1
|
Li P, Huang D. NSUN2-mediated RNA methylation: Molecular mechanisms and clinical relevance in cancer. Cell Signal 2024; 123:111375. [PMID: 39218271 DOI: 10.1016/j.cellsig.2024.111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide, necessitating the ongoing investigation of molecular targets for improved diagnosis, prognosis, and therapy. Among these targets, RNA modifications, particularly N5-methylcytosine (m5C) in RNA, have emerged as critical regulators of gene expression and cellular functions. NOP2/Sun RNA methyltransferase family member 2 (NSUN2) is a key enzyme in m5C modification, significantly influencing various biological processes and tumorigenesis. NSUN2 methylates multiple RNA species, including transfer RNAs (tRNAs), messenger RNAs (mRNAs), and non-coding RNAs, impacting RNA stability, translation efficiency, and cellular stress responses. These modifications, in turn, affect cell proliferation, differentiation, and survival. In cancer, NSUN2 is frequently upregulated, associated with aggressive tumor phenotypes, poor prognosis, and therapy resistance. Its role in oncogenic signaling pathways further underscores its importance in cancer biology. This review offers a comprehensive overview of NSUN2's role in cancer, focusing on its involvement in RNA methylation and its implications for tumor initiation and progression. Additionally, we explore the potential of NSUN2 as a biomarker for cancer diagnosis and prognosis, and its promise as a therapeutic target.
Collapse
Affiliation(s)
- Penghui Li
- Department of gastrointestinal surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan, China.
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
2
|
Qi Y, Li T, Zhou Y, Hao Y, Zhang J. RNA modification regulators as promising biomarkers in gynecological cancers. Cell Biol Toxicol 2024; 40:92. [PMID: 39472384 PMCID: PMC11522084 DOI: 10.1007/s10565-024-09924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024]
Abstract
This review explores the evolving landscape of gynecological oncology by focusing on emerging RNA modification signatures as promising biomarkers for assessing the risk and progression of ovarian, cervical, and uterine cancers. It provides a comprehensive overview of common RNA modifications, especially m6A, and their roles in cellular processes, emphasizing their implications in gynecological cancer development. The review meticulously examines specific m6A regulators including "writers", "readers", and "erasers" associated with three gynecological cancer types, discussing their involvement in initiation and progression. Methodologies for detecting RNA modifications are surveyed, highlighting advancements in high-throughput techniques with high sensitivity. A critical analysis of studies identifying m6A regulators as potential biomarkers is presented, addressing their diagnostic or prognostic significance. Mechanistic insights into RNA modification-mediated cancer progression are explored, shedding light on molecular pathways and potential therapeutic targets. Despite current challenges, the review discusses ongoing research efforts, future directions, and the transformative possibility of RNA modifications on early assessment and personalized therapy in gynecological oncology.
Collapse
Affiliation(s)
- Yue Qi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, Liaoning, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, Shanxi, China.
| | - Yang Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, Liaoning, China
| | - Yingying Hao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, Liaoning, China.
| | - Jin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
3
|
Malebary SJ, Alromema N, Suleman MT, Saleem M. m5c-iDeep: 5-Methylcytosine sites identification through deep learning. Methods 2024; 230:80-90. [PMID: 39089345 DOI: 10.1016/j.ymeth.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024] Open
Abstract
5-Methylcytosine (m5c) is a modified cytosine base which is formed as the result of addition of methyl group added at position 5 of carbon. This modification is one of the most common PTM that used to occur in almost all types of RNA. The conventional laboratory methods do not provide quick reliable identification of m5c sites. However, the sequence data readiness has made it feasible to develop computationally intelligent models that optimize the identification process for accuracy and robustness. The present research focused on the development of in-silico methods built using deep learning models. The encoded data was then fed into deep learning models, which included gated recurrent unit (GRU), long short-term memory (LSTM), and bi-directional LSTM (Bi-LSTM). After that, the models were subjected to a rigorous evaluation process that included both independent set testing and 10-fold cross validation. The results revealed that LSTM-based model, m5c-iDeep, outperformed revealing 99.9 % accuracy while comparing with existing m5c predictors. In order to facilitate researchers, m5c-iDeep was also deployed on a web-based server which is accessible at https://taseersuleman-m5c-ideep-m5c-ideep.streamlit.app/.
Collapse
Affiliation(s)
- Sharaf J Malebary
- Department of Information Technology, Faculty of Computing and Information Technology-Rabigh, King Abdulaziz University, P.O. Box 344, Rabigh 21911, Saudi Arabia
| | - Nashwan Alromema
- Department of Computer Science, Faculty of Computing and Information Technology-Rabigh, King Abdulaziz University, P.O. Box 344, Rabigh 21911, Saudi Arabia.
| | - Muhammad Taseer Suleman
- Department of Criminology and Forensic Sciences, Lahore Garrison University, Lahore Pakistan; Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore 54770 Pakistan
| | - Maham Saleem
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore 54770 Pakistan
| |
Collapse
|
4
|
Li H, Liu H, Zhu D, Dou C, Gang B, Zhang M, Wan Z. Biological function molecular pathways and druggability of DNMT2/TRDMT1. Pharmacol Res 2024; 205:107222. [PMID: 38782147 DOI: 10.1016/j.phrs.2024.107222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
5-methylcytosine (m5C) is among the most common epigenetic modification in DNA and RNA molecules, and plays an important role in the animal development and disease pathogenesis. Interestingly, unlike other m5C DNA methyltransferases (DNMTs), DNMT2/TRDMT1 has the double-substrate specificity and adopts a DNMT-similar catalytic mechanism to methylate RNA. Moreover, it is widely involved in a variety of physiological regulatory processes, such as the gene expression, precise protein synthesis, immune response, and disease occurrence. Thus, comprehending the epigenetic mechanism and function of DNMT2/TRDMT1 will probably provide new strategies to treat some refractory diseases. Here, we discuss recent studies on the spatiotemporal expression pattern and post-translational modifications of DNMT2/TRDMT1, and summarize the research advances in substrate characteristics, catalytic recognition mechanism, DNMT2/TRDMT1-related genes or proteins, pharmacological application, and inhibitor development. This review will shed light on the pharmacological design by targeting DNMT2/TRDMT1 to treat parasitic, viral and oncologic diseases.
Collapse
Affiliation(s)
- Huari Li
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China; College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei Province 430070, PR China.
| | - Huiru Liu
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Daiyun Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei Province 430070, PR China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Chengli Dou
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Baocai Gang
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Mengjie Zhang
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Ziyu Wan
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| |
Collapse
|
5
|
Zhang X, An K, Ge X, Sun Y, Wei J, Ren W, Wang H, Wang Y, Du Y, He L, Li O, Zhou S, Shi Y, Ren T, Yang YG, Kan Q, Tian X. NSUN2/YBX1 promotes the progression of breast cancer by enhancing HGH1 mRNA stability through m 5C methylation. Breast Cancer Res 2024; 26:94. [PMID: 38844963 PMCID: PMC11155144 DOI: 10.1186/s13058-024-01847-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND RNA m5C methylation has been extensively implicated in the occurrence and development of tumors. As the main methyltransferase, NSUN2 plays a crucial regulatory role across diverse tumor types. However, the precise impact of NSUN2-mediated m5C modification on breast cancer (BC) remains unclear. Our study aims to elucidate the molecular mechanism underlying how NSUN2 regulates the target gene HGH1 (also known as FAM203) through m5C modification, thereby promoting BC progression. Additionally, this study targets at preliminarily clarifying the biological roles of NSUN2 and HGH1 in BC. METHODS Tumor and adjacent tissues from 5 BC patients were collected, and the m5C modification target HGH1 in BC was screened through RNA sequencing (RNA-seq) and single-base resolution m5C methylation sequencing (RNA-BisSeq). Methylation RNA immunoprecipitation-qPCR (MeRIP-qPCR) and RNA-binding protein immunoprecipitation-qPCR (RIP-qPCR) confirmed that the methylation molecules NSUN2 and YBX1 specifically recognized and bound to HGH1 through m5C modification. In addition, proteomics, co-immunoprecipitation (co-IP), and Ribosome sequencing (Ribo-Seq) were used to explore the biological role of HGH1 in BC. RESULTS As the main m5C methylation molecule, NSUN2 is abnormally overexpressed in BC and increases the overall level of RNA m5C. Knocking down NSUN2 can inhibit BC progression in vitro or in vivo. Combined RNA-seq and RNA-BisSeq analysis identified HGH1 as a potential target of abnormal m5C modifications. We clarified the mechanism by which NSUN2 regulates HGH1 expression through m5C modification, a process that involves interactions with the YBX1 protein, which collectively impacts mRNA stability and protein synthesis. Furthermore, this study is the first to reveal the binding interaction between HGH1 and the translation elongation factor EEF2, providing a comprehensive understanding of its ability to regulate transcript translation efficiency and protein synthesis in BC cells. CONCLUSIONS This study preliminarily clarifies the regulatory role of the NSUN2-YBX1-m5C-HGH1 axis from post-transcriptional modification to protein translation, revealing the key role of abnormal RNA m5C modification in BC and suggesting that HGH1 may be a new epigenetic biomarker and potential therapeutic target for BC.
Collapse
Affiliation(s)
- Xuran Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ke An
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xin Ge
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuanyuan Sun
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jingyao Wei
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Weihong Ren
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Han Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yueqin Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lulu He
- Biobank of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ouwen Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shaoxuan Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yong Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Tong Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yun-Gui Yang
- China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
6
|
Alhammadi MA, Bajbouj K, Talaat IM, Hamoudi R. The role of RNA-modifying proteins in renal cell carcinoma. Cell Death Dis 2024; 15:227. [PMID: 38503745 PMCID: PMC10951318 DOI: 10.1038/s41419-024-06479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 03/21/2024]
Abstract
Gene expression is one of the most critical cellular processes. It is controlled by complex mechanisms at the genomic, epigenomic, transcriptomic, and proteomic levels. Any aberration in these mechanisms can lead to dysregulated gene expression. One recently discovered process that controls gene expression includes chemical modifications of RNA molecules by RNA-modifying proteins, a field known as epitranscriptomics. Epitranscriptomics can regulate mRNA splicing, nuclear export, stabilization, translation, or induce degradation of target RNA molecules. Dysregulation in RNA-modifying proteins has been found to contribute to many pathological conditions, such as cancer, diabetes, obesity, cardiovascular diseases, and neurological diseases, among others. This article reviews the role of epitranscriptomics in the pathogenesis and progression of renal cell carcinoma. It summarizes the molecular function of RNA-modifying proteins in the pathogenesis of renal cell carcinoma.
Collapse
Affiliation(s)
- Muna A Alhammadi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
| | - Khuloud Bajbouj
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Department of Basic Sciences, College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, United States of America.
| | - Iman M Talaat
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Pathology Department, Faculty of Medicine, Alexandria University, 21131, Alexandria, Egypt.
| | - Rifat Hamoudi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Division of Surgery and Interventional Science, University College London, London, NW3 2PS, United Kingdom.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah, United Arab Emirates.
- BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
7
|
Linowiecka K, Guz J, Dziaman T, Urbanowska-Domańska O, Zarakowska E, Szpila A, Szpotan J, Skalska-Bugała A, Mijewski P, Siomek-Górecka A, Różalski R, Gackowski D, Oliński R, Foksiński M. The level of active DNA demethylation compounds in leukocytes and urine samples as potential epigenetic biomarkers in breast cancer patients. Sci Rep 2024; 14:6481. [PMID: 38499584 PMCID: PMC10948817 DOI: 10.1038/s41598-024-56326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
The active DNA demethylation process, which involves TET proteins, can affect DNA methylation pattern. TET dependent demethylation results in DNA hypomethylation by oxidation 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) and its derivatives. Moreover, TETs' activity may be upregulated by ascorbate. Given that aberrant DNA methylation of genes implicated in breast carcinogenesis may be involved in tumor progression, we wanted to determine whether breast cancer patients exert changes in the active DNA demethylation process. The study included blood samples from breast cancer patients (n = 74) and healthy subjects (n = 71). We analyzed the expression of genes involved in the active demethylation process (qRT-PCR), and 5-mC and its derivatives level (2D-UPLC MS/MS). The ascorbate level was determined using UPLC-MS. Breast cancer patients had significantly higher TET3 expression level, lower 5-mC and 5-hmC DNA levels. TET3 was significantly increased in luminal B breast cancer patients with expression of hormone receptors. Moreover, the ascorbate level in the plasma of breast cancer patients was decreased with the accompanying increase of sodium-dependent vitamin C transporters (SLC23A1 and SLC23A2). The presented study indicates the role of TET3 in DNA demethylation in breast carcinogenesis.
Collapse
Affiliation(s)
- Kinga Linowiecka
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland.
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland.
| | - Jolanta Guz
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Tomasz Dziaman
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Olga Urbanowska-Domańska
- Department of Oncology, Professor Franciszek Lukaszczyk Oncology Centre, Romanowskiej 2, 85-796, Bydgoszcz, Poland
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Anna Szpila
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Justyna Szpotan
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| | - Aleksandra Skalska-Bugała
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Paweł Mijewski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Agnieszka Siomek-Górecka
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Rafał Różalski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Ryszard Oliński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Marek Foksiński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland.
| |
Collapse
|
8
|
Jin S, Li J, Shen Y, Wu Y, Zhang Z, Ma H. RNA 5-Methylcytosine Regulator NSUN3 promotes tumor progression through regulating immune infiltration in head and neck squamous cell carcinoma. Oral Dis 2024; 30:313-328. [PMID: 35997137 DOI: 10.1111/odi.14357] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study aimed to determine whether the RNA, 5-methylcytosine (m5C), is involved in the progression of head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS We used least absolute shrinkage and selection operator to establish a prognostic score (PS) model based on the m5C regulator expression. Immune scores were calculated using the estimation of stromal and immune cells in malignant tumor tissues using expression data. The biological functions of the m5C regulator, NOP2/Sun RNA methyltransferase 3 (NSUN3), were thoroughly investigated in vitro and in vivo. RESULTS The PS model acted as efficient prognostic factors in HNSCC. The expression of NSUN3, with the maximum weight, was found to be upregulated and indicated a poor prognosis. Meanwhile, NSUN3 knockdown inhibited the tumor proliferation and growth both in vitro and in vivo. High PS status was negatively correlated with CD8+ T, γδ+ T, and M1 macrophage percentages. NSUN3 knockdown increased the infiltration of M1 macrophages but decreased the percentage of M2 macrophages. CONCLUSIONS The PS index is a novel and promising biomarker for predicting the prognosis and immune infiltration microenvironment in HNSCC. Moreover, NSUN3 plays a key role in this process and may serve as a potential therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Shufang Jin
- Department of Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jiayi Li
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihan Shen
- Department of Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yiqun Wu
- Department of Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhiyuan Zhang
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailong Ma
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Yang S, Zhou D, Zhang C, Xiang J, Xi X. Function of m 5C RNA methyltransferase NOP2 in high-grade serous ovarian cancer. Cancer Biol Ther 2023; 24:2263921. [PMID: 37800580 PMCID: PMC10561575 DOI: 10.1080/15384047.2023.2263921] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023] Open
Abstract
RNA methyltransferase nucleolar protein p120 (NOP2), commonly referred to as NOP2/Sun RNA methyltransferase family member 1 (NSUN1), is involved in cell proliferation and is highly expressed in various cancers. However, its role in high-grade serous ovarian cancer (HGSOC) remains unclear. Our study investigated the expression of NOP2 in HGSOC tissues and normal fimbria tissues, and found that NOP2 was significantly upregulated in HGSOC tissues. Our experiments showed that NOP2 overexpression promoted cell proliferation in vivo and in vitro and increased the migration and invasion ability of HGSOC cells in vitro. Furthermore, we identified Rap guanine nucleotide exchange factor 4 (RAPGEF4) as a potential downstream target of NOP2 in HGSOC. Finally, our findings suggest that the regulation of NOP2 and RAPGEF4 may depend on m5C methylation levels.
Collapse
Affiliation(s)
- Shimin Yang
- Department of Gynecology and Obstetrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongmei Zhou
- Department of Gynecology and Obstetrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunxiao Zhang
- Department of Gynecology and Obstetrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiangdong Xiang
- Department of Gynecology and Obstetrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowei Xi
- Department of Gynecology and Obstetrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Janin M, Davalos V, Esteller M. Cancer metastasis under the magnifying glass of epigenetics and epitranscriptomics. Cancer Metastasis Rev 2023; 42:1071-1112. [PMID: 37369946 PMCID: PMC10713773 DOI: 10.1007/s10555-023-10120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Most of the cancer-associated mortality and morbidity can be attributed to metastasis. The role of epigenetic and epitranscriptomic alterations in cancer origin and progression has been extensively demonstrated during the last years. Both regulations share similar mechanisms driven by DNA or RNA modifiers, namely writers, readers, and erasers; enzymes responsible of respectively introducing, recognizing, or removing the epigenetic or epitranscriptomic modifications. Epigenetic regulation is achieved by DNA methylation, histone modifications, non-coding RNAs, chromatin accessibility, and enhancer reprogramming. In parallel, regulation at RNA level, named epitranscriptomic, is driven by a wide diversity of chemical modifications in mostly all RNA molecules. These two-layer regulatory mechanisms are finely controlled in normal tissue, and dysregulations are associated with every hallmark of human cancer. In this review, we provide an overview of the current state of knowledge regarding epigenetic and epitranscriptomic alterations governing tumor metastasis, and compare pathways regulated at DNA or RNA levels to shed light on a possible epi-crosstalk in cancer metastasis. A deeper understanding on these mechanisms could have important clinical implications for the prevention of advanced malignancies and the management of the disseminated diseases. Additionally, as these epi-alterations can potentially be reversed by small molecules or inhibitors against epi-modifiers, novel therapeutic alternatives could be envisioned.
Collapse
Affiliation(s)
- Maxime Janin
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias I Pujol, Ctra de Can Ruti, Cami de Les Escoles S/N, 08916 Badalona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Veronica Davalos
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias I Pujol, Ctra de Can Ruti, Cami de Les Escoles S/N, 08916 Badalona, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias I Pujol, Ctra de Can Ruti, Cami de Les Escoles S/N, 08916 Badalona, Barcelona, Spain.
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.
- Institucio Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.
| |
Collapse
|
11
|
Qiu L, Jing Q, Li Y, Han J. RNA modification: mechanisms and therapeutic targets. MOLECULAR BIOMEDICINE 2023; 4:25. [PMID: 37612540 PMCID: PMC10447785 DOI: 10.1186/s43556-023-00139-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
RNA modifications are dynamic and reversible chemical modifications on substrate RNA that are regulated by specific modifying enzymes. They play important roles in the regulation of many biological processes in various diseases, such as the development of cancer and other diseases. With the help of advanced sequencing technologies, the role of RNA modifications has caught increasing attention in human diseases in scientific research. In this review, we briefly summarized the basic mechanisms of several common RNA modifications, including m6A, m5C, m1A, m7G, Ψ, A-to-I editing and ac4C. Importantly, we discussed their potential functions in human diseases, including cancer, neurological disorders, cardiovascular diseases, metabolic diseases, genetic and developmental diseases, as well as immune disorders. Through the "writing-erasing-reading" mechanisms, RNA modifications regulate the stability, translation, and localization of pivotal disease-related mRNAs to manipulate disease development. Moreover, we also highlighted in this review all currently available RNA-modifier-targeting small molecular inhibitors or activators, most of which are designed against m6A-related enzymes, such as METTL3, FTO and ALKBH5. This review provides clues for potential clinical therapy as well as future study directions in the RNA modification field. More in-depth studies on RNA modifications, their roles in human diseases and further development of their inhibitors or activators are needed for a thorough understanding of epitranscriptomics as well as diagnosis, treatment, and prognosis of human diseases.
Collapse
Affiliation(s)
- Lei Qiu
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Qian Jing
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yanbo Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
12
|
Linowiecka K, Slominski AT, Reiter RJ, Böhm M, Steinbrink K, Paus R, Kleszczyński K. Melatonin: A Potential Regulator of DNA Methylation. Antioxidants (Basel) 2023; 12:1155. [PMID: 37371885 PMCID: PMC10295183 DOI: 10.3390/antiox12061155] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The pineal gland-derived indoleamine hormone, melatonin, regulates multiple cellular processes, ranging from chronobiology, proliferation, apoptosis, and oxidative damage to pigmentation, immune regulation, and mitochondrial metabolism. While melatonin is best known as a master regulator of the circadian rhythm, previous studies also have revealed connections between circadian cycle disruption and genomic instability, including epigenetic changes in the pattern of DNA methylation. For example, melatonin secretion is associated with differential circadian gene methylation in night shift workers and the regulation of genomic methylation during embryonic development, and there is accumulating evidence that melatonin can modify DNA methylation. Since the latter one impacts cancer initiation, and also, non-malignant diseases development, and that targeting DNA methylation has become a novel intervention target in clinical therapy, this review discusses the potential role of melatonin as an under-investigated candidate epigenetic regulator, namely by modulating DNA methylation via changes in mRNA and the protein expression of DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) proteins. Furthermore, since melatonin may impact changes in the DNA methylation pattern, the authors of the review suggest its possible use in combination therapy with epigenetic drugs as a new anticancer strategy.
Collapse
Affiliation(s)
- Kinga Linowiecka
- Department of Human Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA
| | - Markus Böhm
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| |
Collapse
|
13
|
Di Fazio A, Gullerova M. An old friend with a new face: tRNA-derived small RNAs with big regulatory potential in cancer biology. Br J Cancer 2023; 128:1625-1635. [PMID: 36759729 PMCID: PMC10133234 DOI: 10.1038/s41416-023-02191-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Transfer RNAs (tRNAs) are small non-coding RNAs (sncRNAs) essential for protein translation. Emerging evidence suggests that tRNAs can also be processed into smaller fragments, tRNA-derived small RNAs (tsRNAs), a novel class of sncRNAs with powerful applications and high biological relevance to cancer. tsRNAs biogenesis is heterogeneous and involves different ribonucleases, such as Angiogenin and Dicer. For many years, tsRNAs were thought to be just degradation products. However, accumulating evidence shows their roles in gene expression: either directly via destabilising the mRNA or the ribosomal machinery, or indirectly via regulating the expression of ribosomal components. Furthermore, tsRNAs participate in various biological processes linked to cancer, including apoptosis, cell cycle, immune response, and retroviral insertion into the human genome. It is emerging that tsRNAs have significant therapeutic potential. Endogenous tsRNAs can be used as cancer biomarkers, while synthetic tsRNAs and antisense oligonucleotides can be employed to regulate gene expression. In this review, we are recapitulating the regulatory roles of tsRNAs, with a focus on cancer biology.
Collapse
Affiliation(s)
- Arianna Di Fazio
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| |
Collapse
|
14
|
Cusenza VY, Tameni A, Neri A, Frazzi R. The lncRNA epigenetics: The significance of m6A and m5C lncRNA modifications in cancer. Front Oncol 2023; 13:1063636. [PMID: 36969033 PMCID: PMC10033960 DOI: 10.3389/fonc.2023.1063636] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/10/2023] [Indexed: 03/12/2023] Open
Abstract
Most of our transcribed RNAs are represented by non-coding sequences. Long non-coding RNAs (lncRNAs) are transcripts with no or very limited protein coding ability and a length >200nt. They can be epigenetically modified. N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), 7-methylguanosine (m7G) and 2’-O-methylation (Nm) are some of the lncRNAs epigenetic modifications. The epigenetic modifications of RNA are controlled by three classes of enzymes, each playing a role in a specific phase of the modification. These enzymes are defined as “writers”, “readers” and “erasers”. m6A and m5C are the most studied epigenetic modifications in RNA. These modifications alter the structure and properties, thus modulating the functions and interactions of lncRNAs. The aberrant expression of several lncRNAs is linked to the development of a variety of cancers and the epigenetic signatures of m6A- or m5C-related lncRNAs are increasingly recognized as potential biomarkers of prognosis, predictors of disease stage and overall survival. In the present manuscript, the most up to date literature is reviewed with the focus on m6A and m5C modifications of lncRNAs and their significance in cancer.
Collapse
Affiliation(s)
- Vincenza Ylenia Cusenza
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Annalisa Tameni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Raffaele Frazzi
- Scientific Directorate, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
- *Correspondence: Raffaele Frazzi,
| |
Collapse
|
15
|
NSUN2 alleviates doxorubicin-induced myocardial injury through Nrf2-mediated antioxidant stress. Cell Death Dis 2023; 9:43. [PMID: 36739432 PMCID: PMC9899217 DOI: 10.1038/s41420-022-01294-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 02/06/2023]
Abstract
Doxorubicin (DOX) is a commonly used antitumor drug, but its application has been limited because of its strong cardiac damage. This study aims to explore the role of NSUN2 in DOX-induced heart injury. C57BL/6J mice were intraperitoneally injected with 20 mg/Kg DOX to induce heart injury. After 3 days, the cardiac function, cardiac histopathology, myocardial apoptosis, and the expression level of NSUN2 were detected. In vitro, H9C2 cells were transfected with NSUN2 siRNA or overexpressed lentivirus and then treated with 500 ng/ml DOX. After 24 h, the changes in reactive oxygen species (ROS), apoptosis, and NSUN2 expression were detected. After DOX treatment, both in vitro and in vivo experiments showed that the cardiac function decreased, the number of apoptotic cells increased, and the expression level of NSUN2 increased. Interfering the expression of NSUN2 by siRNA promoted DOX-induced heart injury, while overexpression of NSUN2 could inhibit DOX-induced heart injury. Further study showed that NSUN2 promoted antioxidative stress by upregulating the Nrf2 protein level. In addition, NSUN2 overexpression could increase the half-life of Nrf2 mRNA. m5C RNA methylation immunoprecipitation (MeRIP) also showed that the level of Nrf2 m5C mRNA was significantly increased in NSUN2 overexpressed group when compared to the GFP group. NSUN2 enhances the expression of Nrf2 by promoting Nrf2 mRNA m5C modification and enhances its antioxidative stress effect to alleviate DOX-induced myocardial injury.
Collapse
|
16
|
Dong C, Dang L, Gao X, Xu R, Zhang H, Zhang X. Systematic Analysis of Tumor Microenvironment Patterns and Oxidative Stress Characteristics of Endometrial Carcinoma Mediated by 5-Methylcytosine Regulators. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6431164. [PMID: 36187339 PMCID: PMC9519350 DOI: 10.1155/2022/6431164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/20/2022]
Abstract
As a widely distributed RNA methylation modification, m5C is involved in the regulation of tumorigenesis. Nevertheless, its fundamental process is not clear. This research sought to examine the genetic properties of the 5-methylcytosine (m5C) regulator in endometrial carcinoma, as well as the prognostic significance and impact of m5C regulators on oxidative stress. Therefore, the TCGA-UCEC data set was used to explore the characteristics of 17 RNAm5C-related genes in the transcriptome, genome, and regulatory network. The subtypes of RNAm5C in UCEC were identified based on the expression levels of 17 RNAm5C-related genes. The prognosis of RNAm5C-2 was significantly better than that of RNAm5C-1. Then, we examined the differences (variations) across various subtypes in terms of immune cell infiltration (ICI) as well as the expression of immune-related signal markers. The findings demonstrated that there were distinct variations in the infiltration level of immune cells in each subtype, which may be the reason for the differences in the prognosis of each subtype. In addition, the differentially expressed genes (DEGs) among RNAm5C subtypes of different UCEC tumors were identified, and the DEGs significant for survival were screened. After obtaining 34 prognostic genes, the dimensionality was reduced to construct an RNA methylation score (RS). As per the findings, RS is a more accurate marker for determining the prognosis for patients with endometrial cancer. The RS was used to categorize UCEC tumor samples, and these results led to the formation of high-score and low-score groups. The patients in the group with a high-RNA methylation score exhibited a survival time that was considerably longer in contrast with those in the group with a low-RNA methylation score. The capacity of RS to predict whether or not immunotherapy would be beneficial was explored further. In the group with a high-RNA methylation score, the objective response rate to the anti-PD-L1 therapy was substantially greater compared to that observed in the subgroup with a low-RNA methylation score. Additionally, there were variations across various RS groups in terms of clinical features, tumor mutation burden, and the infiltration level of immune cells. After binary tree analysis and PCR verification of 34 prognostic genes, it is finally found that the six genes of MAGOH3P, TRBJ2_3, YTHDF1P1, RP11_323D18.5, RP11_405M12.2, and ADAM30 are significantly overexpressed in cancer tissues. These genes can be used as potential biomarkers of endometrial cancer and provide data support for precise immunotherapy in UCEC tumors.
Collapse
Affiliation(s)
- Chunli Dong
- Department of Anesthesiology and Operation, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Ling Dang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Xiaocui Gao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Renyan Xu
- Department of Anesthesiology and Operation, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Hui Zhang
- Department of Anesthesiology and Operation, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Xin Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| |
Collapse
|
17
|
Chen J, Yao S, Sun Z, Wang Y, Yue J, Cui Y, Yu C, Xu H, Li L. The pattern of expression and prognostic value of key regulators for m7G RNA methylation in hepatocellular carcinoma. Front Genet 2022; 13:894325. [PMID: 36118897 PMCID: PMC9478798 DOI: 10.3389/fgene.2022.894325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
N7-methylguanosine (m7G) modification on internal RNA positions plays a vital role in several biological processes. Recent research shows m7G modification is associated with multiple cancers. However, in hepatocellular carcinoma (HCC), its implications remain to be determined. In this place, we need to interrogate the mRNA patterns for 29 key regulators of m7G RNA modification and assess their prognostic value in HCC. Initial, the details from The Cancer Genome Atlas (TCGA) database concerning transcribed gene data and clinical information of HCC patients were inspected systematically. Second, according to the mRNA profiles of 29 m7G RNA methylation regulators, two clusters (named 1 and 2, respectively) were identified by consensus clustering. Furthermore, robust risk signature for seven m7G RNA modification regulators was constructed. Last, we used the Gene Expression Omnibus (GEO) dataset to validate the prognostic associations of the seven-gene risk signature. We figured out that 24/29 key regulators of m7G RNA modification varied remarkably in their grades of expression between the HCC and the adjacent tumor control tissues. Cluster one compared with cluster two had a substandard prognosis and was also positively correlated with T classification (T), pathological stage, and vital status (fustat) significantly. Consensus clustering results suggested the expression pattern of m7G RNA modification regulators was correlated with the malignancy of HCC strongly. In addition, cluster one was extensively enriched in metabolic-related pathways. Seven optimal genes (METTL1, WDR4, NSUN2, EIF4E, EIF4E2, NCBP1, and NCBP2) were selected to establish the risk model for HCC. Indicating by further analyses and validation, the prognostic model has fine anticipating command and this probability signature might be a self supporting presage factor for HCC. Finally, a new prognostic nomogram based on age, gender, pathological stage, histological grade, and prospects were established to forecast the prognosis of HCC patients accurately. In essence, we detected association of HCC severity and expression levels of m7G RNA modification regulators, and developed a risk score model for predicting prognosis of HCC patients’ progression.
Collapse
Affiliation(s)
- Jianxing Chen
- College of Chemistry and Life Science, Chifeng University, Chifeng, China
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shibin Yao
- Department of Emergency, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Zhijuan Sun
- International Education School, Chifeng University, Chifeng, China
| | - Yanjun Wang
- Department of Pediatrics, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Jili Yue
- Department of General Surgery, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Yongkang Cui
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengping Yu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haozhi Xu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linqiang Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin Medical University, Harbin, China
- *Correspondence: Linqiang Li,
| |
Collapse
|
18
|
Alagia A, Gullerova M. The Methylation Game: Epigenetic and Epitranscriptomic Dynamics of 5-Methylcytosine. Front Cell Dev Biol 2022; 10:915685. [PMID: 35721489 PMCID: PMC9204050 DOI: 10.3389/fcell.2022.915685] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
DNA and RNA methylation dynamics have been linked to a variety of cellular processes such as development, differentiation, and the maintenance of genome integrity. The correct deposition and removal of methylated cytosine and its oxidized analogues is pivotal for cellular homeostasis, rapid responses to exogenous stimuli, and regulated gene expression. Uncoordinated expression of DNA/RNA methyltransferases and demethylase enzymes has been linked to genome instability and consequently to cancer progression. Furthermore, accumulating evidence indicates that post-transcriptional DNA/RNA modifications are important features in DNA/RNA function, regulating the timely recruitment of modification-specific reader proteins. Understanding the biological processes that lead to tumorigenesis or somatic reprogramming has attracted a lot of attention from the scientific community. This work has revealed extensive crosstalk between epigenetic and epitranscriptomic pathways, adding a new layer of complexity to our understanding of cellular programming and responses to environmental cues. One of the key modifications, m5C, has been identified as a contributor to regulation of the DNA damage response (DDR). However, the various mechanisms of dynamic m5C deposition and removal, and the role m5C plays within the cell, remains to be fully understood.
Collapse
Affiliation(s)
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Liu Y, Zhu T, Jiang Y, Bu J, Zhu X, Gu X. The Key Role of RNA Modification in Breast Cancer. Front Cell Dev Biol 2022; 10:885133. [PMID: 35721510 PMCID: PMC9198488 DOI: 10.3389/fcell.2022.885133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/25/2022] [Indexed: 12/09/2022] Open
Abstract
The modulation of the function and expression of epigenetic regulators of RNA modification has gradually become the hotspot of cancer research. Studies have shown that alteration of epigenetic modifications can promote the development and metastasis of breast cancer. This review highlights the progress in characterization of the link between RNA modification and the prognosis, carcinogenesis and treatment of breast cancer, which may provide a new theoretical basis for development of effective strategies for monitoring of breast cancer based on epigenetics.
Collapse
|
20
|
Li M, Tao Z, Zhao Y, Li L, Zheng J, Li Z, Chen X. 5-methylcytosine RNA methyltransferases and their potential roles in cancer. J Transl Med 2022; 20:214. [PMID: 35562754 PMCID: PMC9102922 DOI: 10.1186/s12967-022-03427-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/05/2022] [Indexed: 12/28/2022] Open
Abstract
In recent years, 5-methylcytosine (m5C) RNA modification has emerged as a key player in regulating RNA metabolism and function through coding as well as non-coding RNAs. Accumulating evidence has shown that m5C modulates the stability, translation, transcription, nuclear export, and cleavage of RNAs to mediate cell proliferation, differentiation, apoptosis, stress responses, and other biological functions. In humans, m5C RNA modification is catalyzed by the NOL1/NOP2/sun (NSUN) family and DNA methyltransferase 2 (DNMT2). These RNA modifiers regulate the expression of multiple oncogenes such as fizzy-related-1, forkhead box protein C2, Grb associated-binding protein 2, and TEA domain transcription factor 1, facilitating the pathogenesis and progression of cancers. Furthermore, the aberrant expression of methyltransferases have been identified in various cancers and used to predict the prognosis of patients. In this review, we present a comprehensive overview of m5C RNA methyltransferases. We specifically highlight the potential mechanism of action of m5C in cancer. Finally, we discuss the prospect of m5C-relative studies.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Zijia Tao
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Yiqiao Zhao
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Lei Li
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Jianyi Zheng
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Zeyu Li
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China.
| |
Collapse
|
21
|
Chen SY, Chen KL, Ding LY, Yu CH, Wu HY, Chou YY, Chang CJ, Chang CH, Wu YN, Wu SR, Hou YC, Lee CT, Chen PC, Shan YS, Huang PH. RNA bisulfite sequencing reveals NSUN2-mediated suppression of epithelial differentiation in pancreatic cancer. Oncogene 2022; 41:3162-3176. [PMID: 35501460 DOI: 10.1038/s41388-022-02325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/26/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
Abstract
Posttranscriptional modifications in RNA have been considered to contribute to disease pathogenesis and tumor progression. NOL1/NOP2/Sun domain family member 2 (NSUN2) is an RNA methyltransferase that promotes tumor progression in several cancers. Pancreatic cancer relapse inevitably occurs even in cases where primary tumors have been successfully treated. Associations of cancer progression due to reprogramming of the cancer methyl-metabolome and the cancer genome have been noted, but the effect of base modifications, namely 5-methylcytosine (m5C), in the transcriptome remains unclear. Aberrant regulation of 5-methylcytosine turnover in cancer may affect posttranscriptional modifications in coding and noncoding RNAs in disease pathogenesis. Mutations in NSUN2 have been reported as drivers of neurodevelopmental disorders in mice, and upregulated expression of NSUN2 in tumors of the breast, bladder, and pancreas has been reported. In this study, we conducted mRNA whole transcriptomic bisulfite sequencing to categorize NSUN2 target sites in the mRNA of human pancreatic cancer cells. We identified a total of 2829 frequent m5C sites in mRNA from pancreatic cancer cells. A total of 90.9% (2572/2829) of these m5C sites were mapped to annotated genes in autosomes and sex chromosomes X and Y. Immunohistochemistry staining confirmed that the NSUN2 expression was significantly upregulated in cancer lesions in the LSL-KrasG12D/+;Trp53fl/fl;Pdx1-Cre (KPC) spontaneous pancreatic cancer mouse model induced by Pdx1-driven Cre/lox system expressing mutant KrasG12D and p53 deletion. The in vitro phenotypic analysis of NSUN2 knockdown showed mild effects on pancreatic cancer cell 2D/3D growth, morphology and gemcitabine sensitivity in the early phase of tumorigenesis, but cumulative changes after multiple cell doubling passages over time were required for these mutations to accumulate. Syngeneic transplantation of NSUN2-knockdown KPC cells via subcutaneous injection showed decreased stromal fibrosis and restored differentiation of ductal epithelium in vivo. SIGNIFICANCE: Transcriptome-wide mRNA bisulfite sequencing identified candidate m5C sites of mRNAs in human pancreatic cancer cells. NSUN2-mediated m5C mRNA metabolism was observed in a mouse model of pancreatic cancer. NSUN2 regulates cancer progression and epithelial differentiation via mRNA methylation.
Collapse
Affiliation(s)
- Szu-Ying Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Lin Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Yun Ding
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Hung Yu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Yi Wu
- Instrumentation Center, College of Science, National Taiwan University, Tainan, Taiwan
| | - Ya-Yi Chou
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Jung Chang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Han Chang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
- Center for Corporate Relations and Technology Transfer, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Na Wu
- International Institute for Macromolecular Analysis and Nanomedicine Innovations, Tainan, Taiwan
| | - Shang-Rung Wu
- International Institute for Macromolecular Analysis and Nanomedicine Innovations, Tainan, Taiwan
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Ta Lee
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Peng-Chieh Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Po-Hsien Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
22
|
Role of main RNA modifications in cancer: N 6-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct Target Ther 2022; 7:142. [PMID: 35484099 PMCID: PMC9051163 DOI: 10.1038/s41392-022-01003-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the major diseases threatening human life and health worldwide. Epigenetic modification refers to heritable changes in the genetic material without any changes in the nucleic acid sequence and results in heritable phenotypic changes. Epigenetic modifications regulate many biological processes, such as growth, aging, and various diseases, including cancer. With the advancement of next-generation sequencing technology, the role of RNA modifications in cancer progression has become increasingly prominent and is a hot spot in scientific research. This review studied several common RNA modifications, such as N6-methyladenosine, 5-methylcytosine, and pseudouridine. The deposition and roles of these modifications in coding and noncoding RNAs are summarized in detail. Based on the RNA modification background, this review summarized the expression, function, and underlying molecular mechanism of these modifications and their regulators in cancer and further discussed the role of some existing small-molecule inhibitors. More in-depth studies on RNA modification and cancer are needed to broaden the understanding of epigenetics and cancer diagnosis, treatment, and prognosis.
Collapse
|
23
|
Fang X, Miao C, Zeng T, Chu W, Zheng Y, Sun X, Yin X, Li Y. Role of m 5 C RNA methylation regulators in colorectal cancer prognosis and immune microenvironment. J Clin Lab Anal 2022; 36:e24303. [PMID: 35212022 PMCID: PMC8993619 DOI: 10.1002/jcla.24303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background RNA modification has become one of the hot topics of research as it can be used for tumor prognosis. However, its role in various biological processes is still poorly understood. The aim of this study was to investigate the role of m5C and m1A regulators on colorectal cancer prognosis using bioinformatics tools. The association between these regulators and differences in patient survival as well as the clinicopathological characteristics and tumor immune microenvironment in colorectal cancer tissues were assessed. Methods We selected publicly available colorectal cancer data sets from The Cancer Genome Atlas and used the “limma” package in R to identify differentially expressed genes. The least absolute shrinkage and selection operator regression model was used to calculate the prognostic risk, and a risk prediction model was constructed, to help assess the prognostic values of the differentially expressed genes. Finally, using TISCH and TIMER, we assessed the extent of cellular infiltration in colorectal cancer. Results We explored NSUN6 and DNMT3A expression using UALCAN and HPA and found that their expression is significantly increased in colorectal cancer tissues and correlated with sex and TP53 mutation status. Moreover, we found NSUN6 and DNMT3A were related to the infiltration of six major immune cells, with DNMT3A being closely related to dendritic cells, CD4+ T cells, and B cells, whereas NSUN6 to B cells and CD8+ T cells. Conclusion Our findings suggest that m5C regulators can predict the clinical prognostic risk and regulate the tumor immune microenvironment in colorectal cancer.
Collapse
Affiliation(s)
- Xiaojie Fang
- Department of Anorectal Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenyun Miao
- Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Tianni Zeng
- Department of Medical Oncology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Weijian Chu
- Department of Anorectal Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Zheng
- Department of Anorectal Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xi Sun
- Department of Anorectal Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Yin
- Department of Anorectal Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanyan Li
- Department of Anorectal Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
24
|
Leptidis S, Papakonstantinou E, Diakou KI, Pierouli K, Mitsis T, Dragoumani K, Bacopoulou F, Sanoudou D, Chrousos GP, Vlachakis D. Epitranscriptomics of cardiovascular diseases (Review). Int J Mol Med 2022; 49:9. [PMID: 34791505 PMCID: PMC8651226 DOI: 10.3892/ijmm.2021.5064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
RNA modifications have recently become the focus of attention due to their extensive regulatory effects in a vast array of cellular networks and signaling pathways. Just as epigenetics is responsible for the imprinting of environmental conditions on a genetic level, epitranscriptomics follows the same principle at the RNA level, but in a more dynamic and sensitive manner. Nevertheless, its impact in the field of cardiovascular disease (CVD) remains largely unexplored. CVD and its associated pathologies remain the leading cause of death in Western populations due to the limited regenerative capacity of the heart. As such, maintenance of cardiac homeostasis is paramount for its physiological function and its capacity to respond to environmental stimuli. In this context, epitranscriptomic modifications offer a novel and promising therapeutic avenue, based on the fine‑tuning of regulatory cascades, necessary for cardiac function. This review aimed to provide an overview of the most recent findings of key epitranscriptomic modifications in both coding and non‑coding RNAs. Additionally, the methods used for their detection and important associations with genetic variations in the context of CVD were summarized. Current knowledge on cardiac epitranscriptomics, albeit limited still, indicates that the impact of epitranscriptomic editing in the heart, in both physiological and pathological conditions, holds untapped potential for the development of novel targeted therapeutic approaches in a dynamic manner.
Collapse
Affiliation(s)
- Stefanos Leptidis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Kalliopi Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Flora Bacopoulou
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Despina Sanoudou
- Fourth Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, 'Attikon' Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P. Chrousos
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London WC2R 2LS, UK
| |
Collapse
|
25
|
Guo G, Pan K, Fang S, Ye L, Tong X, Wang Z, Xue X, Zhang H. Advances in mRNA 5-methylcytosine modifications: Detection, effectors, biological functions, and clinical relevance. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:575-593. [PMID: 34631286 PMCID: PMC8479277 DOI: 10.1016/j.omtn.2021.08.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
5-methylcytosine (m5C) post-transcriptional modifications affect the maturation, stability, and translation of the mRNA molecule. These modifications play an important role in many physiological and pathological processes, including stress response, tumorigenesis, tumor cell migration, embryogenesis, and viral replication. Recently, there has been a better understanding of the biological implications of m5C modification owing to the rapid development and optimization of detection technologies, including liquid chromatography-tandem mass spectrometry (LC-MS/MS) and RNA-BisSeq. Further, predictive models (such as PEA-m5C, m5C-PseDNC, and DeepMRMP) for the identification of potential m5C modification sites have also emerged. In this review, we summarize the current experimental detection methods and predictive models for mRNA m5C modifications, focusing on their advantages and limitations. We systematically surveyed the latest research on the effectors related to mRNA m5C modifications and their biological functions in multiple species. Finally, we discuss the physiological effects and pathological significance of m5C modifications in multiple diseases, as well as their therapeutic potential, thereby providing new perspectives for disease treatment and prognosis.
Collapse
Affiliation(s)
- Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kan Pan
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Su Fang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lele Ye
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinya Tong
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhibin Wang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huidi Zhang
- Department of Nephrology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
26
|
Li H, Chen L, Han Y, Zhang F, Wang Y, Han Y, Wang Y, Wang Q, Guo X. The Identification of RNA Modification Gene PUS7 as a Potential Biomarker of Ovarian Cancer. BIOLOGY 2021; 10:1130. [PMID: 34827123 PMCID: PMC8615213 DOI: 10.3390/biology10111130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/16/2022]
Abstract
RNA modifications are reversible, dynamically regulated, and involved in a variety of diseases such as cancers. Given the lack of efficient and reliable biomarkers for early diagnosis of ovarian cancer (OV), this study was designed to explore the role of RNA modification genes (RMGs) in the diagnosis of OV. Herein, 132 RMGs were retrieved in PubMed, 638 OV and 18 normal ovary samples were retrieved in The Cancer Genome Atlas (TCGA), and GSE18520 cohorts were collected for differential analysis. Finally, PUS7 (Pseudouridine Synthase 7) as differentially expressed RMGs (DEGs-RMGs) was identified as a diagnostic biomarker candidate and evaluated for its specificity and sensitivity using Receiver Operating Characteristic (ROC) analysis in TCGA and GEO data. The protein expression, mutation, protein interaction networks, correlated genes, related pathways, biological processes, cell components, and molecular functions of PUS7 were analyzed as well. The upregulation of PUS7 protein in OV was confirmed by the staining images in HPA and tissue arrays. Collectively, the findings of the present study point towards the potential of PUS7 as a diagnostic marker and therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Huimin Li
- Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China; (H.L.); (L.C.); (Y.H.); (F.Z.); (Y.W.); (Y.H.); (Y.W.)
| | - Lin Chen
- Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China; (H.L.); (L.C.); (Y.H.); (F.Z.); (Y.W.); (Y.H.); (Y.W.)
| | - Yunsong Han
- Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China; (H.L.); (L.C.); (Y.H.); (F.Z.); (Y.W.); (Y.H.); (Y.W.)
| | - Fangfang Zhang
- Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China; (H.L.); (L.C.); (Y.H.); (F.Z.); (Y.W.); (Y.H.); (Y.W.)
| | - Yanyan Wang
- Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China; (H.L.); (L.C.); (Y.H.); (F.Z.); (Y.W.); (Y.H.); (Y.W.)
| | - Yali Han
- Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China; (H.L.); (L.C.); (Y.H.); (F.Z.); (Y.W.); (Y.H.); (Y.W.)
| | - Yange Wang
- Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China; (H.L.); (L.C.); (Y.H.); (F.Z.); (Y.W.); (Y.H.); (Y.W.)
| | - Qiang Wang
- School of Software, Henan University, Kaifeng 475001, China
| | - Xiangqian Guo
- Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China; (H.L.); (L.C.); (Y.H.); (F.Z.); (Y.W.); (Y.H.); (Y.W.)
| |
Collapse
|
27
|
Zhai CT, Tian YC, Tang ZX, Shao LJ. RNA methyltransferase NSUN2 promotes growth of hepatocellular carcinoma cells by regulating fizzy-related-1 in vitro and in vivo. Kaohsiung J Med Sci 2021; 37:991-999. [PMID: 34370374 DOI: 10.1002/kjm2.12430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 12/29/2022] Open
Abstract
The aim of the study was to investigate the role of NSUN2 (NOP2/Sun RNA Methyltransferase Family Member 2) in hepatocellular carcinoma (HCC). The expressions of NSUN2 and FZR1 were measured. Cell viability, proliferation, and apoptosis were assessed. HCC xenograft in nude mouse model was established. Tumor weight and volume were examined. Tumor tissues were collected for immunohistochemistry (IHC). TCGA database analysis and clinical sample testing suggested that the transcript levels of NSUN2 and FZR1 were increased in HCC tissues. NSUN2 knockdown inhibited HCC cell viability and proliferation, and promoted cell apoptosis. Moreover, the effects of NSUN2 could be countered by overexpressing FZR1. In animal experiment, NSUN2 silencing suppressed tumor growth in nude mice by downregulating FZR1. In conclusion, NSUN2 has a regulatory effect on HCC cell proliferation and apoptosis. NSUN2 knockout could inhibit cellular processes in HCC and tumor growth, likely via FZR1 inhibition. This finding has not only revealed the role of NSUN2 in HCC growth, but also suggests a promising target for HCC treatment.
Collapse
Affiliation(s)
- Chun-Tao Zhai
- Department of General Surgery, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medcial University, Jiangsu Province, China
| | - Yi-Cheng Tian
- Department of General Surgery, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medcial University, Jiangsu Province, China
| | - Zu-Xiong Tang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Jiangsu Province, China
| | - Long-Jiang Shao
- Department of General Surgery, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medcial University, Jiangsu Province, China
| |
Collapse
|
28
|
Gillen SL, Waldron JA, Bushell M. Codon optimality in cancer. Oncogene 2021; 40:6309-6320. [PMID: 34584217 PMCID: PMC8585667 DOI: 10.1038/s41388-021-02022-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022]
Abstract
A key characteristic of cancer cells is their increased proliferative capacity, which requires elevated levels of protein synthesis. The process of protein synthesis involves the translation of codons within the mRNA coding sequence into a string of amino acids to form a polypeptide chain. As most amino acids are encoded by multiple codons, the nucleotide sequence of a coding region can vary dramatically without altering the polypeptide sequence of the encoded protein. Although mutations that do not alter the final amino acid sequence are often thought of as silent/synonymous, these can still have dramatic effects on protein output. Because each codon has a distinct translation elongation rate and can differentially impact mRNA stability, each codon has a different degree of 'optimality' for protein synthesis. Recent data demonstrates that the codon preference of a transcriptome matches the abundance of tRNAs within the cell and that this supply and demand between tRNAs and mRNAs varies between different cell types. The largest observed distinction is between mRNAs encoding proteins associated with proliferation or differentiation. Nevertheless, precisely how codon optimality and tRNA expression levels regulate cell fate decisions and their role in malignancy is not fully understood. This review describes the current mechanistic understanding on codon optimality, its role in malignancy and discusses the potential to target codon optimality therapeutically in the context of cancer.
Collapse
Affiliation(s)
- Sarah L Gillen
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
| | - Joseph A Waldron
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK, G61 1QH.
| |
Collapse
|
29
|
Comprehensive Analysis of m 5C RNA Methylation Regulator Genes in Clear Cell Renal Cell Carcinoma. Int J Genomics 2021; 2021:3803724. [PMID: 34631874 PMCID: PMC8497170 DOI: 10.1155/2021/3803724] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Background Recent research found that N5-methylcytosine (m5C) was involved in the development and occurrence of numerous cancers. However, the function and mechanism of m5C RNA methylation regulators in clear cell renal cell carcinoma (ccRCC) remains undiscovered. This study is aimed at investigating the predictive and clinical value of these m5C-related genes in ccRCC. Methods Based on The Cancer Genome Atlas (TCGA) database, the expression patterns of twelve m5C regulators and matched clinicopathological characteristics were downloaded and analyzed. To reveal the relationships between the expression levels of m5C-related genes and the prognosis value in ccRCC, consensus clustering analysis was carried out. By univariate Cox analysis and last absolute shrinkage and selection operator (LASSO) Cox regression algorithm, a m5C-related risk signature was constructed in the training group and further validated in the testing group and the entire cohort. Then, the predictive ability of survival of this m5C-related risk signature was analyzed by Cox regression analysis and nomogram. Functional annotation and single-sample Gene Set Enrichment Analysis (ssGSEA) were applied to further explore the biological function and potential signaling pathways. Furthermore, we performed qRT-PCR experiments and measured global m5C RNA methylation level to validate this signature in vitro and tissue samples. Results In the TCGA-KIRC cohort, we found significant differences in the expression of m5C RNA methylation-related genes between ccRCC tissues and normal kidney tissues. Consensus cluster analysis was conducted to separate patients into two m5C RNA methylation subtypes. Significantly better outcomes were observed in ccRCC patients in cluster 1 than in cluster 2. m5C RNA methylation-related risk score was calculated to evaluate the prognosis of ccRCC patients by seven screened m5C RNA methylation regulators (NOP2, NSUN2, NSUN3, NSUN4, NSUN5, TET2, and DNMT3B) in the training cohort. The AUC for the 1-, 2-, and 3-year survival in the training cohort were 0.792, 0.675, and 0.709, respectively, indicating that the risk signature had an excellent prognosis prediction in ccRCC. Additionally, univariate and multivariate Cox regression analyses revealed that the risk signature could be an independent prognostic factor in ccRCC. The results of ssGSEA suggested that the immune cells with different infiltration degrees between the high-risk and low-risk groups were T cells including follicular helper T cells, Th1_cells, Th2_cells, and CD8+_T_cells, and the main differences in immune-related functions between the two groups were the interferon response and T cell costimulation. In addition, qRT-PCR experiments confirmed our results in renal cell lines and tissue samples. Conclusions According to the seven selected regulatory factors of m5C RNA methylation, a risk signature associated with m5C methylation that can independently predict prognosis in patients with ccRCC was developed and further verified the predictive efficiency.
Collapse
|
30
|
RNA Modifications and Epigenetics in Modulation of Lung Cancer and Pulmonary Diseases. Int J Mol Sci 2021; 22:ijms221910592. [PMID: 34638933 PMCID: PMC8508636 DOI: 10.3390/ijms221910592] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, and its tumorigenesis involves the accumulation of genetic and epigenetic events in the respiratory epithelium. Epigenetic modifications, such as DNA methylation, RNA modification, and histone modifications, have been widely reported to play an important role in lung cancer development and in other pulmonary diseases. Whereas the functionality of DNA and chromatin modifications referred to as epigenetics is widely characterized, various modifications of RNA nucleotides have recently come into prominence as functionally important. N6-methyladosine (m6A) is the most prevalent internal modification in mRNAs, and its machinery of writers, erasers, and readers is well-characterized. However, several other nucleotide modifications of mRNAs and various noncoding RNAs have also been shown to play an important role in the regulation of biological processes and pathology. Such epitranscriptomic modifications play an important role in regulating various aspects of RNA metabolism, including transcription, translation, splicing, and stability. The dysregulation of epitranscriptomic machinery has been implicated in the pathological processes associated with carcinogenesis including uncontrolled cell proliferation, migration, invasion, and epithelial-mesenchymal transition. In recent years, with the advancement of RNA sequencing technology, high-resolution maps of different modifications in various tissues, organs, or disease models are being constantly reported at a dramatic speed. This facilitates further understanding of the relationship between disease development and epitranscriptomics, shedding light on new therapeutic possibilities. In this review, we summarize the basic information on RNA modifications, including m6A, m1A, m5C, m7G, pseudouridine, and A-to-I editing. We then demonstrate their relation to different kinds of lung diseases, especially lung cancer. By comparing the different roles RNA modifications play in the development processes of different diseases, this review may provide some new insights and offer a better understanding of RNA epigenetics and its involvement in pulmonary diseases.
Collapse
|
31
|
Kumari K, Groza P, Aguilo F. Regulatory roles of RNA modifications in breast cancer. NAR Cancer 2021; 3:zcab036. [PMID: 34541538 PMCID: PMC8445368 DOI: 10.1093/narcan/zcab036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/07/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Collectively referred to as the epitranscriptome, RNA modifications play important roles in gene expression control regulating relevant cellular processes. In the last few decades, growing numbers of RNA modifications have been identified not only in abundant ribosomal (rRNA) and transfer RNA (tRNA) but also in messenger RNA (mRNA). In addition, many writers, erasers and readers that dynamically regulate the chemical marks have also been characterized. Correct deposition of RNA modifications is prerequisite for cellular homeostasis, and its alteration results in aberrant transcriptional programs that dictate human disease, including breast cancer, the most frequent female malignancy, and the leading cause of cancer-related death in women. In this review, we emphasize the major RNA modifications that are present in tRNA, rRNA and mRNA. We have categorized breast cancer-associated chemical marks and summarize their contribution to breast tumorigenesis. In addition, we describe less abundant tRNA modifications with related pathways implicated in breast cancer. Finally, we discuss current limitations and perspectives on epitranscriptomics for use in therapeutic strategies against breast and other cancers.
Collapse
Affiliation(s)
- Kanchan Kumari
- Department of Molecular Biology, Umeå University, SE-901 85 Umeå, Sweden
| | - Paula Groza
- Department of Molecular Biology, Umeå University, SE-901 85 Umeå, Sweden
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, SE-901 85 Umeå, Sweden
| |
Collapse
|
32
|
Zhang Q, Liu F, Chen W, Miao H, Liang H, Liao Z, Zhang Z, Zhang B. The role of RNA m 5C modification in cancer metastasis. Int J Biol Sci 2021; 17:3369-3380. [PMID: 34512153 PMCID: PMC8416729 DOI: 10.7150/ijbs.61439] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
Epigenetic modification plays a crucial regulatory role in the biological processes of eukaryotic cells. The recent characterization of DNA and RNA methylation is still ongoing. Tumor metastasis has long been an unconquerable feature in the fight against cancer. As an inevitable component of the epigenetic regulatory network, 5-methylcytosine is associated with multifarious cellular processes and systemic diseases, including cell migration and cancer metastasis. Recently, gratifying progress has been achieved in determining the molecular interactions between m5C writers (DNMTs and NSUNs), demethylases (TETs), readers (YTHDF2, ALYREF and YBX1) and RNAs. However, the underlying mechanism of RNA m5C methylation in cell mobility and metastasis remains unclear. The functions of m5C writers and readers are believed to regulate gene expression at the post-transcription level and are involved in cellular metabolism and movement. In this review, we emphatically summarize the recent updates on m5C components and related regulatory networks. The content will be focused on writers and readers of the RNA m5C modification and potential mechanisms in diseases. We will discuss relevant upstream and downstream interacting molecules and their associations with cell migration and metastasis.
Collapse
Affiliation(s)
- Qiaofeng Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei 430030, China.,Hubei key laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei 430030, China.,Hubei key laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei 430030, China.,Hubei key laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongrui Miao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei 430030, China.,Hubei key laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei 430030, China.,Hubei key laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei 430030, China.,Hubei key laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei 430030, China.,Hubei key laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei 430030, China.,Hubei key laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
33
|
Myllymäki H, Astorga Johansson J, Grados Porro E, Elliot A, Moses T, Feng Y. Metabolic Alterations in Preneoplastic Development Revealed by Untargeted Metabolomic Analysis. Front Cell Dev Biol 2021; 9:684036. [PMID: 34414180 PMCID: PMC8369915 DOI: 10.3389/fcell.2021.684036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Metabolic rewiring is a critical hallmark of tumorigenesis and is essential for the development of cancer. Although many key features of metabolic alteration that are crucial for tumor cell survival, proliferation and progression have been identified, these are obtained from studies with established tumors and cancer cell lines. However, information on the essential metabolic changes that occur during pre-neoplastic cell (PNC) development that enables its progression to full blown tumor is still lacking. Here, we present an untargeted metabolomics analysis of human oncogene HRASG12V induced PNC development, using a transgenic inducible zebrafish larval skin development model. By comparison with normal sibling controls, we identified six metabolic pathways that are significantly altered during PNC development in the skin. Amongst these altered pathways are pyrimidine, purine and amino acid metabolism that are common to the cancer metabolic changes that support rapid cell proliferation and growth. Our data also suggest alterations in post transcriptional modification of RNAs that might play a role in PNC development. Our study provides a proof of principle work flow for identifying metabolic alterations during PNC development driven by an oncogenic mutation. In the future, this approach could be combined with transcriptomic or proteomic approaches to establish the detailed interaction between signaling networks and cellular metabolic pathways that occur at the onset of tumor progression.
Collapse
Affiliation(s)
- Henna Myllymäki
- Centre for Inflammation Research, Queen’s Medical Research Institute, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jeanette Astorga Johansson
- Centre for Inflammation Research, Queen’s Medical Research Institute, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Estefania Grados Porro
- Centre for Inflammation Research, Queen’s Medical Research Institute, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Abigail Elliot
- Centre for Inflammation Research, Queen’s Medical Research Institute, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tessa Moses
- EdinOmics, SynthSys - Centre for Synthetic and Systems Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Yi Feng
- Centre for Inflammation Research, Queen’s Medical Research Institute, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
34
|
Islam N, Park J. bCNN-Methylpred: Feature-Based Prediction of RNA Sequence Modification Using Branch Convolutional Neural Network. Genes (Basel) 2021; 12:genes12081155. [PMID: 34440330 PMCID: PMC8392086 DOI: 10.3390/genes12081155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
RNA modification is vital to various cellular and biological processes. Among the existing RNA modifications, N6-methyladenosine (m6A) is considered the most important modification owing to its involvement in many biological processes. The prediction of m6A sites is crucial because it can provide a better understanding of their functional mechanisms. In this regard, although experimental methods are useful, they are time consuming. Previously, researchers have attempted to predict m6A sites using computational methods to overcome the limitations of experimental methods. Some of these approaches are based on classical machine-learning techniques that rely on handcrafted features and require domain knowledge, whereas other methods are based on deep learning. However, both methods lack robustness and yield low accuracy. Hence, we develop a branch-based convolutional neural network and a novel RNA sequence representation. The proposed network automatically extracts features from each branch of the designated inputs. Subsequently, these features are concatenated in the feature space to predict the m6A sites. Finally, we conduct experiments using four different species. The proposed approach outperforms existing state-of-the-art methods, achieving accuracies of 94.91%, 94.28%, 88.46%, and 94.8% for the H. sapiens, M. musculus, S. cerevisiae, and A. thaliana datasets, respectively.
Collapse
Affiliation(s)
- Naeem Islam
- Core Research Institute of Intelligent Robots, Jeonbuk National University, Jeonju 54896, Korea;
- College of Electrical & Mechanical Engineering, NUST, Islamabad 44000, Pakistan
| | - Jaebyung Park
- Core Research Institute of Intelligent Robots, Jeonbuk National University, Jeonju 54896, Korea;
- Division of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: ; Tel.: +82-63-270-4283
| |
Collapse
|
35
|
Gao Y, Fang J. RNA 5-methylcytosine modification and its emerging role as an epitranscriptomic mark. RNA Biol 2021; 18:117-127. [PMID: 34288807 DOI: 10.1080/15476286.2021.1950993] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
5-methylcytosine (m5C) is identified as an abundant and conserved modification in various RNAs, including tRNAs, mRNAs, rRNAs, and other non-coding RNAs. The application of high-throughput sequencing and mass spectrometry allowed for the detection of m5C at a single-nucleotide resolution and at a global abundance separately; this contributes to a better understanding of m5C modification and its biological functions. m5C modification plays critical roles in diverse aspects of RNA processing, including tRNA stability, rRNA assembly, and mRNA translation. Notably, altered m5C modifications and mutated RNA m5C methyltransferases are associated with diverse pathological processes, such as nervous system disorders and cancers. This review may provide new sights of molecular mechanism and functional importance of m5C modification.
Collapse
Affiliation(s)
- Yaqi Gao
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyuan Fang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Pan J, Huang Z, Xu Y. m5C RNA Methylation Regulators Predict Prognosis and Regulate the Immune Microenvironment in Lung Squamous Cell Carcinoma. Front Oncol 2021; 11:657466. [PMID: 34195072 PMCID: PMC8237756 DOI: 10.3389/fonc.2021.657466] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022] Open
Abstract
RNA methylation is a novel epigenetic modification that can be used to evaluate tumor prognosis. However, the underlying mechanisms are unclear. This study aimed to investigate the genetic characteristics of 5-methylcytosine (m5C) and N1-methyladenosine (m1A) regulators in lung squamous cell carcinoma (LUSC) and the prognostic value and immune-related effects of m5C regulators. To this end, we selected the public LUSC dataset from the Cancer Genome Atlas and Gene Expression Omnibus. The least absolute shrinkage and selection operator regression model was used to identify prognostic risk signatures. We used the UALCAN and Human Protein Atlas databases to study the expression of target gene mRNA/protein expression. Furthermore, the Tumor Immune Single Cell Hub and the Tumor Immune Estimation Resource were used to evaluate the degree of immune cell infiltration. Most of the m5C and m1A regulators showed significantly different expression between LUSC and normal samples. The m5C regulators were associated with poor prognosis. In addition, a prognostic risk signature was developed based on two m5C regulators, NOP2/Sun RNA methyltransferase 3 (NSUN3), and NOP2/Sun RNA methyltransferase 4 (NSUN4). Compared with normal lung tissues, the expression of NSUN3 and NSUN4 in the LUSC TCGA dataset was increased, which was related to clinicopathological characteristics and survival. NSUN3 and NSUN4 were related to the infiltration of six major immune cells; especially NSUN3, which was closely related to CD8+ T cells, while NSUN4 was closely related to neutrophils. Our findings suggest that m5C regulators can predict the clinical prognosis risk and regulate the tumor immune microenvironment in LUSC.
Collapse
Affiliation(s)
- Junfan Pan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Zhidong Huang
- Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| | - Yiquan Xu
- Department of Thoracic Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
37
|
Wood S, Willbanks A, Cheng JX. The Role of RNA Modifications and RNA-modifying Proteins in Cancer Therapy and Drug Resistance. Curr Cancer Drug Targets 2021; 21:326-352. [PMID: 33504307 DOI: 10.2174/1568009621666210127092828] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
The advent of new genome-wide sequencing technologies has uncovered abnormal RNA modifications and RNA editing in a variety of human cancers. The discovery of reversible RNA N6-methyladenosine (RNA: m6A) by fat mass and obesity-associated protein (FTO) demethylase has led to exponential publications on the pathophysiological functions of m6A and its corresponding RNA modifying proteins (RMPs) in the past decade. Some excellent reviews have summarized the recent progress in this field. Compared to the extent of research into RNA: m6A and DNA 5-methylcytosine (DNA: m5C), much less is known about other RNA modifications and their associated RMPs, such as the role of RNA: m5C and its RNA cytosine methyltransferases (RCMTs) in cancer therapy and drug resistance. In this review, we will summarize the recent progress surrounding the function, intramolecular distribution and subcellular localization of several major RNA modifications, including 5' cap N7-methylguanosine (m7G) and 2'-O-methylation (Nm), m6A, m5C, A-to-I editing, and the associated RMPs. We will then discuss dysregulation of those RNA modifications and RMPs in cancer and their role in cancer therapy and drug resistance.
Collapse
Affiliation(s)
- Shaun Wood
- Department of Pathology, Hematopathology Section, University of Chicago, Chicago, IL60637, United States
| | - Amber Willbanks
- Department of Pathology, Hematopathology Section, University of Chicago, Chicago, IL60637, United States
| | - Jason X Cheng
- Department of Pathology, Hematopathology Section, University of Chicago, Chicago, IL60637, United States
| |
Collapse
|
38
|
Abstract
Increased proliferation and protein synthesis are characteristics of transformed and tumor cells. Although the components of the translation machinery are often dysregulated in cancer, the role of tRNAs in cancer cells has not been well studied. Nevertheless, the number of related studies has recently started increasing. With the development of high throughput technologies such as next-generation sequencing, genome-wide differential tRNA expression patterns in breast cancer-derived cell lines and breast tumors have been investigated. The genome-wide transcriptomics analyses have been linked with many studies for functional and phenotypic characterization, whereby tRNAs or tRNA-related fragments have been shown to play important roles in breast cancer regulation and as promising prognostic biomarkers. Here, we review their expression patterns, functions, prognostic value, and potential therapeutic use as well as related technologies.
Collapse
|
39
|
Huang Z, Pan J, Wang H, Du X, Xu Y, Wang Z, Chen D. Prognostic Significance and Tumor Immune Microenvironment Heterogenicity of m5C RNA Methylation Regulators in Triple-Negative Breast Cancer. Front Cell Dev Biol 2021; 9:657547. [PMID: 33928086 PMCID: PMC8076743 DOI: 10.3389/fcell.2021.657547] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose The m5C RNA methylation regulators are closely related to tumor proliferation, occurrence, and metastasis. This study aimed to investigate the gene expression, clinicopathological characteristics, and prognostic value of m5C regulators in triple-negative breast cancer (TNBC) and their correlation with the tumor immune microenvironment (TIM). Methods The TNBC data, Luminal BC data and HER2 positive BC data set were obtained from The Cancer Genome Atlas and Gene Expression Omnibus, and 11 m5C RNA methylation regulators were analyzed. Univariate Cox regression and the least absolute shrinkage and selection operator regression models were used to develop a prognostic risk signature. The UALCAN and cBioportal databases were used to analyze the gene characteristics and gene alteration frequency of prognosis-related m5C RNA methylation regulators. Gene set enrichment analysis was used to analyze cellular pathways enriched by prognostic factors. The Tumor Immune Single Cell Hub (TISCH) and Timer online databases were used to explore the relationship between prognosis-related genes and the TIM. Results Most of the 11 m5C RNA methylation regulators were differentially expressed in TNBC and normal samples. The prognostic risk signature showed good reliability and an independent prognostic value. Prognosis-related gene mutations were mainly amplified. Concurrently, the NOP2/Sun domain family member 2 (NSUN2) upregulation was closely related to spliceosome, RNA degradation, cell cycle signaling pathways, and RNA polymerase. Meanwhile, NSUN6 downregulation was related to extracellular matrix receptor interaction, metabolism, and cell adhesion. Analysis of the TISCH and Timer databases showed that prognosis-related genes affected the TIM, and the subtypes of immune-infiltrating cells differed between NSUN2 and NSUN6. Conclusion Regulatory factors of m5C RNA methylation can predict the clinical prognostic risk of TNBC patients and affect tumor development and the TIM. Thus, they have the potential to be a novel prognostic marker of TNBC, providing clues for understanding the RNA epigenetic modification of TNBC.
Collapse
Affiliation(s)
- Zhidong Huang
- Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| | - Junfan Pan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Helin Wang
- Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| | - Xianqiang Du
- Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| | - Yusheng Xu
- Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| | - Zhitang Wang
- Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| | - Debo Chen
- Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
40
|
Destefanis E, Avşar G, Groza P, Romitelli A, Torrini S, Pir P, Conticello SG, Aguilo F, Dassi E. A mark of disease: how mRNA modifications shape genetic and acquired pathologies. RNA (NEW YORK, N.Y.) 2021; 27:367-389. [PMID: 33376192 PMCID: PMC7962492 DOI: 10.1261/rna.077271.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
RNA modifications have recently emerged as a widespread and complex facet of gene expression regulation. Counting more than 170 distinct chemical modifications with far-reaching implications for RNA fate, they are collectively referred to as the epitranscriptome. These modifications can occur in all RNA species, including messenger RNAs (mRNAs) and noncoding RNAs (ncRNAs). In mRNAs the deposition, removal, and recognition of chemical marks by writers, erasers and readers influence their structure, localization, stability, and translation. In turn, this modulates key molecular and cellular processes such as RNA metabolism, cell cycle, apoptosis, and others. Unsurprisingly, given their relevance for cellular and organismal functions, alterations of epitranscriptomic marks have been observed in a broad range of human diseases, including cancer, neurological and metabolic disorders. Here, we will review the major types of mRNA modifications and editing processes in conjunction with the enzymes involved in their metabolism and describe their impact on human diseases. We present the current knowledge in an updated catalog. We will also discuss the emerging evidence on the crosstalk of epitranscriptomic marks and what this interplay could imply for the dynamics of mRNA modifications. Understanding how this complex regulatory layer can affect the course of human pathologies will ultimately lead to its exploitation toward novel epitranscriptomic therapeutic strategies.
Collapse
Affiliation(s)
- Eliana Destefanis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
- The EPITRAN COST Action Consortium, COST Action CA16120
| | - Gülben Avşar
- The EPITRAN COST Action Consortium, COST Action CA16120
- Department of Bioengineering, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Paula Groza
- The EPITRAN COST Action Consortium, COST Action CA16120
- Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden
- Wallenberg Center for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Antonia Romitelli
- The EPITRAN COST Action Consortium, COST Action CA16120
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, 50139 Firenze, Italy
- Department of Medical Biotechnologies, Università di Siena, 53100 Siena, Italy
| | - Serena Torrini
- The EPITRAN COST Action Consortium, COST Action CA16120
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, 50139 Firenze, Italy
- Department of Medical Biotechnologies, Università di Siena, 53100 Siena, Italy
| | - Pınar Pir
- The EPITRAN COST Action Consortium, COST Action CA16120
- Department of Bioengineering, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Silvestro G Conticello
- The EPITRAN COST Action Consortium, COST Action CA16120
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, 50139 Firenze, Italy
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Francesca Aguilo
- The EPITRAN COST Action Consortium, COST Action CA16120
- Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden
- Wallenberg Center for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Erik Dassi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
- The EPITRAN COST Action Consortium, COST Action CA16120
| |
Collapse
|
41
|
Liu C, Xu Y, Liu X, Fu Y, Zhu K, Niu Z, Liu J, Qian C. Upregulation of LINC00511 expression by DNA hypomethylation promotes the progression of breast cancer. Gland Surg 2021; 10:1418-1430. [PMID: 33968693 DOI: 10.21037/gs-21-84] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background LINC00511 is a newly discovered long intergenic nonprotein-coding RNA (Ribonucleic acid) with unknown. Method Differential gene expression analysis was performed on breast cancer microarray data, and the upregulated expression of LINC00511 in breast cancer tissues and breast cancer cell lines was verified by qRT-PCR (quantitative Reverse Transcription-Polymerase Chain Reaction). A cohort study revealed a correlation between the expression of LINC00511 and the clinicopathological features in breast cancer patients. The effects of LINC00511 on breast cancer migration and invasion were studied in vitro. Then, an experiment using the Illumina Infinium Human Methylation450 Beadchip data was conducted to study the role of DNA (Deoxyribonucleic acid) methylation in LINC00511 expression, and DAVID (Database for Annotation, Visualization and Integrated Discovery) Functional Annotation Bioinformatics Microarray Analysis was used to determine the biological functions and potential pathways of LINC00511 in breast cancer. Then, LINC00511 and key genes associated with breast cancer disease progression were further studied in TCGA (The Cancer Genome Atlas), and western blotting was used to verify the results at the protein level. Finally, we further studied the effect of LINC00511 on Panobinostat drug sensitivity in breast cancer and its effect on the prognosis of breast cancer patients. Results LINC00511 was upregulated in breast cancer patients. The expression of LINC00511 was closely related to lymph node metastasis, tumor size and molecular subtypes of breast cancer. The in vitro studies revealed that LINC00511 could promote the migration and invasion in MDA-MB-231 and MCF-7 cells. In terms of mechanism, DNA hypomethylation promoted the expression of LINC00511, furthermore LINC00511 promoted the expression of Wnt10A, E2F2, TGFA, and MET, which participate in the progression of breast cancer. In addition, LINC00511 reduced the sensitivity of breast cancer cells to Panobinostat. Moreover, breast cancer patients with a high expression of LINC00511 had a poor prognosis. Conclusions DNA hypomethylation promotes the expression of LINC00511 in breast cancer, and LINC00511 promotes the progression of breast cancer by upregulating Wnt10A, E2F2, TGFA and MET. High expression of LINC00511 is associated with poor prognosis. Our study identified the mechanism of LINC00511 upregulation and provides novel information on the progression of breast cancer.
Collapse
Affiliation(s)
- Chunxiao Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuting Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xu Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingqiang Fu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kaiyuan Zhu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhenbo Niu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiaxin Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Cheng Qian
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
42
|
Berg MD, Brandl CJ. Transfer RNAs: diversity in form and function. RNA Biol 2021; 18:316-339. [PMID: 32900285 PMCID: PMC7954030 DOI: 10.1080/15476286.2020.1809197] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
As the adaptor that decodes mRNA sequence into protein, the basic aspects of tRNA structure and function are central to all studies of biology. Yet the complexities of their properties and cellular roles go beyond the view of tRNAs as static participants in protein synthesis. Detailed analyses through more than 60 years of study have revealed tRNAs to be a fascinatingly diverse group of molecules in form and function, impacting cell biology, physiology, disease and synthetic biology. This review analyzes tRNA structure, biosynthesis and function, and includes topics that demonstrate their diversity and growing importance.
Collapse
Affiliation(s)
- Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | |
Collapse
|
43
|
Maran SR, de Lemos Padilha Pitta JL, Dos Santos Vasconcelos CR, McDermott SM, Rezende AM, Silvio Moretti N. Epitranscriptome machinery in Trypanosomatids: New players on the table? Mol Microbiol 2021; 115:942-958. [PMID: 33513291 DOI: 10.1111/mmi.14688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/20/2022]
Abstract
Trypanosoma and Leishmania parasites cause devastating tropical diseases resulting in serious global health consequences. These organisms have complex life cycles with mammalian hosts and insect vectors. The parasites must, therefore, survive in different environments, demanding rapid physiological and metabolic changes. These responses depend upon regulation of gene expression, which primarily occurs posttranscriptionally. Altering the composition or conformation of RNA through nucleotide modifications is one posttranscriptional mechanism of regulating RNA fate and function, and modifications including N6-methyladenosine (m6A), N1-methyladenosine (m1A), N5-methylcytidine (m5C), N4-acetylcytidine (ac4C), and pseudouridine (Ψ), dynamically regulate RNA stability and translation in diverse organisms. Little is known about RNA modifications and their machinery in Trypanosomatids, but we hypothesize that they regulate parasite gene expression and are vital for survival. Here, we identified Trypanosomatid homologs for writers of m1A, m5C, ac4C, and Ψ and analyze their evolutionary relationships. We systematically review the evidence for their functions and assess their potential use as therapeutic targets. This work provides new insights into the roles of these proteins in Trypanosomatid parasite biology and treatment of the diseases they cause and illustrates that Trypanosomatids provide an excellent model system to study RNA modifications, their molecular, cellular, and biological consequences, and their regulation and interplay.
Collapse
Affiliation(s)
- Suellen Rodrigues Maran
- Laboratory of Molecular Biology of Pathogens, Department of Microbiology, Immunology and Parasitology, Federal University of Sao Paulo, São Paulo, Brazil
| | | | | | - Suzanne M McDermott
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Nilmar Silvio Moretti
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
44
|
Torsin LI, Petrescu GED, Sabo AA, Chen B, Brehar FM, Dragomir MP, Calin GA. Editing and Chemical Modifications on Non-Coding RNAs in Cancer: A New Tale with Clinical Significance. Int J Mol Sci 2021; 22:ijms22020581. [PMID: 33430133 PMCID: PMC7827606 DOI: 10.3390/ijms22020581] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Currently, for seemingly every type of cancer, dysregulated levels of non-coding RNAs (ncRNAs) are reported and non-coding transcripts are expected to be the next class of diagnostic and therapeutic tools in oncology. Recently, alterations to the ncRNAs transcriptome have emerged as a novel hallmark of cancer. Historically, ncRNAs were characterized mainly as regulators and little attention was paid to the mechanisms that regulate them. The role of modifications, which can control the function of ncRNAs post-transcriptionally, only recently began to emerge. Typically, these modifications can be divided into reversible (i.e., chemical modifications: m5C, hm5C, m6A, m1A, and pseudouridine) and non-reversible (i.e., editing: ADAR dependent, APOBEC dependent and ADAR/APOBEC independent). The first research papers showed that levels of these modifications are altered in cancer and can be part of the tumorigenic process. Hence, the aim of this review paper is to describe the most common regulatory modifications (editing and chemical modifications) of the traditionally considered “non-functional” ncRNAs (i.e., microRNAs, long non-coding RNAs and circular RNAs) in the context of malignant disease. We consider that only by understanding this extra regulatory layer it is possible to translate the knowledge about ncRNAs and their modifications into clinical practice.
Collapse
Affiliation(s)
- Ligia I. Torsin
- Department of Anesthesiology and Critical Care, Elias Clinical Emergency Hospital, 011461 Bucharest, Romania;
| | - George E. D. Petrescu
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (G.E.D.P.); (F.M.B.)
- Department of Neurosurgery, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania
| | - Alexandru A. Sabo
- Zentrum für Kinder, Jugend und Frauenmedizin, Pediatrics 2 (General and Special Pediatrics), Klinikum Stuttgart, Olgahospital, 70174 Stuttgart, Germany;
| | - Baoqing Chen
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China;
- Guangdong Esophageal Cancer Research Institute, Guangzhou 510060, China
| | - Felix M. Brehar
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (G.E.D.P.); (F.M.B.)
- Department of Neurosurgery, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania
| | - Mihnea P. Dragomir
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Correspondence: or (M.P.D.); (G.A.C.); Tel.: +40-254-219-493 (M.P.D.); +1-713-792-5461 (G.A.C.)
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Correspondence: or (M.P.D.); (G.A.C.); Tel.: +40-254-219-493 (M.P.D.); +1-713-792-5461 (G.A.C.)
| |
Collapse
|
45
|
Xu X, Zhang Y, Zhang J, Zhang X. NSun2 promotes cell migration through methylating autotaxin mRNA. J Biol Chem 2020; 295:18134-18147. [PMID: 33093178 PMCID: PMC7939462 DOI: 10.1074/jbc.ra119.012009] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 10/11/2020] [Indexed: 01/11/2023] Open
Abstract
NSun2 is an RNA methyltransferase introducing 5-methylcytosine into tRNAs, mRNAs, and noncoding RNAs, thereby influencing the levels or function of these RNAs. Autotaxin (ATX) is a secreted glycoprotein and is recognized as a key factor in converting lysophosphatidylcholine into lysophosphatidic acid (LPA). The ATX-LPA axis exerts multiple biological effects in cell survival, migration, proliferation, and differentiation. Here, we show that NSun2 is involved in the regulation of cell migration through methylating ATX mRNA. In the human glioma cell line U87, knockdown of NSun2 decreased ATX protein levels, whereas overexpression of NSun2 elevated ATX protein levels. However, neither overexpression nor knockdown of NSun2 altered ATX mRNA levels. Further studies revealed that NSun2 methylated the 3'-UTR of ATX mRNA at cytosine 2756 in vitro and in vivo Methylation by NSun2 enhanced ATX mRNA translation. In addition, NSun2-mediated 5-methylcytosine methylation promoted the export of ATX mRNA from nucleus to cytoplasm in an ALYREF-dependent manner. Knockdown of NSun2 suppressed the migration of U87 cells, which was rescued by the addition of LPA. In summary, we identify NSun2-mediated methylation of ATX mRNA as a novel mechanism in the regulation of ATX.
Collapse
Affiliation(s)
- Xin Xu
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yihua Zhang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Junjie Zhang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China; Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining, China.
| | - Xiaotian Zhang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
46
|
Ao C, Yu L, Zou Q. Prediction of bio-sequence modifications and the associations with diseases. Brief Funct Genomics 2020; 20:1-18. [PMID: 33313647 DOI: 10.1093/bfgp/elaa023] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/22/2022] Open
Abstract
Modifications of protein, RNA and DNA play an important role in many biological processes and are related to some diseases. Therefore, accurate identification and comprehensive understanding of protein, RNA and DNA modification sites can promote research on disease treatment and prevention. With the development of sequencing technology, the number of known sequences has continued to increase. In the past decade, many computational tools that can be used to predict protein, RNA and DNA modification sites have been developed. In this review, we comprehensively summarized the modification site predictors for three different biological sequences and the association with diseases. The relevant web server is accessible at http://lab.malab.cn/∼acy/PTM_data/ some sample data on protein, RNA and DNA modification can be downloaded from that website.
Collapse
|
47
|
Xiang S, Ma Y, Shen J, Zhao Y, Wu X, Li M, Yang X, Kaboli PJ, Du F, Ji H, Zheng Y, Li X, Li J, Wen Q, Xiao Z. m 5C RNA Methylation Primarily Affects the ErbB and PI3K-Akt Signaling Pathways in Gastrointestinal Cancer. Front Mol Biosci 2020; 7:599340. [PMID: 33365328 PMCID: PMC7750483 DOI: 10.3389/fmolb.2020.599340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
5-Methylcytosine (m5C) is a kind of methylation modification that occurs in both DNA and RNA and is present in the highly abundant tRNA and rRNA. It has an important impact on various human diseases including cancer. The function of m5C is modulated by regulatory proteins, including methyltransferases (writers) and special binding proteins (readers). This study aims at comprehensive study of the m5C RNA methylation-related genes and the main pathways under m5C RNA methylation in gastrointestinal (GI) cancer. Our result showed that the expression of m5C writers and reader was mostly up-regulated in GI cancer. The NSUN2 gene has the highest proportion of mutations found in GI cancer. Importantly, in liver cancer, higher expression of almost all m5C regulators was significantly associated with lower patient survival rate. In addition, the expression level of m5C-related genes is significantly different at various pathological stages. Finally, we have found through bioinformatics analysis that m5C regulatory proteins are closely related to the ErbB/PI3K–Akt signaling pathway and GSK3B was an important target for m5C regulators. Besides, the compound termed streptozotocin may be a key candidate drug targeting on GSK3B for molecular targeted therapy in GI cancer.
Collapse
Affiliation(s)
- Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yongshun Ma
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xiao Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Huijiao Ji
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yuan Zheng
- Neijiang Health and Health Vocational College, Neijiang, China
| | - Xiang Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M.) Affiliated to Southwest Medical University, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
48
|
Liu K, Chen W. iMRM: a platform for simultaneously identifying multiple kinds of RNA modifications. Bioinformatics 2020; 36:3336-3342. [PMID: 32134472 DOI: 10.1093/bioinformatics/btaa155] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION RNA modifications play critical roles in a series of cellular and developmental processes. Knowledge about the distributions of RNA modifications in the transcriptomes will provide clues to revealing their functions. Since experimental methods are time consuming and laborious for detecting RNA modifications, computational methods have been proposed for this aim in the past five years. However, there are some drawbacks for both experimental and computational methods in simultaneously identifying modifications occurred on different nucleotides. RESULTS To address such a challenge, in this article, we developed a new predictor called iMRM, which is able to simultaneously identify m6A, m5C, m1A, ψ and A-to-I modifications in Homo sapiens, Mus musculus and Saccharomyces cerevisiae. In iMRM, the feature selection technique was used to pick out the optimal features. The results from both 10-fold cross-validation and jackknife test demonstrated that the performance of iMRM is superior to existing methods for identifying RNA modifications. AVAILABILITY AND IMPLEMENTATION A user-friendly web server for iMRM was established at http://www.bioml.cn/XG_iRNA/home. The off-line command-line version is available at https://github.com/liukeweiaway/iMRM. CONTACT greatchen@ncst.edu.cn. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kewei Liu
- School of Life Sciences, Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan 063009, China
| | - Wei Chen
- School of Life Sciences, Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan 063009, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
49
|
Cayir A, Byun HM, Barrow TM. Environmental epitranscriptomics. ENVIRONMENTAL RESEARCH 2020; 189:109885. [PMID: 32979994 DOI: 10.1016/j.envres.2020.109885] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 05/15/2023]
Abstract
Chemical modifications of RNA molecules have gained increasing attention since evidence emerged for their substantive roles in a range of biological processes, such as the stability and translation of mRNA transcripts. More than 150 modifications have been identified in different organisms to date, collectively known as the 'epitranscriptome', with 6-methyladenosine (m6A), 5-methylcytidine (m5C), pseudouridine and N1-methyladenosine (m1A) the most extensively investigated. Although we are just beginning to elucidate the roles of these modifications in cellular functions, there is already evidence for their dysregulation in diseases such as cancer and neurodevelopmental disorders. There is currently more limited knowledge regarding how environmental exposures affect the epitranscriptome and how this may mediate disease risk, but evidence is beginning to emerge. Here, we review the current evidence for the impact of environmental exposures such as benzo[a]pyrene, bisphenol A, pesticides, metals and nanoparticles upon RNA modifications and the expression of their 'writers' (methyl transferases), 'erasers' (demethylases) and 'readers'. We discuss future directions of the field and identify areas of particular promise and consider the technical challenges that are faced.
Collapse
Affiliation(s)
- Akin Cayir
- Vocational Health College, Canakkale Onsekiz Mart University, Canakkale, Turkey.
| | - Hyang-Min Byun
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Timothy M Barrow
- Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, United Kingdom
| |
Collapse
|
50
|
Sun Z, Xue S, Zhang M, Xu H, Hu X, Chen S, Liu Y, Guo M, Cui H. Aberrant NSUN2-mediated m 5C modification of H19 lncRNA is associated with poor differentiation of hepatocellular carcinoma. Oncogene 2020; 39:6906-6919. [PMID: 32978516 PMCID: PMC7644462 DOI: 10.1038/s41388-020-01475-w] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
RNA methylation is an important epigenetic modification. Recent studies on RNA methylation mainly focus on the m6A modification of mRNA, but very little is known about the m5C modification. NSUN2 is an RNA methyltransferase responsible for the m5C modification of multiple RNAs. In this study, we knocked down the NSUN2 gene in HepG2 cells by CRISPR/Cas9 technology and performed high-throughput RNA-BisSeq. An important tumor-related lncRNA H19 was identified to be targeted by NSUN2. Studies have shown that the expression of H19 lncRNA is abnormally elevated and has a carcinogenic effect in many types of tumors. Our results demonstrated that m5C modification of H19 lncRNA can increase its stability. Interestingly, m5C-modified H19 lncRNA can be specifically bound by G3BP1, a well-known oncoprotein which further leads to MYC accumulation. This may be a novel mechanism by which lncRNA H19 exerts its oncogenic effect. Besides, both the m5C methylation level and the expression level of H19 lncRNA in hepatocellular carcinoma tissues were significantly higher than those in adjacent non-cancer tissues, which were closely associated with poor differentiation of hepatocellular carcinoma (HCC). In conclusion, we found that H19 RNA is a specific target for the NSUN2 modifier. The m5C-modified H19 lncRNA may promote the occurrence and development of tumors by recruiting the G3BP1 oncoprotein. Our findings may provide a potential target and biomarker for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Zhen Sun
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Songlei Xue
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Meiying Zhang
- The General Hospital of the People's Liberation Army (PLAGH), Beijing, China
| | - Hui Xu
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Xuming Hu
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Shihao Chen
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Yangyang Liu
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Mingzhou Guo
- The General Hospital of the People's Liberation Army (PLAGH), Beijing, China.
| | - Hengmi Cui
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agricultural and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 225009, Yangzhou, China. .,Institute of Comparative Medicine, Yangzhou University, 225009, Yangzhou, China. .,Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|