequent overexpression of cortactin. Cortactin enhances cell migration in oral cancer, playing a key role in the regulation of filamentous actin and of protrusive structures (invadopodia and lamellipodia) on the cell membrane that are necessary for the acquisition of a migratory phenotype. We also analyze a series of emerging functions that cortactin may exert in oral cancer (cell proliferation, angiogenesis, regulation of exosomes, and interactions with the tumor microenvironment). We review its molecular structure, its most important interactions (with Src, Arp2/3 complex, and SH3-binding partners), the regulation of its functions, and its specific oncogenic role in oral cancer. We explore the mechanisms of its overexpression in cancer, mainly related to genetic amplification. We analyze the prognostic implications of the oncogenic activation of cortactin in potentially malignant disorders and in head and neck cancer, where it appears to be relevant in the development of lymph node metastasis. Finally, we discuss its usefulness as a therapeutic target and suggest future research lines.
Collapse
Affiliation(s)
| | - Miguel Ángel González-Moles
- School of Dentistry, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, Granada, Spain
| | - Lucía González-Ruiz
- Servicio de Dermatología, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Ángela Ayén
- School of Medicine, University of Granada, Granada, Spain
| | - Isabel Ruiz-Ávila
- Instituto de Investigación Biosanitaria, Granada, Spain.,Servicio de Anatomía Patológica, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | | | - José Antonio Gil-Montoya
- School of Dentistry, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, Granada, Spain
| |
Collapse
|
17
|
Smuczek B, Santos EDS, Siqueira AS, Pinheiro JJ, Freitas VM, Jaeger RG. The laminin-derived peptide C16 regulates GPNMB expression and function in breast cancer. Exp Cell Res 2017; 358:323-334. [DOI: 10.1016/j.yexcr.2017.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 07/02/2017] [Accepted: 07/04/2017] [Indexed: 11/27/2022]
|
18
|
Tumor Cell Invadopodia: Invasive Protrusions that Orchestrate Metastasis. Trends Cell Biol 2017; 27:595-607. [PMID: 28412099 DOI: 10.1016/j.tcb.2017.03.003] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/26/2022]
Abstract
Invadopodia are a subset of invadosomes that are implicated in the integration of signals from the tumor microenvironment to support tumor cell invasion and dissemination. Recent progress has begun to define how tumor cells regulate the plasticity necessary for invadopodia to assemble and function efficiently in the different microenvironments encountered during dissemination in vivo. Exquisite mapping by many laboratories of the pathways involved in integrating diverse invadopodium initiation signals, from growth factors, to extracellular matrix (ECM) and cell-cell contact in the tumor microenvironment, has led to insight into the molecular basis of this plasticity. Here, we integrate this new information to discuss how the invadopodium is an important conductor that orchestrates tumor cell dissemination during metastasis.
Collapse
|