1
|
Sahli E, Özmert E, Günel MD, Atilla H. Evaluation of the efficacy of subtenon autologous platelet-rich plasma therapy in patients with retinitis pigmentosa and factors affecting response to the treatment. Int Ophthalmol 2024; 44:388. [PMID: 39313744 DOI: 10.1007/s10792-024-03305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE To evaluate the effect of subtenon platelet-rich plasma (PRP) treatment in retinitis pigmentosa (RP) patients and to determine the factors affecting the response to treatment. METHODS For this purpose, 85 eyes of 43 RP patients with visual acuity of 1 logMAR and above were included in the study and subtenon autologous PRP treatment was applied 3 times at two-week intervals. In addition to a full ophthalmological examination, functional tests such as visual acuity, visual field, central retinal sensitivity measurement, and electroretinography (ERG) and structural measurements including the thickness of the outer retinal layers, and the length of the ellipsoid zone in optic coherence tomography, and the dimensions of the hyperautofluorescent ring in fundus autofluorescence imaging (FAF) were performed on the patients before and one month after the treatment. RESULTS A statistically significant improvement was achieved in the patient's visual acuity, visual field MD and PSD index, and dark-adapted 10.0 ERG response b wave amplitude. There was no significant change in average central retinal sensitivity, fixation stability, outer retinal layer thickness and ellipsoid zone length. No statistically significant change was detected in the diameter and area of the hyperautofluorescence ring measured by FAF. It was found that the age of the patients and the age of onset of the disease were parameters affecting the treatment response. CONCLUSION With PRP treatment applied periodically in RP patients, it may be possible to improve visual function and stop the progression of the disease, which can be detected by structural evaluations.
Collapse
Affiliation(s)
- Esra Sahli
- Department of Ophthalmology, School of Medicine, Ankara University, Ankara, Turkey.
- Graduate School of Health Sciences, Vision Artificial Vision and Rehabilitation of Low Vision Doctorate Program, Ankara University, Ankara, Turkey.
| | - Emin Özmert
- Department of Ophthalmology, School of Medicine, Ankara University, Ankara, Turkey
| | - Murat Doğuş Günel
- Department of Biostatistics, School of Medicine, Ankara University, Ankara, Turkey
| | - Huban Atilla
- Department of Ophthalmology, School of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
2
|
Radu M, Brănișteanu DC, Pirvulescu RA, Dumitrescu OM, Ionescu MA, Zemba M. Exploring Stem-Cell-Based Therapies for Retinal Regeneration. Life (Basel) 2024; 14:668. [PMID: 38929652 PMCID: PMC11204673 DOI: 10.3390/life14060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The escalating prevalence of retinal diseases-notably, age-related macular degeneration and hereditary retinal disorders-poses an intimidating challenge to ophthalmic medicine, often culminating in irreversible vision loss. Current treatments are limited and often fail to address the underlying loss of retinal cells. This paper explores the potential of stem-cell-based therapies as a promising avenue for retinal regeneration. We review the latest advancements in stem cell technology, focusing on embryonic stem cells (ESCs), pluripotent stem cells (PSCs), and mesenchymal stem cells (MSCs), and their ability to differentiate into retinal cell types. We discuss the challenges in stem cell transplantation, such as immune rejection, integration into the host retina, and functional recovery. Previous and ongoing clinical trials are examined to highlight the therapeutic efficacy and safety of these novel treatments. Additionally, we address the ethical considerations and regulatory frameworks governing stem cell research. Our analysis suggests that while stem-cell-based therapies offer a groundbreaking approach to treating retinal diseases, further research is needed to ensure long-term safety and to optimize therapeutic outcomes. This review summarizes the clinical evidence of stem cell therapy and current limitations in utilizing stem cells for retinal degeneration, such as age-related macular degeneration, retinitis pigmentosa, and Stargardt's disease.
Collapse
Affiliation(s)
- Madalina Radu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | | | - Ruxandra Angela Pirvulescu
- Department of Ophthalmology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Department of Ophthalmology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Otilia Maria Dumitrescu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Mihai Alexandru Ionescu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Mihail Zemba
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
- Department of Ophthalmology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
3
|
Bovi Dos Santos G, de Lima-Vasconcellos TH, Móvio MI, Birbrair A, Del Debbio CB, Kihara AH. New Perspectives in Stem Cell Transplantation and Associated Therapies to Treat Retinal Diseases: From Gene Editing to 3D Bioprinting. Stem Cell Rev Rep 2024; 20:722-737. [PMID: 38319527 DOI: 10.1007/s12015-024-10689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Inherited and non-inherited retinopathies can affect distinct cell types, leading to progressive cell death and visual loss. In the last years, new approaches have indicated exciting opportunities to treat retinopathies. Cell therapy in retinitis pigmentosa, age-related macular disease, and glaucoma have yielded encouraging results in rodents and humans. The first two diseases mainly impact the photoreceptors and the retinal pigmented epithelium, while glaucoma primarily affects the ganglion cell layer. Induced pluripotent stem cells and multipotent stem cells can be differentiated in vitro to obtain specific cell types for use in transplant as well as to assess the impact of candidate molecules aimed at treating retinal degeneration. Moreover, stem cell therapy is presented in combination with newly developed methods, such as gene editing, Müller cells dedifferentiation, sheet & drug delivery, virus-like particles, optogenetics, and 3D bioprinting. This review describes the recent advances in this field, by presenting an updated panel based on cell transplants and related therapies to treat retinopathies.
Collapse
Affiliation(s)
- Gabrieli Bovi Dos Santos
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, Santo André, SP, Brazil
| | | | - Marília Inês Móvio
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, Santo André, SP, Brazil
| | - Alexander Birbrair
- Department of Dermatology, Medical Sciences Center, University of Wisconsin-Madison, Rm 4385, 1300 University Avenue, Madison, WI, 53706, USA
| | - Carolina Beltrame Del Debbio
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo USP, São Paulo, SP, Brazil
| | - Alexandre Hiroaki Kihara
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, Santo André, SP, Brazil.
| |
Collapse
|
4
|
Khaboushan AS, Ebadpour N, Moghadam MMJ, Rezaee Z, Kajbafzadeh AM, Zolbin MM. Cell therapy for retinal degenerative disorders: a systematic review and three-level meta-analysis. J Transl Med 2024; 22:227. [PMID: 38431596 PMCID: PMC10908175 DOI: 10.1186/s12967-024-05016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Retinal degenerative disorders (RDDs) cause vision loss by damaging retinal neurons and photoreceptors, affecting individuals of all ages. Cell-based therapy has emerged as an effective approach for the treatment of RDDs with promising results. This meta-analysis aims to comprehensively evaluate the efficacy of cell therapy in treating age-related macular degeneration (AMD), retinitis pigmentosa (RP), and Stargardt macular degeneration (SMD) as the most prevalent RDDs. METHODS PubMed, Scopus, Web of Science, and Embase were searched using keywords related to various retinal diseases and cell therapy treatments until November 25th, 2023. The studies' quality was evaluated using the Joanna Briggs Institute's (JBI) checklist for quasi-experimental studies. Visual acuity measured as LogMAR score was used as our main outcome. A three-level random-effect meta-analysis was used to explore the visual acuity in patients who received cell-based therapy. Heterogeneity among the included studies was evaluated using subgroup and sensitivity analyses. Moreover, meta-regression for the type of cells, year of publication, and mean age of participants were performed. RESULTS Overall, 8345 studies were retrieved by the search, and 39 met the eligibility criteria, out of which 18 studies with a total of 224 eyes were included in the meta-analysis. There were 12 studies conducted on AMD, 7 on SMD, and 2 on RP. Cell therapy for AMD showed significant improvement in LogMAR (p < 0.05). Also, cell therapy decreased the LogMAR score in SMD and RP (p < 0.01 and p < 0.0001, respectively). Across all conditions, no substantial publication bias was detected (p < 0.05). CONCLUSION The findings of the study highlight that the application of cell therapy can enhance the visual acuity in AMD, SMD, and RP.
Collapse
Affiliation(s)
- Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Ebadpour
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Mehdi Johari Moghadam
- Department of Ophthalmology & Vision Science, Tschannen Eye Institute, University of California, Davis, Sacramento, CA, USA
| | - Zahra Rezaee
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
5
|
Finocchio L, Zeppieri M, Gabai A, Spadea L, Salati C. Recent Advances of Adipose-Tissue-Derived Mesenchymal Stem Cell-Based Therapy for Retinal Diseases. J Clin Med 2023; 12:7015. [PMID: 38002628 PMCID: PMC10672618 DOI: 10.3390/jcm12227015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
With the rapid development of stem cell research in modern times, stem cell-based therapy has opened a new era of tissue regeneration, becoming one of the most promising strategies for currently untreatable retinal diseases. Among the various sources of stem cells, adipose tissue-derived mesenchymal stem cells (ADSCs) have emerged as a promising therapeutic modality due to their characteristics and multiple functions, which include immunoregulation, anti-apoptosis of neurons, cytokine and growth factor secretion, and antioxidative activities. Studies have shown that ADSCs can facilitate the replacement of dying cells, promote tissue remodeling and regeneration, and support the survival and growth of retinal cells. Recent studies in this field have provided numerous experiments using different preclinical models. The aim of our review is to provide an overview of the therapeutic strategies, modern-day clinical trials, experimental models, and potential clinical use of this fascinating class of cells in addressing retinal disorders and diseases.
Collapse
Affiliation(s)
- Lucia Finocchio
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| | - Andrea Gabai
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, La Sapienza University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| |
Collapse
|
6
|
Chen X, Xu N, Li J, Zhao M, Huang L. Stem cell therapy for inherited retinal diseases: a systematic review and meta-analysis. Stem Cell Res Ther 2023; 14:286. [PMID: 37798796 PMCID: PMC10557171 DOI: 10.1186/s13287-023-03526-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023] Open
Abstract
PURPOSE Stem cell therapy is a promising therapeutic approach for inherited retinal diseases (IRDs). This study aims to quantitatively examine the effectiveness and safety of stem cell therapy for patients with IRDs, including retinitis pigmentosa and Stargardt disease (STGD). METHODS We searched PubMed, EMBASE, Web of Science, Cochrane Library databases, and the ClinicalTrials.gov website. The latest retrieval time was August 20, 2023. The primary outcomes were rates and mean difference (MD) of best-corrected visual acuity (BCVA) improvement. Subgroup analyses were conducted according to administration routes and stem cell types. This study was registered with PROSPERO (CRD42022349271). RESULTS Twenty-one prospective studies, involving 496 eyes (404 RP and 92 STGD) of 382 patients (306 RP and 76 STGD), were included in this study. For RP, the rate of BCVA improvement was 49% and 30% at 6 months and 12 months, respectively, and the BCVA was significantly improved in the operative eyes at 6 months post-treatment (MD = - 0.12 logMAR, 95% CI .17 to - 0.06 logMAR; P < 0.001), while there was no significant difference at 12 months post-treatment (MD = -0.06 logMAR; 95% CI - 0.13 to 0.01 logMAR; P = 0.10). For STGD, the rate of BCVA improvement was 60% and 55% at 6 months and 12 months, respectively, and the BCVA was significantly improved in the operative eyes at 6 months (MD = - 0.14 logMAR, 95% CI - 0.22 to - 0.07 logMAR; P = 0.0002) and 12 months (MD = - 0.17 logMAR, 95% CI - 0.29 to - 0.04 logMAR; P = 0.01). Subgroup analyses showed suprachoroidal space injection of stem cells may be more efficient for RP. Eleven treated-related ocular adverse events from three studies and no related systemic adverse events were reported. CONCLUSIONS This study suggests stem cell therapy may be effective and safe for patients with RP or STGD. The long-term vision improvement may be limited for RP patients. Suprachoroidal space injection of stem cells may be a promising administration route for RP patients. Limited by the low grade of evidence, large sample size randomized clinical trials are required in the future.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Ningda Xu
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Jiarui Li
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, China.
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China.
- College of Optometry, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
7
|
Paliwal H, Prajapati BG, Srichana T, Singh S, Patel RJ. Novel Approaches in the Drug Development and Delivery Systems for Age-Related Macular Degeneration. Life (Basel) 2023; 13:life13020568. [PMID: 36836923 PMCID: PMC9960288 DOI: 10.3390/life13020568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The number of patients with ocular disorders has increased due to contributing factors such as aging populations, environmental changes, smoking, genetic abnormalities, etc. Age-related macular degeneration (AMD) is one of the common ocular disorders which may advance to loss of vision in severe cases. The advanced form of AMD is classified into two types, dry (non-exudative) and wet (exudative) AMD. Although several therapeutic approaches are explored for the management of AMD, no approved therapy can substantially slow down the progression of dry AMD into the later stages. The focus of researchers in recent times has been engaged in developing targeted therapeutic products to halt the progression and maintain or improve vision in individuals diagnosed with AMD. The delivery of anti-VEGF agents using intravitreal therapy has found some success in managing AMD, and novel formulation approaches have been introduced in various studies to potentiate the efficacy. Some of the novel approaches, such as hydrogel, microspheres, polymeric nanoparticles, liposomes, implants, etc. have been discussed. Apart from this, subretinal, suprachoroidal, and port delivery systems have also been investigated for biologics and gene therapies. The unmet potential of approved therapeutic products has contributed to several patent applications in recent years. This review outlines the current treatment options, outcomes of recent research studies, and patent details around the novel drug delivery approach for the treatment of AMD.
Collapse
Affiliation(s)
- Himanshu Paliwal
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, Mehsana 384012, Gujarat, India
| | - Bhupendra Gopalbhai Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, Mehsana 384012, Gujarat, India
- Correspondence: or ; Tel.: +91-9429225025
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ravish J. Patel
- Ramanbhai Patel College of Pharmacy (RPCP), Charotar University of Science and Technology, Anand 388421, Gujarat, India
| |
Collapse
|
8
|
Musa M, Zeppieri M, Enaholo ES, Salati C, Parodi PC. Adipose Stem Cells in Modern-Day Ophthalmology. Clin Pract 2023; 13:230-245. [PMID: 36826163 PMCID: PMC9955457 DOI: 10.3390/clinpract13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Stem cells (SCs) have evolved as an interesting and viable factor in ophthalmologic patient care in the past decades. SCs have been classified as either embryonic, mesenchymal, tissue-specific, or induced pluripotent cells. Multiple novel management techniques and clinical trials have been established to date. While available publications are predominantly animal-model-based, significant material is derived from human studies and case-selected scenarios. This possibility of explanting cells from viable tissue to regenerate/repair damaged tissue points to an exciting future of therapeutic options in all fields of medicine, and ophthalmology is surely not left out. Adipose tissue obtained from lipo-aspirates has been shown to produce mesenchymal SCs that are potentially useful in different body parts, including the oculo-visual system. An overview of the anatomy, physiology, and extraction process for adipose-tissue-derived stem cells (ADSC) is important for better understanding the potential therapeutic benefits. This review examines published data on ADSCs in immune-modulatory, therapeutic, and regenerative treatments. We also look at the future of ADSC applications for ophthalmic patient care. The adverse effects of this relatively novel therapy are also discussed.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
- Correspondence:
| | | | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Pier Camillo Parodi
- Department of Plastic Surgery, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
9
|
Rohowetz LJ, Koulen P. Stem cell-derived retinal pigment epithelium cell therapy: Past and future directions. Front Cell Dev Biol 2023; 11:1098406. [PMID: 37065847 PMCID: PMC10097914 DOI: 10.3389/fcell.2023.1098406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 04/18/2023] Open
Abstract
The eyes are relatively immune privileged organs, making them ideal targets for stem cell therapy. Researchers have recently developed and described straightforward protocols for differentiating embryonic and induced pluripotent stem cells into retinal pigment epithelium (RPE), making diseases affecting the RPE, such as age-related macular degeneration (AMD), viable targets for stem cell therapy. With the advent of optical coherence tomography, microperimetry, and various other diagnostic technologies, the ability to document disease progression and monitor response to treatments such as stem cell therapy has been significantly enhanced in recent years. Previous phase I/II clinical trials have employed various cell origins, transplant methods, and surgical techniques to identify safe and efficacious methods of RPE transplantation, and many more are currently underway. Indeed, findings from these studies have been promising and future carefully devised clinical trials will continue to enhance our understanding of the most effective methods of RPE-based stem cell therapy, with the hope to eventually identify treatments for disabling and currently incurable retinal diseases. The purpose of this review is to briefly outline existing outcomes from initial clinical trials, review recent developments, and discuss future directions of clinical research involving stem-cell derived RPE cell transplantation for retinal disease.
Collapse
Affiliation(s)
- Landon J. Rohowetz
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri—Kansas City, Kansas City, MO, United States
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri—Kansas City, Kansas City, MO, United States
- Department of Biomedical Sciences, School of Medicine, University of Missouri—Kansas City, Kansas City, MO, United States
- *Correspondence: Peter Koulen,
| |
Collapse
|
10
|
Coulon SJ, Schuman JS, Du Y, Bahrani Fard MR, Ethier CR, Stamer WD. A novel glaucoma approach: Stem cell regeneration of the trabecular meshwork. Prog Retin Eye Res 2022; 90:101063. [PMID: 35398015 PMCID: PMC9464663 DOI: 10.1016/j.preteyeres.2022.101063] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022]
Abstract
Glaucoma is the leading cause of global irreversible blindness, necessitating research for new, more efficacious treatment options than currently exist. Trabecular meshwork (TM) cells play an important role in the maintenance and function of the aqueous outflow pathway, and studies have found that there is decreased cellularity of the TM in glaucoma. Regeneration of the TM with stem cells has been proposed as a novel therapeutic option by several reports over the last few decades. Stem cells have the capacity for self-renewal and the potential to differentiate into adult functional cells. Several types of stem cells have been investigated in ocular regenerative medicine: tissue specific stem cells, embryonic stem cells, induced pluripotent stem cells, and adult mesenchymal stem cells. These cells have been used in various glaucoma animal models and ex vivo models and have shown success in IOP homeostasis and TM cellularity restoration. They have also demonstrated stability without serious side effects for a significant period of time. Based on current knowledge of TM pathology in glaucoma and existing literature regarding stem cell regeneration of this tissue, we propose a human clinical study as the next step in understanding this potentially revolutionary treatment paradigm. The ability to protect and replace TM cells in glaucomatous eyes could change the field forever.
Collapse
Affiliation(s)
- Sara J Coulon
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Joel S Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA; Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA; Departments of Biomedical Engineering and Electrical and Computer Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA; Department of Physiology and Neuroscience, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA.
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mohammad Reza Bahrani Fard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA, USA
| | - C Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA, USA
| | - W Daniel Stamer
- Departments of Ophthalmology and Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
11
|
Li L, Yu Y, Lin S, Hu J. Changes in best-corrected visual acuity in patients with dry age-related macular degeneration after stem cell transplantation: systematic review and meta-analysis. Stem Cell Res Ther 2022; 13:237. [PMID: 35672801 PMCID: PMC9172101 DOI: 10.1186/s13287-022-02931-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022] Open
Abstract
Background Stem cell transplantation may improve visual acuity in patients with dry age-related macular degeneration. Herein, we aimed to summarise the evidence on the risks and benefits of stem cell transplantation for improving visual acuity, including the risk of adverse events. Methods Data were obtained from the PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials databases, and each database was interrogated from the date of inception until 19 March 2022. The rates of visual acuity outcomes and adverse events associated with stem cell transplantation were examined. All statistical analyses were conducted using Review Manager 5.4. The study was registered with PROSPERO (CRD 42022322902). Results The analysis examined 10 studies (102 patients), including one and three, randomised and non-randomised clinical trials, and one and five, multicentre prospective and prospective clinical trials, respectively. Meta-analysis showed changes in best-corrected visual acuity in the study eyes after stem cell transplantation (6 months: risk ratio [RR] = 17.00, 95% confidence interval [CI] 6.08–47.56, P < 0.00001; 12 months: RR = 11.00, 95% CI 2.36–51.36, P = 0.002). Subgroup analysis showed that different stem cell types achieved better best-corrected visual acuity at post-operative 6 months, compared to that observed at baseline. Four cases of related ocular adverse events and no related systemic adverse events were reported. Conclusion This meta-analysis suggests that stem cell transplantation may improve best-corrected visual acuity in dry age-related macular degeneration, based on small sample sizes and fewer randomised controlled trials. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02931-y.
Collapse
Affiliation(s)
- Licheng Li
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Yang Yu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China. .,Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - Jianmin Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China. .,The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian Province, China.
| |
Collapse
|
12
|
Agarwal R, Tripathi A. Current Modalities for Low Vision Rehabilitation. Cureus 2021; 13:e16561. [PMID: 34466307 PMCID: PMC8396411 DOI: 10.7759/cureus.16561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Visual rehabilitation is an effective method for increasing the quality of life among individuals with low vision or blindness due to untreatable causes. Low vision rehabilitation aims for patients to use their residual vision effectively and efficiently to enable them to live independent and productive lives. Low vision rehabilitation includes assessment of residual visual functions, prescription of rehabilitation aids, and training in the use of devices. A multidisciplinary approach and coordinated effort are necessary to take advantage of new scientific advances and achieve optimal results for the patient. This article aims to review the various aids and methods available for low vision rehabilitation and also discusses technology advances that can enhance the visual functioning of individuals who are visually impaired.
Collapse
Affiliation(s)
- Richa Agarwal
- Ophthalmology, All India Institute of Medical Sciences, Gorakhpur, IND
| | - Alka Tripathi
- Ophthalmology, All India Institute of Medical Sciences, Gorakhpur, IND
| |
Collapse
|
13
|
Adak S, Magdalene D, Deshmukh S, Das D, Jaganathan BG. A Review on Mesenchymal Stem Cells for Treatment of Retinal Diseases. Stem Cell Rev Rep 2021; 17:1154-1173. [PMID: 33410097 PMCID: PMC7787584 DOI: 10.1007/s12015-020-10090-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Mesenchymal Stem Cells (MSCs) have been studied extensively for the treatment of several retinal diseases. The therapeutic potential of MSCs lies in its ability to differentiate into multiple lineages and secretome enriched with immunomodulatory, anti-angiogenic and neurotrophic factors. Several studies have reported the role of MSCs in repair and regeneration of the damaged retina where the secreted factors from MSCs prevent retinal degeneration, improve retinal morphology and function. MSCs also donate mitochondria to rescue the function of retinal cells and exosomes secreted by MSCs were found to have anti-apoptotic and anti-inflammatory effects. Based on several promising results obtained from the preclinical studies, several clinical trials were initiated to explore the potential advantages of MSCs for the treatment of retinal diseases. This review summarizes the various properties of MSCs that help to repair and restore the damaged retinal cells and its potential for the treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Sanjucta Adak
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Damaris Magdalene
- Department of Strabismus, Sri Sankaradeva Nethralaya Hospital, Guwahati, Assam, India
| | - Saurabh Deshmukh
- Department of Strabismus, Sri Sankaradeva Nethralaya Hospital, Guwahati, Assam, India
| | - Dipankar Das
- Department of Pathology, Sri Sankaradeva Nethralaya Hospital, Guwahati, Assam, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
14
|
Sharma A, Jaganathan BG. Stem Cell Therapy for Retinal Degeneration: The Evidence to Date. Biologics 2021; 15:299-306. [PMID: 34349498 PMCID: PMC8327474 DOI: 10.2147/btt.s290331] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022]
Abstract
There is a rise in the number of people who have vision loss due to retinal diseases, and conventional therapies for treating retinal degeneration fail to repair and regenerate the damaged retina. Several studies in animal models and human trials have explored the use of stem cells to repair the retinal tissue to improve visual acuity. In addition to the treatment of age-related macular degeneration (AMD) and diabetic retinopathy (DR), stem cell therapies were used to treat genetic diseases such as retinitis pigmentosa (RP) and Stargardt’s disease, characterized by gradual loss of photoreceptor cells in the retina. Transplantation of retinal pigment epithelial (RPE) cells derived from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have shown promising results in improving retinal function in various preclinical models of retinal degeneration and clinical studies without any severe side effects. Mesenchymal stem cells (MSCs) were utilized to treat optic neuropathy, RP, DR, and glaucoma with positive clinical outcomes. This review summarizes the preclinical and clinical evidence of stem cell therapy and current limitations in utilizing stem cells for retinal degeneration.
Collapse
Affiliation(s)
- Amit Sharma
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
15
|
Naftali Ben Haim L, Moisseiev E. Drug Delivery via the Suprachoroidal Space for the Treatment of Retinal Diseases. Pharmaceutics 2021; 13:pharmaceutics13070967. [PMID: 34206925 PMCID: PMC8309112 DOI: 10.3390/pharmaceutics13070967] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
The suprachoroidal space (SCS), a potential space between the sclera and choroid, is becoming an applicable method to deliver therapeutics to the back of the eye. In recent years, a vast amount of research in the field has been carried out, with new discoveries in different areas of interest, such as imaging, drug delivery methods, pharmacokinetics, pharmacotherapies in preclinical and clinical trials and advanced therapies. The SCS can be visualized via advanced techniques of optical coherence tomography (OCT) in eyes with different pathologies, and even in healthy eyes. Drugs can be delivered easily and safely via hollow microneedles fitted to the length of the approximate thickness of the sclera. SCS injections were found to reach greater baseline concentrations in the target layers compared to intravitreal (IVT) injection, while agent clearance was faster with highly aqueous soluble molecules. Clinical trials with SCS injection of triamcinolone acetonide (TA) were executed with promising findings for patients with noninfectious uveitis (NIU), NIU implicated with macular edema and diabetic macular edema (DME). Gene therapy is evolving rapidly with viral and non-viral vectors that were found to be safe and efficient in preclinical trials. Here, we review these novel different aspects and new developments in clinical treatment of the posterior segment of the eye.
Collapse
Affiliation(s)
- Liron Naftali Ben Haim
- Department of Ophthalmology, Meir Medical Center, Kfar Saba, 59 Tshernichovsky St., Kfar Saba 4428164, Israel;
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-97471527; Fax: +972-97472427
| | - Elad Moisseiev
- Department of Ophthalmology, Meir Medical Center, Kfar Saba, 59 Tshernichovsky St., Kfar Saba 4428164, Israel;
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
16
|
Limoli PG, Limoli C, Vingolo EM, Franzone F, Nebbioso M. Mesenchymal stem and non-stem cell surgery, rescue, and regeneration in glaucomatous optic neuropathy. Stem Cell Res Ther 2021; 12:275. [PMID: 33957957 PMCID: PMC8101217 DOI: 10.1186/s13287-021-02351-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Background Glaucomatous optic neuropathy (GON) is an anatomofunctional impairment of the optic nerve triggered by glaucoma. Recently, growth factors (GFs) have been shown to produce retinal neuroenhancement. The suprachoroidal autograft of mesenchymal stem cells (MSCs) by the Limoli retinal restoration technique (LRRT) has proven to achieve retinal neuroenhancement by producing GF directly into the choroidal space. This retrospectively registered clinical study investigated the visual function changes in patients with GON treated with LRRT. Methods Twenty-five patients (35 eyes) with GON in progressive disease conditions were included in the study. Each patient underwent a comprehensive ocular examination, including the analysis of best corrected visual acuity (BCVA) for far and near visus, sensitivity by Maia microperimetry, and the study of the spectral domain-optical coherence tomography (SD-OCT). The patients were divided into two groups: a control group, consisting of 21 eyes (average age 72.2 years, range 50–83), and an LRRT group, consisting of 14 eyes (average age 67.4, range 50–84). Results After 6 months, the BCVA, close-up visus, and microperimetric sensitivity significantly improved in the LRRT-treated group (p<0.05), whereas the mean increases were not statistically significant in controls (p>0.5). Conclusions Patients with GON treated with LRRT showed a significant increase in visual performance (VP) both in BCVA and sensitivity and an improvement of residual close-up visus, in the comparison between the LRRT results and the control group. Further studies will be needed to establish the actual significance of the reported findings.
Collapse
Affiliation(s)
| | - Celeste Limoli
- Low Vision Research Centre of Milan, Piazza Sempione 3, 20145, Milan, Italy
| | - Enzo Maria Vingolo
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Federica Franzone
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy. .,Department of Sense Organs, Ocular Electrophysiology Centre, Umberto I Policlinic, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| |
Collapse
|
17
|
Kahraman NS, Gonen ZB, Sevim DG, Oner A. First Year Results of Suprachoroidal Adipose Tissue Derived Mesenchymal Stem Cell Implantation in Degenerative Macular Diseases. Int J Stem Cells 2021; 14:47-57. [PMID: 33122468 PMCID: PMC7904524 DOI: 10.15283/ijsc20025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/22/2020] [Accepted: 09/09/2020] [Indexed: 12/27/2022] Open
Abstract
Background and Objectives This study shows the clinical data of 1-year follow-up of 8 patients with degenerative macular diseases who received suprachoroidal adipose tissue derived mesenchymal stem cell (ADMSC) implantation. Methods and Results This prospective, single-center, phase 1/2 study enrolled 8 eyes of 8 patients with degenerative macular diseases of various reasons who underwent suprachoroidal implantation of ADMSCs. All patients had severe visual field defects and severe visual loss. All patients had defective multifocal electroretinography (mf ERG). The worse eye of the patient was selected for the operation. Patients were evaluated on the first day, first month, sixth month and at 1 year postoperatively. Best corrected visual acuity (BCVA), anterior segment and fundus examination, color photography, optical coherence tomography (OCT) and visual field (VF) examination were carried out at each visit. Fundus fluorescein angiography (FFA) and mfERG recordings were performed at the end of the sixth months. All 8 patients completed the 1 year follow-up. None of them had any systemic or ocular complications. Seven of the patients experienced visual acuity improvement, visual field improvement and improvement in the mfERG recordings. We found choroidal thickening in OCT of the four treated eyes. Conclusions Even though the sample size is small, stem cell treatment with suprachoroidal implantation of ADMSCs seems to be safe and the improvements were encouraging. To optimize the cell delivery technique and to evaluate the effects of this therapy on visual acuity and the quality of life of these patients, future studies with larger number of cases will be necessary.
Collapse
Affiliation(s)
| | | | | | - Ayse Oner
- Ophthalmology Department, Kayseri Acibadem Hospital, Kayseri, Turkey
| |
Collapse
|
18
|
Wan CR, Muya L, Kansara V, Ciulla TA. Suprachoroidal Delivery of Small Molecules, Nanoparticles, Gene and Cell Therapies for Ocular Diseases. Pharmaceutics 2021; 13:pharmaceutics13020288. [PMID: 33671815 PMCID: PMC7926337 DOI: 10.3390/pharmaceutics13020288] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Suprachoroidal drug delivery technology has advanced rapidly and emerged as a promising administration route for a variety of therapeutic candidates, in order to target multiple ocular diseases, ranging from neovascular age-related macular degeneration to choroidal melanoma. This review summarizes the latest preclinical and clinical progress in suprachoroidal delivery of therapeutic agents, including small molecule suspensions, polymeric entrapped small molecules, gene therapy (viral and nonviral nanoparticles), viral nanoparticle conjugates (VNCs), and cell therapy. Formulation customization is critical in achieving favorable pharmacokinetics, and sustained drug release profiles have been repeatedly observed for multiple small molecule suspensions and polymeric formulations. Novel therapeutic agents such as viral and nonviral gene therapy, as well as VNCs, have demonstrated promise in animal studies. Several of these suprachoroidally-administered therapies have been assessed in clinical trials, including small molecule suspensions of triamcinolone acetonide and axitinib, viral vector RGX-314 for gene therapy, and VNC AU-011. With continued drug delivery research and optimization, coupled with customized drug formulations, suprachoroidal drug delivery may address large unmet therapeutic needs in ophthalmology, targeting affected tissues with novel therapies for efficacy benefits, compartmentalizing therapies away from unaffected tissues for safety benefits, and achieving durability to relieve the treatment burden noted with current agents.
Collapse
|
19
|
Sung Y, Lee SM, Park M, Choi HJ, Kang S, Choi BI, Lew H. Treatment of traumatic optic neuropathy using human placenta-derived mesenchymal stem cells in Asian patients. Regen Med 2020; 15:2163-2179. [PMID: 33315474 DOI: 10.2217/rme-2020-0044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: To assess the safety and feasibility of subtenon transplantation of human placenta-derived mesenchymal stem cells (hPMSCs) in Asian patients with traumatic optic neuropathy. Materials & methods: The survival of retinal ganglion cells in the rat retina was evaluated by monitoring the expression of Tuj1 and Gfap after optic nerve compression. Based on the preclinical data, we conducted a Phase I, open label, single center, nonrandomized clinical trial in four Asian traumatic optic neuropathy patients. The safety and ophthalmologic changes were evaluated. Results: The levels of Tuj1 and Gfap expression were significantly increased in the hPMSC treatment group compared with the sham group, suggesting a protective effect of hPMSCs on the optic nerve and retinal ganglion cells. There was no evidence of adverse proliferation, tumorigenicity, severe inflammation or other serious issues during the 12-month follow-up period. Visual acuity improved in all four patients. Conclusion: The results suggested that hPMSCs are safe and have potential utility in regenerative medicine. Clinical trial registration number: 20150196587 (Korean FDA), 2015-07-123-054 (IRB).
Collapse
Affiliation(s)
- Youngje Sung
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 463 712, Republic of Korea
| | - Sang Min Lee
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 463 712, Republic of Korea
| | - Mira Park
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 463 712, Republic of Korea
| | - Hye Jeong Choi
- Department of Radiation, CHA Bundang Medical Center, CHA University, CHA University, Seongnam-si, Gyeonggi-do 463 712, Republic of Korea
| | - Sukho Kang
- Department of Obstetrics & Gynecology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 463 712, Republic of Korea
| | - Byung In Choi
- Division, CHA Stem Cell Institute, CHA Biotech Co., Ltd, Seoul 135 907, Republic of Korea
| | - Helen Lew
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 463 712, Republic of Korea
| |
Collapse
|
20
|
Kahraman NS, Öner A. Umbilical cord-derived mesenchymal stem cell implantation in patients with optic atrophy. Eur J Ophthalmol 2020; 31:3463-3470. [PMID: 33307808 DOI: 10.1177/1120672120977824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Optic nerve cells can be irreversibly damaged by common various causes. Unfortunately optic nerve and retinal ganglion cells have no regenerative capacity and undergo apoptosis in case of damage. In this study, our aim is to investigate the safety and efficacy of suprachoroidal umbilical cord-derived MSCs (UC-MSCs) implantation in patients with optic atrophy. METHODS This study enrolled 29 eyes of 23 patients with optic atrophy who were followed in the ophthalmology department of our hospital. BCVA, anterior segment, fundus examination, color photography, and optical coherence tomography (OCT) were carried out at each visit. Fundus fluorescein angiography and visual field examination were performed at the end of the first, third, sixth months, and 1 year follow-up. RESULTS After suprachoroidal UC-MSCs implantation there were statistically significant improvements in BCVA and VF results during 12 months follow-up (p < 0.05). When we evaluate the results of VF tests, the mean deviation (MD) value at baseline was -26.11 ± 8.36 (range -14.18 to -34.41). At the end of the first year it improved to -25.01 ± 8.73 (range -12.56 to -34.41) which was statistically significant (p < 0.05). When we evaluate the mean RNFL thickness measurements at baseline and at 12 month follow-up the results were 81.8 ± 24.9 μm and 76.6 ± 22.6 μm, respectively. There was not a significant difference between the mean values (p > 0.05). CONCLUSION Stem cell treatment with suprachoroidal implantation of UCMSCs seems to be safe and effective in the treatment for optic nerve diseases that currently have no curative treatment options.
Collapse
Affiliation(s)
| | - Ayşe Öner
- Department of Ophthalmology, Acibadem Hospital, Kayseri, Turkey
| |
Collapse
|
21
|
Antioxidant and Biological Properties of Mesenchymal Cells Used for Therapy in Retinitis Pigmentosa. Antioxidants (Basel) 2020; 9:antiox9100983. [PMID: 33066211 PMCID: PMC7602011 DOI: 10.3390/antiox9100983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/04/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Both tissue repair and regeneration are a priority in regenerative medicine. Retinitis pigmentosa (RP), a complex retinal disease characterized by the progressive loss of impaired photoreceptors, is currently lacking effective therapies: this represents one of the greatest challenges in the field of ophthalmological research. Although this inherited retinal dystrophy is still an incurable genetic disease, the oxidative damage is an important pathogenetic element that may represent a viable target of therapy. In this review, we summarize the current neuroscientific evidence regarding the effectiveness of cell therapies in RP, especially those based on mesenchymal cells, and we focus on their therapeutic action: limitation of both oxidative stress and apoptotic processes triggered by the disease and promotion of cell survival. Cell therapy could therefore represent a feasible therapeutic option in RP.
Collapse
|
22
|
Kahraman NS, Oner A. Umbilical cord derived mesenchymal stem cell implantation in retinitis pigmentosa: a 6-month follow-up results of a phase 3 trial. Int J Ophthalmol 2020; 13:1423-1429. [PMID: 32953582 DOI: 10.18240/ijo.2020.09.14] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/15/2020] [Indexed: 12/20/2022] Open
Abstract
AIM To investigate the efficacy and the safety of umbilical cord derived mesenchymal stem cell (UC-MSC) implantation in patients with retinitis pigmentosa (RP). METHODS This prospective, single-center, phase 3 clinical study enrolled 124 eyes of 82 RP patients. The patients received 5 million UC-MSCs to the suprachoroidal area with a surgical procedure. Patients were evaluated on the 1st day, 1st, and 6th months postoperatively. Best corrected visual acuity (BCVA), anterior segment and fundus examinations, color photography, optical coherence tomography (OCT), and visual field (VF) tests were carried out at each visit. Fundus fluorescein angiography (FFA) and multifocal electroretinography (mfERG) recordings were performed at the end of the 6th month. Ocular and systemic adverse events of the surgical procedure were also noted. RESULTS All of the 82 patients completed the 6-month follow-up period. None of them had any serious systemic or ocular complications. There were statistically significant improvements in BCVA and VF during the study (all P<0.05). The amplitudes of the P1 waves in the central areas showed significant improvements in mfERG recordings. There were also significant increases in implicit times of P1 waves in the central areas. CONCLUSION Suprachoroidal administration of UC-MSCs has beneficial effect on BCVA, VF, and mfERG measurements during the 6-month follow-up period. Cell mediated therapy based on the secretion of growth factors (GFs) seems to be an effective and safe option for degenerative retinal diseases.
Collapse
Affiliation(s)
| | - Ayse Oner
- Department of Ophthalmology, Kayseri Acibadem Hospital, Kayseri 38030, Turkey
| |
Collapse
|
23
|
Limoli PG, Limoli CSS, Morales MU, Vingolo EM. Mesenchymal stem cell surgery, rescue and regeneration in retinitis pigmentosa: clinical and rehabilitative prognostic aspects. Restor Neurol Neurosci 2020; 38:223-237. [PMID: 32310198 PMCID: PMC7504992 DOI: 10.3233/rnn-190970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Purpose: To assess whether treatment with the Limoli Retinal Restoration Technique (LRRT) can be performed in patients with retinitis pigmentosa (RP), grafting the autologous cells in a deep scleral pocket above the choroid of each eye to exert their beneficial effect on the residual retinal cells. Methods: The patients were subjected to a complete ophthalmological examination, including best corrected visual acuity (BCVA), close-up visus measurements, spectral domain-optical coherence tomography (SD-OCT), microperimetry (MY), and electroretinography (ERG). Furthermore, the complete ophthalmological examination was carried out at baseline (T0) and at 6 months (T180) after surgery. The Shapiro–Wilk test was used to assess the normality of distribution of the investigated parameters. A mixed linear regression model was used to analyse the difference in all the studied parameters at T0 and T180, and to compare the mean change between the two groups. All statistical analyses were performed with STATA 14.0 (Collage Station, Texas, USA). Results: LRRT treatment was performed in 34 eyes of 25 RP patients recruited for the study. The eyes were classified in two groups on the basis of foveal thickness (FT) assessed by SD-OCT: 14 eyes in Group A (FT≤190μm) and the remaining 20 ones in Group B (FT > 190μm). Although it had not reached the statistical significance, Group B showed a better improvement in BCVA, residual close-up visus and sensitivity than Group A. Conclusions: Previous studies have described the role of LRRT in slowing down retinal degenerative diseases. Consequently, this surgical procedure could improve the clinical and rehabilitative prognostic parameters in RP patients. On the other hand, further clinical research and studies with longer follow-up will be needed to evaluate its efficacy.
Collapse
Affiliation(s)
| | | | - Marco Ulises Morales
- Division of Clinical Neurosciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Enzo Maria Vingolo
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro, Rome, Italy
| |
Collapse
|
24
|
Özmert E, Arslan U. Management of retinitis pigmentosa by Wharton's jelly-derived mesenchymal stem cells: prospective analysis of 1-year results. Stem Cell Res Ther 2020; 11:353. [PMID: 32787913 PMCID: PMC7425139 DOI: 10.1186/s13287-020-01870-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE The aim of the study was to investigate annual structural and functional results, and their correlation with inheritance pattern of retinitis pigmentosa (RP) patients who were treated with Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs). MATERIAL AND METHODS This prospective, sequential, open-label phase-3 clinical study was conducted at Ankara University Faculty of Medicine, Department of Ophthalmology, between April 2019 and May 2020. The study included 34 eyes from 32 retinitis pigmentosa patients of various genotypes who were enrolled in the stem cells clinical trial. The patients were followed for 12 months after the WJ-MSCs transplantation into subtenon space and evaluated with consecutive examinations. Genetic mutations were investigated using a retinitis pigmentosa panel sequencing method consisting of 90 genes. All patients underwent a complete routine ophthalmic examination with best corrected visual acuity, optical coherence tomography angiography, visual field, and full-field electroretinography. Quantitative data obtained from baseline (T0), 6th month (T1), and 12th month (T2) examinations were compared. RESULTS According to timepoints at T0, T1, and T2: The mean outer retinal thickness was 100.3 μm, 119.1 μm, and 118.0 μm, respectively (p = 0.01; T0 < T1, T2). The mean horizontal ellipsoid zone width were 2.65 mm, 2.70 mm, and 2.69 mm respectively (p = 0.01; T0 < T1, T2). The mean best corrected visual acuity (BCVA) were 70.5 letters, 80.6 letters, and 79.9 letters, respectively (p = 0.01; T0 < T1, T2). The mean fundus perimetry deviation index (FPDI) was 8.0%, 11.4%, and 11.6%, respectively (p = 0.01; T0 < T1, T2). The mean full-field flicker ERG parameters at T0, T1, and T2: amplitudes were 2.4 mV, 5.0 mV, and 4.6 mV, respectively (p = 0.01; T0 < T1, T2). Implicit time were 43.3 ms, 37.9 ms, and 38.6 ms, respectively (p = 0.01; T0 > T1, T2). According to inheritance pattern, BCVA, FPDI, ERG amplitude, and implicit time data improved significantly in autosomal dominant (AD) and in autosomal recessive (AR) RP at 1 year follow-up (pAD = 0.01, pAR = 0.01; pAD = pAR > pX-linked). No ocular or systemic adverse events related to the surgical methods and/or WJ-MSCs were observed during the 1 year follow-up period. CONCLUSION Subtenon transplantation of WJ-MSCs was found to be effective and safe in the treatment of RP during the first year, similar to the sixth month's results. In autosomal dominant and autosomal recessive inheritance of RP, regardless of the genetic mutations, subtenon administration of WJ-MSCs can be considered an effective and safe option without any adverse effect for slowing or stopping the disease progression. TRIAL REGISTRATION ClinicalTrials.gov, NCT04224207 . Registered 8 January 2020.
Collapse
Affiliation(s)
- Emin Özmert
- Faculty of Medicine Department of Ophthalmology, Ankara University, Ankara, Turkey
| | - Umut Arslan
- Bioretina Eye Clinic, Ankara University Technopolis, Neorama Ofis 55-56 Yaşam Cad. No 13/A Beştepe, Yenimahalle, Ankara, Turkey
| |
Collapse
|
25
|
Management of Retinitis Pigmentosa via Platelet-Rich Plasma or Combination with Electromagnetic Stimulation: Retrospective Analysis of 1-Year Results. Adv Ther 2020; 37:2390-2412. [PMID: 32303913 DOI: 10.1007/s12325-020-01308-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate whether the natural progression rate of retinitis pigmentosa can be decreased by subtenon autologous platelet-rich plasma application alone or combination with retinal electromagnetic stimulation. METHODS The study includes retrospective analysis of 60 patients with retinitis pigmentosa. Patients constitute three groups with similar demographic characteristics: the combined management group (group 1) consists of 20 patients with retinitis pigmentosa (40 eyes) who received combined retinal electromagnetic stimulation and subtenon platelet-rich plasma; the subtenon platelet-rich plasma-only group (group 2) consisted of 20 patients with retinitis pigmentosa (40 eyes); the natural course (control) group (group 3) consists of 20 patients with retinitis pigmentosa (40 eyes) who did not receive any treatment. Horizontal and vertical ellipsoid zone width, fundus perimetry deviation index, and best corrected visual acuity changes were compared within and between groups after a 1-year follow-up period. RESULTS Detected horizontal ellipsoid zone percentage changes were + 1% in group 1, - 2.85% in group 2, and - 9.36% in group 3 (Δp 1 > 2 > 3). Detected vertical ellipsoid zone percentage changes were + 0.34% in group 1, - 3.05% in group 2, and - 9.09% in group 3 (Δp 1 > 2 > 3). Detected fundus perimetry deviation index percentage changes were + 0.05% in group 1, - 2.68% in group 2, and - 8.78% in group 3 (Δp 1 > 2 > 3). CONCLUSION Platelet-rich plasma is a good source of growth factors, but its half-life is 4-6 months. Subtenon autologous platelet-rich plasma might more effectively slow down photoreceptor loss when repeated as booster injections and combined with retinal electromagnetic stimulation. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT04252534.
Collapse
|
26
|
Özmert E, Arslan U. Management of retinitis pigmentosa by Wharton's jelly derived mesenchymal stem cells: preliminary clinical results. Stem Cell Res Ther 2020; 11:25. [PMID: 31931872 PMCID: PMC6958670 DOI: 10.1186/s13287-020-1549-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/12/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The aim of this study is to determine if umbilical cord Wharton's jelly derived mesenchymal stem cells implanted in sub-tenon space have beneficial effects on visual functions in retinitis pigmentosa patients by reactivating the degenerated photoreceptors in dormant phase. MATERIAL AND METHODS This prospective, open-label, phase-3 clinical trial was conducted between April of 2019 and October of 2019 at Ankara University Faculty of Medicine, Department of Ophthalmology. 32 RP patients (34 eyes) were included in the study. The patients were followed for 6 months after the Wharton's jelly derived mesenchymal stem cell administration, and evaluated with consecutive examinations. All patients underwent a complete routine ophthalmic examination, and best corrected visual acuity, optical coherens tomography angiography, visual field, multifocal and full-field electroretinography were performed. The quantitative results were obtained from a comparison of the pre-injection and final examination (6th month) values. RESULTS The mean best corrected visual acuity was 70.5 letters prior to Wharton's jelly derived mesenchymal stem cell application and 80.6 letters at the 6th month (p = 0.01). The mean visual field median deviation value was 27.3 dB before the treatment and 24.7 dB at the 6th month (p = 0.01). The mean outer retinal thickness was 100.3 μm before the treatment and 119.1 μm at 6th month (p = 0.01). In the multifocal electroretinography results, P1 amplitudes improved in ring1 from 24.8 to 39.8 nv/deg2 (p = 0.01), in ring2 from 6.8 to 13.6 nv/deg2 (p = 0.01), and in ring3 from 3.1 to 5.7 nv/deg2 (p = 0.02). P1 implicit times improved in ring1 from 44.2 to 32.4 ms (p = 0.01), in ring2 from 45.2 to 33.2 ms (p = 0.02), and in ring3 from 41.9 to 32.4 ms (p = 0.01). The mean amplitude improved in 16 Tds from 2.4 to 5.0 nv/deg2 (p = 0.01) and in 32 Tds from 2.4 to 4.8 nv/deg2 (p = 0.01) in the full-field flicker electroretinography results. Full field flicker electroretinography mean implicit time also improved in 16 Tds from 43.3 to 37.9 ms (p = 0.01). No ocular or systemic adverse events related to the two types of surgical methods and/or Wharton's jelly derived mesenchymal stem cells itself were observed during the follow-up period. CONCLUSION RP is a genetic disorder that can result in blindness with outer retinal degeneration. Regardless of the type of genetic mutation, sub-tenon Wharton's jelly derived mesenchymal stem cell administration appears to be an effective and safe option. There are no serious adverse events or ophthalmic / systemic side effects for 6 months follow-up. Although the long-term adverse effects are still unknown, as an extraocular approach, subtenon implantation of the stem cells seems to be a reasonable way to avoid the devastating side effects of intravitreal/submacular injection. Further studies that include long-term follow-up are needed to determine the duration of efficacy and the frequency of application. TRIAL REGISTRATION SHGM56733164. Redistered 28 January 2019 https://shgm.saglik.gov.tr/organ-ve-doku-nakli-koordinatorlugu/56733164/203 E.507.
Collapse
Affiliation(s)
- Emin Özmert
- Faculty of Medicine Department of Ophthalmology, Ankara University, Ankara, Turkey
| | - Umut Arslan
- Ankara University Technopolis, Neorama Ofis 55-56 Yaşam Cad, No 13/A Beştepe /Yenimahalle, Ankara, Turkey.
| |
Collapse
|
27
|
Limoli PG, Vingolo EM, Limoli C, Nebbioso M. Stem Cell Surgery and Growth Factors in Retinitis Pigmentosa Patients: Pilot Study after Literature Review. Biomedicines 2019; 7:biomedicines7040094. [PMID: 31801246 PMCID: PMC6966474 DOI: 10.3390/biomedicines7040094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 01/03/2023] Open
Abstract
To evaluate whether grafting of autologous mesenchymal cells, adipose-derived stem cells, and platelet-rich plasma into the supracoroideal space by surgical treatment with the Limoli retinal restoration technique (LRRT) can exert a beneficial effect in retinitis pigmentosa (RP) patients. Twenty-one eyes underwent surgery and were divided based on retinal foveal thickness (FT) ≤ 190 or > 190 µm into group A-FT and group B-FT, respectively. The specific LRRT triad was grafted in a deep scleral pocket above the choroid of each eye. At 6-month follow-up, group B showed a non-significant improvement in residual close-up visus and sensitivity at microperimetry compared to group A. After an in-depth review of molecular biology studies concerning degenerative phenomena underlying the etiopathogenesis of retinitis pigmentosa (RP), it was concluded that further research is needed on tapeto-retinal degenerations, both from a clinical and molecular point of view, to obtain better functional results. In particular, it is necessary to increase the number of patients, extend observation timeframes, and treat subjects in the presence of still trophic retinal tissue to allow adequate biochemical and functional catering.
Collapse
Affiliation(s)
- Paolo Giuseppe Limoli
- Low Vision Research Centre of Milan, p.zza Sempione 3, 20145 Milan, Italy; (P.G.L.); (C.L.)
| | - Enzo Maria Vingolo
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy;
| | - Celeste Limoli
- Low Vision Research Centre of Milan, p.zza Sempione 3, 20145 Milan, Italy; (P.G.L.); (C.L.)
| | - Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy;
- Correspondence: ; Tel.: +39-06-49975422; Fax: +39-06-49975425
| |
Collapse
|
28
|
Oner A, Gonen ZB, Sevim DG, Smim Kahraman N, Unlu M. Suprachoroidal Adipose Tissue-Derived Mesenchymal Stem Cell Implantation in Patients with Dry-Type Age-Related Macular Degeneration and Stargardt's Macular Dystrophy: 6-Month Follow-Up Results of a Phase 2 Study. Cell Reprogram 2019; 20:329-336. [PMID: 31251672 DOI: 10.1089/cell.2018.0045] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This prospective clinical case series aimed to investigate the safety and efficacy of suprachoroidal adipose tissue-derived mesenchymal stem cell (ADMSC) implantation in patients with dry-type age-related macular degeneration (AMD) and Stargardt's macular dystrophy (SMD). This study included four patients with advanced-stage dry-type AMD and four patients with SMD who underwent suprachoroidal implantation of ADMSCs. The best-corrected visual acuity (BCVA) in the study was 20/200. The worse eye of the patient was operated on. Patients were evaluated on the first day, first week, and first, third, and sixth months postoperatively. BCVA, anterior segment and fundus examination, color photography, fundus autofluorescence, optical coherence tomography, and visual field examination were carried out at each visit. Fundus fluorescein angiography and multifocal electroretinography (mf-ERG) recordings were performed at the end of the first, third, and sixth months and anytime if necessary during the follow-up. All eight patients completed the sixth month follow-up. None of them had any systemic or ocular complications. All of the eight patients experienced visual acuity improvement, visual field improvement, and improvement in mf-ERG recordings. Stem cell treatment with suprachoroidal implantation of ADMSCs seems to be safe and effective in the treatment of dry-type AMD and SMD.
Collapse
Affiliation(s)
- Ayse Oner
- 1 Department of Ophthalmology, Faculty of Medicine, Erciyes University , Kayseri, Turkey
| | - Zeynep Burcin Gonen
- 2 Genome and Stem Cell Center (GENKOK), Erciyes University , Kayseri, Turkey .,3 Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Erciyes University , Kayseri, Turkey
| | | | | | - Metin Unlu
- 5 Department of Ophthalmology, Faculty of Medicine, Erciyes University , Kayseri, Turkey
| |
Collapse
|
29
|
Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci 2019; 76:3323-3348. [PMID: 31055643 PMCID: PMC11105258 DOI: 10.1007/s00018-019-03125-1] [Citation(s) in RCA: 311] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are isolated from multiple biological tissues-adult bone marrow and adipose tissues and neonatal tissues such as umbilical cord and placenta. In vitro, MSCs show biological features of extensive proliferation ability and multipotency. Moreover, MSCs have trophic, homing/migration and immunosuppression functions that have been demonstrated both in vitro and in vivo. A number of clinical trials are using MSCs for therapeutic interventions in severe degenerative and/or inflammatory diseases, including Crohn's disease and graft-versus-host disease, alone or in combination with other drugs. MSCs are promising for therapeutic applications given the ease in obtaining them, their genetic stability, their poor immunogenicity and their curative properties for tissue repair and immunomodulation. The success of MSC therapy in degenerative and/or inflammatory diseases might depend on the robustness of the biological functions of MSCs, which should be linked to their therapeutic potency. Here, we outline the fundamental and advanced concepts of MSC biological features and underline the biological functions of MSCs in their basic and translational aspects in therapy for degenerative and/or inflammatory diseases.
Collapse
Affiliation(s)
- Abderrahim Naji
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan.
| | - Masamitsu Eitoku
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Benoit Favier
- CEA, DRF-IBFJ, IDMIT, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, Paris-Sud University, Fontenay-aux-Roses, France
| | - Frédéric Deschaseaux
- STROMALab, Etablissement Français du Sang Occitanie, UMR 5273 CNRS, INSERM U1031, Université de Toulouse, Toulouse, France
| | - Nathalie Rouas-Freiss
- CEA, DRF-Francois Jacob Institute, Research Division in Hematology and Immunology (SRHI), Saint-Louis Hospital, IRSL, UMRS 976, Paris, France
| | - Narufumi Suganuma
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
30
|
Six-month results of suprachoroidal adipose tissue-derived mesenchymal stem cell implantation in patients with optic atrophy: a phase 1/2 study. Int Ophthalmol 2019; 39:2913-2922. [PMID: 31309439 DOI: 10.1007/s10792-019-01141-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 07/06/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE This prospective clinical case series aimed to investigate the safety and efficacy of suprachoroidal adipose tissue-derived mesenchymal stem cell (ADMSC) implantation in patients with optic nerve diseases. METHODS This prospective, single-center, phase 1/2 study enrolled 4 eyes of 4 patients with optic atrophy of various reasons who underwent suprachoroidal implantation of ADMSCs. The best-corrected visual acuity (BCVA) in the study was HM at 1 m. The worse eye of the patient was operated. Patients were evaluated on the first day, first week, first month, third and sixth months postoperatively. BCVA, anterior segment and fundus examination, color photography, optical coherence tomography (OCT) and visual field examination were carried out at each visit. Fundus fluorescein angiography and multifocal electroretinography (mfERG) recordings were performed at the end of the first, third and sixth months and anytime if necessary during the follow-up. RESULTS All 4 patients completed the six-month follow-up. None of them had any systemic or ocular complications. All of the patients experienced visual acuity improvement, visual field improvement and improvement in the mfERG recordings. We found choroidal thickening in OCT of the 4 patients. CONCLUSION Even though the sample size is small, the improvements were still encouraging. Stem cell treatment with suprachoroidal implantation of ADMSCs seems to be safe and effective in the treatment for optic nerve diseases that currently have no curative treatment options.
Collapse
|
31
|
Altınbay D, İdil ŞA. Current Approaches to Low Vision (Re)Habilitation. Turk J Ophthalmol 2019; 49:154-163. [PMID: 31245978 PMCID: PMC6624462 DOI: 10.4274/tjo.galenos.2018.53325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/19/2018] [Indexed: 12/22/2022] Open
Abstract
With increased life expectancy at birth and especially the rising incidence of age-related macular degeneration, low vision (re)habilitation is becoming more important today. Important factors to consider when presenting rehabilitation and treatment options to patients presenting to low vision centers include the diagnosis of the underlying disease, the patient’s age, their existing visual functions (especially distance and near visual acuity), whether visual loss is central or peripheral, whether their disease is progressive or not, the patient’s education level, and their expectations from us. Low vision patients must be guided to the right centers at the appropriate age, with appropriate indications, and with realistic expectations, and the rehabilitation process must be carried out as a multidisciplinary collaboration.
Collapse
Affiliation(s)
- Deniz Altınbay
- Private Niv Eye Center, Ophthalmology Clinic, Adana, Turkey
- Ankara University, Artificial Vision and Low Vision Rehabilitation, Master Student with Thesis in Vision, Ankara, Turkey
| | - Şefay Aysun İdil
- Ankara University Faculty of Medicine, Department of Ophthalmology, Ankara, Turkey
- Center of Vision Research and Low Vision Rehabilitation, Ankara, Turkey
| |
Collapse
|
32
|
Nebbioso M, Lambiase A, Cerini A, Limoli PG, La Cava M, Greco A. Therapeutic Approaches with Intravitreal Injections in Geographic Atrophy Secondary to Age-Related Macular Degeneration: Current Drugs and Potential Molecules. Int J Mol Sci 2019; 20:ijms20071693. [PMID: 30987401 PMCID: PMC6479480 DOI: 10.3390/ijms20071693] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 01/22/2023] Open
Abstract
The present review focuses on recent clinical trials that analyze the efficacy of intravitreal therapeutic agents for the treatment of dry age-related macular degeneration (AMD), such as neuroprotective drugs, and complement inhibitors, also called immunomodulatory or anti-inflammatory agents. A systematic literature search was performed to identify randomized controlled trials published prior to January 2019. Patients affected by dry AMD treated with intravitreal therapeutic agents were included. Changes in the correct visual acuity and reduction in geographic atrophy progression were evaluated. Several new drugs have shown promising results, including those targeting the complement cascade and neuroprotective agents. The potential action of the two groups of drugs is to block complement cascade upregulation of immunomodulating agents, and to prevent the degeneration and apoptosis of ganglion cells for the neuroprotectors, respectively. Our analysis indicates that finding treatments for dry AMD will require continued collaboration among researchers to identify additional molecular targets and to fully interrogate the utility of pluripotent stem cells for personalized therapy.
Collapse
Affiliation(s)
- Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| | - Alessandro Lambiase
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| | - Alberto Cerini
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| | | | - Maurizio La Cava
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| | - Antonio Greco
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
33
|
Abstract
In recent years, advances in ocular imaging, drug delivery, and ophthalmic surgery have allowed for better visualization and access to the suprachoroidal space. Although previously considered as only a potential space, the suprachoroidal space may serve as a route for drug delivery to the posterior pole, an egress for glaucoma drainage devices, a location for temporary buckling, and a site for prosthesis implantation. Drugs delivered to the suprachoroidal space may achieve higher concentrations in the retina while minimizing exposure to anterior segment tissues, potentially reducing risks of glaucoma or cataracts. Finally, advanced multimodal imaging now allows not only a better understanding of the physiology of the suprachoroid, but also in vivo monitoring of pathologies and drug delivery to the suprachoroidal space. Here, we discuss the newest developments in the medical and surgical applications of this space with potential.
Collapse
Affiliation(s)
- Parisa Emami-Naeini
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| | - Glenn Yiu
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| |
Collapse
|
34
|
Arslan U, Özmert E, Demirel S, Örnek F, Şermet F. Effects of subtenon-injected autologous platelet-rich plasma on visual functions in eyes with retinitis pigmentosa: preliminary clinical results. Graefes Arch Clin Exp Ophthalmol 2018; 256:893-908. [PMID: 29546474 DOI: 10.1007/s00417-018-3953-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 02/26/2018] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
PURPOSE One of the main reasons for apoptosis and dormant cell phases in degenerative retinal diseases such as retinitis pigmentosa (RP) is growth factor withdrawal in the cellular microenvironment. Growth factors and neurotrophins can significantly slow down retinal degeneration and cell death in animal models. One possible source of autologous growth factors is platelet-rich plasma. The purpose of this study was to determine if subtenon injections of autologous platelet-rich plasma (aPRP) can have beneficial effects on visual function in RP patients by reactivating dormant photoreceptors. MATERIAL AND METHODS This prospective open-label clinical trial, conducted between September 2016 and February 2017, involved 71 eyes belonging to 48 RP patients with various degrees of narrowed visual field. Forty-nine eyes belonging to 37 patients were injected with aPRP. A comparison group was made up of 11 patients who had symmetrical bilateral narrowed visual field (VF) of both eyes. Among these 11 patients, one eye was injected with aPRP, while the other eye was injected with autologous platelet-poor plasma (aPPP) to serve as a control. The total duration of the study was 9 weeks: the aPRP or aPPP subtenon injections were applied three times, with 3-week intervals between injections, and the patients were followed for three more weeks after the third injection. Visual acuity (VA) tests were conducted on all patients, and VF, microperimetry (MP), and multifocal electroretinography (mfERG) tests were conducted on suitable patients to evaluate the visual function changes before and after the aPRP or aPPP injections. RESULTS The best-corrected visual acuity values in the ETDRS chart improved by 11.6 letters (from 70 to 81.6 letters) in 19 of 48 eyes following aPRP application; this result, however, was not statistically significant (p = 0.056). Following aPRP injections in 48 eyes, the mean deviation of the VF values improved from - 25.3 to - 23.1 dB (p = 0.0001). Results regarding the mfERG P1 amplitudes improved in ring 1 from 24.4 to 38.5 nv/deg2 (p = 0.0001), in ring 2 from 6.7 to 9.3 nv/deg2 (p = 0.0301), and in ring 3 from 3.5 to 4.5 nv/deg2 (p = 0.0329). The mfERG P1 implicit times improved in ring 1 from 40.0 to 34.4 ms (p = 0.01), in ring 2 from 42.5 to 33.2 ms (p = 0.01), and in ring 3 from 42.1 to 37.9 ms (p = 0.04). The mfERG N1 amplitudes improved in ring 1 from 0.18 to 0.25 nv/deg2 (p = 0.011) and in ring 2 from 0.05 to 0.08 nv/deg2 (p = 0.014). The mfERG N1 implicit time also improved in ring 1 from 18.9 to 16.2 ms (p = 0.040) and in ring 2 from 20.9 to 15.5 ms (p = 0.002). No improvement was seen in the 11 control eyes into which aPPP was injected. In the 23 RP patients with macular involvement, the MP average threshold values improved with aPRP injections from 15.0 to 16.4 dB (p = 0.0001). No ocular or systemic adverse events related to the injections or aPRP were observed during the follow-up period. CONCLUSION Preliminary clinical results are encouraging in terms of statistically significant improvements in VF, mfERG values, and MP. The subtenon injection of aPRP seems to be a therapeutic option for treatment and might lead to positive results in the vision of RP patients. Long-term results regarding adverse events are unknown. There have not been any serious adverse events and any ophthalmic or systemic side effects for 1 year follow-up. Further studies with long-term follow-up are needed to determine the duration of efficacy and the frequency of application.
Collapse
Affiliation(s)
- Umut Arslan
- Department of Ophthalmology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Emin Özmert
- Faculty of Medicine, Department of Ophthalmology, Ankara University, Ankara, Turkey
| | - Sibel Demirel
- Faculty of Medicine, Department of Ophthalmology, Ankara University, Ankara, Turkey. .,Cebeci Tıp Fakültesi, Vehbi Koç Göz hastanesi, Göz Hastalıkları Ana Bilimdalı, Mamak caddesi, Dikimevi/Ankara, Dikimevi/Ankara, Turkey.
| | - Firdevs Örnek
- Department of Ophthalmology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Figen Şermet
- Faculty of Medicine, Department of Ophthalmology, Ankara University, Ankara, Turkey
| |
Collapse
|
35
|
Öner A. Stem Cell Treatment in Retinal Diseases: Recent Developments. Turk J Ophthalmol 2018; 48:33-38. [PMID: 29576896 PMCID: PMC5854857 DOI: 10.4274/tjo.89972] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 06/07/2017] [Indexed: 12/28/2022] Open
Abstract
Stem cells are undifferentiated cells which have the ability to self-renew and differentiate into mature cells. They are highly proliferative, implying that an unlimited number of mature cells can be generated from a given stem cell source. On this basis, stem cell replacement therapy has been evaluated in recent years as an alternative for various pathologies. Degenerative retinal diseases cause progressive visual decline which originates from continuing loss of photoreceptor cells and outer nuclear layers. Theoretically, this therapy will enable the generation of new retinal cells from stem cells to replace the damaged cells in the diseased retina. In addition, stem cells are able to perform multiple functions, such as immunoregulation, anti-apoptosis of neurons, and neurotrophin secretion. With recent progress in experimental stem cell applications, phase I/II clinical trials have been approved. These latest stem cell transplantation studies showed that this therapy is a promising approach to restore visual function in eyes with degenerative retinal diseases such as retinitis pigmentosa, Stargardts’ macular dystrophy, and age-related macular degeneration. This review focuses on new developments in stem cell therapy for degenerative retinal diseases.
Collapse
Affiliation(s)
- Ayşe Öner
- Erciyes University Faculty of Medicine, Department of Ophthalmology, Kayseri, Turkey
| |
Collapse
|
36
|
Limoli PG, Vingolo EM, Limoli C, Scalinci SZ, Nebbioso M. Regenerative Therapy by Suprachoroidal Cell Autograft in Dry Age-related Macular Degeneration: Preliminary In Vivo Report. J Vis Exp 2018. [PMID: 29553543 DOI: 10.3791/56469] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study is aimed at examining whether a suprachoroidal graft of autologous cells can improve best corrected visual acuity (BCVA) and responses to microperimetry (MY) in eyes affected by dry Age-related Macular Degeneration (AMD) over time through the production and secretion of growth factors (GFs) on surrounding tissue. Patients were randomly assigned to each study group. All patients were diagnosed with dry AMD and with BCVA equal to or greater than 1 logarithm of the minimum angle of resolution (logMAR). A suprachoroidal autologous graft by Limoli Retinal Restoration Technique (LRRT) was carried out on group A, which included 11 eyes from 11 patients. The technique was performed by implanting adipocytes, adipose-derived stem cells obtained from the stromal vascular fraction, and platelets from platelet-rich plasma in the suprachoroidal space. Conversely, group B, including 14 eyes of 14 patients, was used as a control group. For each patient, diagnosis was verified by confocal scanning laser ophthalmoscope and spectral domain-optical coherence tomography (SD-OCT). In group A, BCVA improved by 0.581 to 0.504 at 90 days and to 0.376 logMAR at 180 days (+32.20%) postoperatively. Furthermore, MY test increased by 11.44 dB to 12.59 dB at 180 days. The different cell types grafted behind the choroid were able to ensure constant GF secretion in the choroidal flow. Consequently, the results indicate that visual acuity (VA) in the grafted group can increase more than in the control group after six months.
Collapse
Affiliation(s)
| | - Enzo Maria Vingolo
- Department of Ophthalmology, A. Fiorini Hospital, Sapienza University of Rome
| | | | - Sergio Zaccaria Scalinci
- Glaucoma and Low Vision Study Center, Department of General Surgery and Organ Transplants, University of Bologna
| | - Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome;
| |
Collapse
|
37
|
Peddada KV, Brown A, Verma V, Nebbioso M. Therapeutic potential of curcumin in major retinal pathologies. Int Ophthalmol 2018; 39:725-734. [DOI: 10.1007/s10792-018-0845-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/29/2018] [Indexed: 02/07/2023]
|
38
|
Limoli PG, Limoli C, Vingolo EM, Scalinci SZ, Nebbioso M. Cell surgery and growth factors in dry age-related macular degeneration: visual prognosis and morphological study. Oncotarget 2018; 7:46913-46923. [PMID: 27391437 PMCID: PMC5216913 DOI: 10.18632/oncotarget.10442] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/07/2016] [Indexed: 01/22/2023] Open
Abstract
Background The aim of this research was to study the overall restoration effect on residual retinal cells through surgically grafted autologous cells onto the surrounding tissue, choroid and retina in order to produce a constant secretion of growth factors (GFs) in dry age-related macular degeneration (AMD) patients. Results 6 months after surgery, several values were statistically significant in the group with higher RTA. Also patient compliance analysis (PCA) in relation to functional change perception appeared to be very good. Methods Thirty-six eyes of 25 patients (range 64-84 years of age) affected by dry AMD were included in study, and divided in two groups by spectral domain-optical coherence tomography (SD-OCT): group A with retinal thickness average (RTA) less than 250 microns (μm) and group B with RTA equal to or more than 250 μm. Adipocytes, adipose-derived stem cells from the stromal-vascular fraction, and platelets from platelet-rich plasma were implanted in the suprachoroidal space. Particularly, the following parameters were evaluated: best corrected visual acuity (BCVA) for far and near distance, retinal thickness maps, scotopic and photopic electroretinogram (ERG), and microperimetry (MY). All statistical analyses were performed with STATA 14.0 (Collage Station, Texas, USA). Conclusions The available set of GFs allowed biological retinal neuroenhancement. After 6 months it improved visual performance (VP), but the increase was better if RTA recorded by OCT was higher, probably in relation to the presence of areas with greater cellularity.
Collapse
Affiliation(s)
| | | | - Enzo Maria Vingolo
- Department of Ophthalmology, A. Fiorini Hospital, Terracina, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Sergio Zaccaria Scalinci
- Departement of Ophthalmology, Glaucoma and Low Vision Study Center, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
39
|
|
40
|
Steigerwalt RDJ, Limoli PG, Nebbioso M. Visual field improvement in non-arteritic posterior ischemic optic neuropathy in a patient treated with intravenous prostaglandin E1 and steroids. Drug Discov Ther 2017; 11:226-229. [PMID: 28867757 DOI: 10.5582/ddt.2017.01034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Non-arteritic posterior ischemic optic neuropathy (NA-PION) is a disorder of reduced blood flow to the retrobulbar optic nerve. There is usually an acute loss of visual acuity and field. Previous studies have noted an improvement in visual acuity and in ocular and retrobulbar blood flow with the use of a potent vasodilator of the microcirculation, prostaglandin E1 (PGE1), and steroids. The current report describes immediate improvement in the visual fields and visual acuity in a patient with NA-PION treated with intravenous PGE1 and steroids 66 hours after onset. An 89-year-old white female was first seen in December 2016 with a sudden loss of vision in the right eye. After a complete eye exam and visual fields, the patient was diagnosed with NA-PION. Treatment was immediately started with steroids and intravenous PGE1. This was repeated once again the next morning. Visual acuity in the right eye improved from 1/10 + 1 to 7/10 + 3 at 5 days. The mean deviation of the visual field improved from - 7.10 decibels (dB) with a central scotoma of - 22 dB to - 2.97 dB with a central scotoma of - 19 dB. After 2 weeks, her visual acuity was 7/10 + 1 and visual field testing of the right eye revealed a mean deviation of - 2.54 dB with a central scotoma of - 9 dB. The left eye was unchanged. In cases of NA-PION, PGE1 and steroids should be considered to immediately restore blood flow to help improve visual acuity and visual fields.
Collapse
|