1
|
Ghoneum A, Almousa S, Warren B, Abdulfattah AY, Shu J, Abouelfadl H, Gonzalez D, Livingston C, Said N. Exploring the clinical value of tumor microenvironment in platinum-resistant ovarian cancer. Semin Cancer Biol 2021; 77:83-98. [PMID: 33476723 PMCID: PMC8286277 DOI: 10.1016/j.semcancer.2020.12.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/20/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Platinum resistance in epithelial ovarian cancer (OvCa) is rising at an alarming rate, with recurrence of chemo-resistant high grade serous OvCa (HGSC) in roughly 75 % of all patients. Additionally, HGSC has an abysmal five-year survival rate, standing at 39 % and 17 % for FIGO stages III and IV, respectively. Herein we review the crucial cellular interactions between HGSC cells and the cellular and non-cellular components of the unique peritoneal tumor microenvironment (TME). We highlight the role of the extracellular matrix (ECM), ascitic fluid as well as the mesothelial cells, tumor associated macrophages, neutrophils, adipocytes and fibroblasts in platinum-resistance. Moreover, we underscore the importance of other immune-cell players in conferring resistance, including natural killer cells, myeloid-derived suppressive cells (MDSCs) and T-regulatory cells. We show the clinical relevance of the key platinum-resistant markers and their correlation with the major pathways perturbed in OvCa. In parallel, we discuss the effect of immunotherapies in re-sensitizing platinum-resistant patients to platinum-based drugs. Through detailed analysis of platinum-resistance in HGSC, we hope to advance the development of more effective therapy options for this aggressive disease.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Sameh Almousa
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Bailey Warren
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Ammar Yasser Abdulfattah
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Alexandria University School of Medicine, Alexandria, Egypt
| | - Junjun Shu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; The Third Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hebatullah Abouelfadl
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Department of Genetics, Animal Health Research Institute, Dokki, Egypt
| | - Daniela Gonzalez
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Christopher Livingston
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Comprehensive Cancer Center, Winston Salem, NC, 27157, USA.
| |
Collapse
|
2
|
Fibronectin 1: A Potential Biomarker for Ovarian Cancer. DISEASE MARKERS 2021; 2021:5561651. [PMID: 34093898 PMCID: PMC8164534 DOI: 10.1155/2021/5561651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022]
Abstract
Methods OVCAR3 and A2780 are the two common cell lines that are used for ovarian cancer studies. The different invasion and migration abilities were observed by scratch tests and transwell experiments in our preliminary study. Gene chip was used to screen the expression gene in these two different cell lines, and then, the differentially expressed genes (at least 2-fold difference, P value < 0.05) were analyzed using KEGG. Result Fibronectin 1 (FN1) was found to be the most strongly correlated with the invasion and migration abilities of the OVCAR3 cells. Real-time PCR and FN1 knockout cell line was conducted and confirmed this finding. Based on the Oncomine database analysis, comparing with normal people, ovarian cancer patients exhibited high levels of FN1 expression. Additionally, higher FN1 expression was found in patients with higher FIGO stages of cancer. Conclusion FN1 could be a new biomarker for ovarian cancer detection and progress indicator.
Collapse
|
3
|
DNA damage and repair measured by comet assay in cancer patients. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 843:95-110. [DOI: 10.1016/j.mrgentox.2019.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 02/08/2023]
|
4
|
Shi Y, Wang P, Guo Y, Liang X, Li Y, Ding S. Helicobacter pylori-Induced DNA Damage Is a Potential Driver for Human Gastric Cancer AGS Cells. DNA Cell Biol 2019; 38:272-280. [PMID: 30657337 PMCID: PMC6434597 DOI: 10.1089/dna.2018.4487] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori is a major cause of gastric cancer. This study was aimed to explore the characteristic of DNA damage induced by H. pylori infection in gastric cancer AGS cells. After infection with H. pylori, the reactive oxygen species (ROS) levels in AGS cells were significantly higher than those in the uninfected cells. Cells with longer comet tails were detected after infection with H. pylori. The number of apurinic/apyrimidinic endonuclease 1- and phosphorylated H2AX-positive cells was significantly increased compared with the number of negative control cells. The expression of pChk1 and pChk2 was significantly upregulated by H. pylori infection. Cell growth was inhibited after H. pylori infection. All these results were dose dependent. The cell alterations were more significant upon infection with H. pylori at a multiplicity of infection (MOI) of 100:1 than at an MOI of 50:1. H. pylori infection can induce DNA single-strand breaks, DNA double-strand breaks, and cell cycle checkpoint activation after ROS generation in the gastric cancer cell line AGS, which is a potential driver for gastric cancer.
Collapse
Affiliation(s)
- Yanyan Shi
- 1 Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, P.R. China
| | - Pan Wang
- 2 Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P.R. China
| | - Yanlei Guo
- 3 Department of Gastroenterology, Peking University Third Hospital, Beijing, P.R. China
| | - Xiaoling Liang
- 2 Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P.R. China
| | - Yuan Li
- 3 Department of Gastroenterology, Peking University Third Hospital, Beijing, P.R. China
| | - Shigang Ding
- 3 Department of Gastroenterology, Peking University Third Hospital, Beijing, P.R. China
| |
Collapse
|
5
|
The Role of the Core Non-Homologous End Joining Factors in Carcinogenesis and Cancer. Cancers (Basel) 2017; 9:cancers9070081. [PMID: 28684677 PMCID: PMC5532617 DOI: 10.3390/cancers9070081] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
DNA double-strand breaks (DSBs) are deleterious DNA lesions that if left unrepaired or are misrepaired, potentially result in chromosomal aberrations, known drivers of carcinogenesis. Pathways that direct the repair of DSBs are traditionally believed to be guardians of the genome as they protect cells from genomic instability. The prominent DSB repair pathway in human cells is the non-homologous end joining (NHEJ) pathway, which mediates template-independent re-ligation of the broken DNA molecule and is active in all phases of the cell cycle. Its role as a guardian of the genome is supported by the fact that defects in NHEJ lead to increased sensitivity to agents that induce DSBs and an increased frequency of chromosomal aberrations. Conversely, evidence from tumors and tumor cell lines has emerged that NHEJ also promotes chromosomal aberrations and genomic instability, particularly in cells that have a defect in one of the other DSB repair pathways. Collectively, the data present a conundrum: how can a single pathway both suppress and promote carcinogenesis? In this review, we will examine NHEJ's role as both a guardian and a disruptor of the genome and explain how underlying genetic context not only dictates whether NHEJ promotes or suppresses carcinogenesis, but also how it alters the response of tumors to conventional therapeutics.
Collapse
|
6
|
Xia D, Yang X, Liu W, Shen F, Pan J, Lin Y, Du N, Sun Y, Xi X. Over-expression of CHAF1A in Epithelial Ovarian Cancer can promote cell proliferation and inhibit cell apoptosis. Biochem Biophys Res Commun 2017; 486:191-197. [PMID: 28286267 DOI: 10.1016/j.bbrc.2017.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/08/2017] [Indexed: 12/21/2022]
Abstract
Chromatin Assembly Factor 1, subunit A (CHAF1A) can regulate cell proliferation, DNA repair and epigenetic changes in embryonic stem cells and it has been reported that over-expression of CHAF1A is associated with several human diseases including cancer. However, the expression and function of CHAF1A in Epithelial Ovarian Cancer (EOC) are rarely reported at present. In this study, we found that the positive staining of CHAF1A in EOC was higher than that in normal tissues and over-expression of CHAF1A was strongly associated with cancer stage and lymph node metastasis. Knockdown of CHAF1A by siRNA in EOC inhibited cell proliferation, reduced colony formation, caused G0/G1 phase arrest and promoted cell apoptosis. Taken together, the high expression of CHAF1A promotes cell proliferation and inhibits cell apoptosis and CHAF1A may be developed as a prognosis biomarker and potential therapeutic target of EOC.
Collapse
Affiliation(s)
- Dandan Xia
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated First People's Hospital, 650# XinSongJiang Road, Shanghai, 201600, China
| | - Xiaoming Yang
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated First People's Hospital, 650# XinSongJiang Road, Shanghai, 201600, China
| | - Wenxue Liu
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated First People's Hospital, 650# XinSongJiang Road, Shanghai, 201600, China
| | - Fangqian Shen
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated First People's Hospital, 650# XinSongJiang Road, Shanghai, 201600, China
| | - Jufang Pan
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated First People's Hospital, 650# XinSongJiang Road, Shanghai, 201600, China
| | - Yu Lin
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated First People's Hospital, 650# XinSongJiang Road, Shanghai, 201600, China
| | - Na Du
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated First People's Hospital, 650# XinSongJiang Road, Shanghai, 201600, China
| | - Yunyan Sun
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated First People's Hospital, 650# XinSongJiang Road, Shanghai, 201600, China
| | - Xiaowei Xi
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated First People's Hospital, 650# XinSongJiang Road, Shanghai, 201600, China.
| |
Collapse
|