1
|
Zhang X, Yang F, Zhu T, Zhao X, Zhang J, Wen J, Zhang Y, Wang G, Ren X, Chen A, Wang X, Wang L, Lv X, Yang W, Qu C, Wang H, Ning Z, Qu L. Whole genome resequencing reveals genomic regions related to red plumage in ducks. Poult Sci 2024; 103:103694. [PMID: 38663207 PMCID: PMC11068611 DOI: 10.1016/j.psj.2024.103694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 05/07/2024] Open
Abstract
Plumage color is a characteristic trait of ducks that originates as a result of natural and artificial selection. As a conspicuous phenotypic feature, it is a breed characteristic. Previous studies have identified some genes associated with the formation of black and white plumage in ducks. However, studies on the genetic basis underlying the red plumage phenotype in ducks are limited. Here, genome-wide association analysis (GWAS) and selection signal detection (Fst, θπ ratio, and cross-population composite likelihood ratio [XP-CLR]) were conducted to identify candidate regions and genes underlying duck plumage color phenotype. Selection signal detection revealed 29 overlapping genes (including ENPP1 and ULK1) significantly associated with red plumage color in Ji'an Red ducks. ENSAPLG00000012679, ESRRG, and SPATA5 were identified as candidate genes associated with red plumage using GWAS. Selection signal detection revealed that 19 overlapping genes (including GMDS, PDIA6, and ODC1) significantly correlated with light brown plumage in Brown Tsaiya ducks. GWAS to narrow down the significant regions further revealed nine candidate genes (AKT1, ATP6V1C2, GMDS, LRP4, MAML3, PDIA6, PLD5, TMEM63B, and TSPAN8). Notably, in Brown Tsaiya ducks, GMDS, ODC1, and PDIA6 exhibit significantly differentiated allele frequencies among other feather-colored ducks, while in Ji'an Red ducks, ENSAPLG00000012679 has different allele frequency distributions compared with that in other feather-colored ducks. This study offers new insights into the variation and selection of the red plumage phenotype using GWAS and selective signals.
Collapse
Affiliation(s)
- Xinye Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fangxi Yang
- Beijing Nankou Duck Breeding Technology Co., Ltd., Beijing, China
| | - Tao Zhu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiurong Zhao
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinxin Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junhui Wen
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yalan Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gang Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xufang Ren
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Anqi Chen
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xue Wang
- VVBK Animal Medical Diagnostic Technology (Beijing) Co., Ltd, Daxing District, Beijing, China
| | - Liang Wang
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Xueze Lv
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Weifang Yang
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Changqing Qu
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang Normal University, Fuyang, China
| | - Huie Wang
- College of Animal Science, Tarim University, Xinjiang, China
| | - Zhonghua Ning
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Lei P, Yu L, Sun X, Hao J, Shi W, Sun H, Guo X, Jia X, Liu T, Zhang DL, Li L, Wang H, Xu C. Exploring the role of PRDX4 in the development of uterine corpus endometrial carcinoma. Med Oncol 2024; 41:48. [PMID: 38177789 DOI: 10.1007/s12032-023-02265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/21/2023] [Indexed: 01/06/2024]
Abstract
Peroxicedoxin 4 (PRDX4), a member of the peroxicedoxins (PRDXs), has been reported in many cancer-related studies, but its role in uterine corpus endometrial carcinoma (UCEC) is not fully understood. In the present study, we found that PRDX4 was highly expressed in UCEC tissues and cell lines through the combination of bioinformatics analysis and experiments, and elevated PRDX4 levels were associated with poor prognosis. Knockdown of PRDX4 significantly blocked the proliferation and migration of the UCEC cell line Ishikawa and reduced degree of cell confluence. These findings highlight the oncogenic role of PRDX4 in UCEC. In addition, genes that interact with PRDX4 in UCEC were MT-ATP8, PBK, and PDIA6, and we speculated that these genes interacted with each other to promote disease progression in UCEC. Thus, PRDX4 is a potential diagnostic biomarker for UCEC, and targeting PRDX4 may be a potential therapeutic strategy for patients with UCEC.
Collapse
Affiliation(s)
- Ping Lei
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, China
| | - Liting Yu
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Xiaoli Sun
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, China
| | - Junmei Hao
- Department of Pathology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, China
| | - Wenning Shi
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Haojie Sun
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Xiangji Guo
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Xikang Jia
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Tianli Liu
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Dao-Lai Zhang
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Lianqin Li
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, China.
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Dingjiaqiao 87, Nanjing, 210009, Jiangsu, China.
| | - Cong Xu
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China.
| |
Collapse
|
3
|
Davis S, Scott C, Oetjen J, Charles PD, Kessler BM, Ansorge O, Fischer R. Deep topographic proteomics of a human brain tumour. Nat Commun 2023; 14:7710. [PMID: 38001067 PMCID: PMC10673928 DOI: 10.1038/s41467-023-43520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The spatial organisation of cellular protein expression profiles within tissue determines cellular function and is key to understanding disease pathology. To define molecular phenotypes in the spatial context of tissue, there is a need for unbiased, quantitative technology capable of mapping proteomes within tissue structures. Here, we present a workflow for spatially-resolved, quantitative proteomics of tissue that generates maps of protein abundance across tissue slices derived from a human atypical teratoid-rhabdoid tumour at three spatial resolutions, the highest being 40 µm, to reveal distinct abundance patterns of thousands of proteins. We employ spatially-aware algorithms that do not require prior knowledge of the fine tissue structure to detect proteins and pathways with spatial abundance patterns and correlate proteins in the context of tissue heterogeneity and cellular features such as extracellular matrix or proximity to blood vessels. We identify PYGL, ASPH and CD45 as spatial markers for tumour boundary and reveal immune response-driven, spatially-organised protein networks of the extracellular tumour matrix. Overall, we demonstrate spatially-aware deep proteo-phenotyping of tissue heterogeneity, to re-define understanding tissue biology and pathology at the molecular level.
Collapse
Affiliation(s)
- Simon Davis
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Connor Scott
- Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Janina Oetjen
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359, Bremen, Germany
| | - Philip D Charles
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Olaf Ansorge
- Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK.
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK.
| |
Collapse
|
4
|
Functions and mechanisms of protein disulfide isomerase family in cancer emergence. Cell Biosci 2022; 12:129. [PMID: 35965326 PMCID: PMC9375924 DOI: 10.1186/s13578-022-00868-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is a multi-layered organelle that is essential for the synthesis, folding, and structural maturation of almost one-third of the cellular proteome. It houses several resident proteins for these functions including the 21 members of the protein disulfide isomerase (PDI) family. The signature of proteins belonging to this family is the presence of the thioredoxin domain which mediates the formation, and rearrangement of disulfide bonds of substrate proteins in the ER. This process is crucial not only for the proper folding of ER substrates but also for maintaining a balanced ER proteostasis. The inclusion of new PDI members with a wide variety of structural determinants, size and enzymatic activity has brought additional epitomes of how PDI functions. Notably, some of them do not carry the thioredoxin domain and others have roles outside the ER. This also reflects that PDIs may have specialized functions and their functions are not limited within the ER. Large-scale expression datasets of human clinical samples have identified that the expression of PDI members is elevated in pathophysiological states like cancer. Subsequent functional interrogations using structural, molecular, cellular, and animal models suggest that some PDI members support the survival, progression, and metastasis of several cancer types. Herein, we review recent research advances on PDIs, vis-à-vis their expression, functions, and molecular mechanisms in supporting cancer growth with special emphasis on the anterior gradient (AGR) subfamily. Last, we posit the relevance and therapeutic strategies in targeting the PDIs in cancer.
Collapse
|
5
|
Huang Y, He P, Ding J. Protein disulfide isomerase family 6 promotes the imatinib-resistance of renal cell carcinoma by regulation of Wnt3a-Frizzled1 axis. Bioengineered 2021; 12:12157-12166. [PMID: 34781823 PMCID: PMC8809904 DOI: 10.1080/21655979.2021.2005218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Imatinib is a nontoxic tyrosine kinase inhibitor, used in the treatment of advanced renal cell carcinoma. However, some patients with renal cell carcinoma develop resistance to imatinib. Protein disulfide isomerase family 6 (PDIA6) was involved in the chemo-resistance of lung adenocarcinoma. In this study, the effect of PDIA6 on imatinib-resistance of renal cell carcinoma was investigated. First, PDIA6 was found to be up-regulated in the imatinib-resistant renal cell carcinoma tissues and cells. Functional assays showed that knockdown of PDIA6 sensitized imatinib-resistant renal cell carcinoma cells to imatinib through decreasing the half-maximal inhibitory concentration (IC50) of imatinib-resistant renal cell carcinoma cells. Secondly, cell proliferation of imatinib-resistant renal cell carcinoma cells was suppressed by PDIA6 silencing, and the apoptosis was promoted with reduced Bcl-2, enhanced Bax and cleaved caspase-3. Moreover, the interference of PDIA6 increased phosphorylation of H2A histone family member X (γH2AX), while decreased Rad51 and phosphorylated DNA-dependent protein kinase (DNA-PK) (p-DNA-PK) in imatinib-resistant renal cell carcinoma cells. Lastly, protein expression levels of Wnt3a and Frizzled1 (FZD1) in imatinib-resistant renal cell carcinoma cells were down-regulated by silencing of PDIA6. Over-expression of FZD1 attenuated PDIA6 silencing-induced increase in cell apoptosis and decrease in cell proliferation in imatinib-resistant renal cell carcinoma cells. In conclusion, knockdown of PDIA6 sensitized imatinib-resistant renal cell carcinoma cells into imatinib through inactivation of Wnt3a-FZD1 axis.
Collapse
Affiliation(s)
- Yong Huang
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Ping He
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Juan Ding
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
6
|
Cahill T, Cope H, Bass JJ, Overbey EG, Gilbert R, da Silveira WA, Paul AM, Mishra T, Herranz R, Reinsch SS, Costes SV, Hardiman G, Szewczyk NJ, Tahimic CGT. Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight. Int J Mol Sci 2021; 22:ijms22179470. [PMID: 34502375 PMCID: PMC8430797 DOI: 10.3390/ijms22179470] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Bioinformatics approaches have proven useful in understanding biological responses to spaceflight. Spaceflight experiments remain resource intensive and rare. One outstanding issue is how to maximize scientific output from a limited number of omics datasets from traditional animal models including nematodes, fruitfly, and rodents. The utility of omics data from invertebrate models in anticipating mammalian responses to spaceflight has not been fully explored. Hence, we performed comparative analyses of transcriptomes of soleus and extensor digitorum longus (EDL) in mice that underwent 37 days of spaceflight. Results indicate shared stress responses and altered circadian rhythm. EDL showed more robust growth signals and Pde2a downregulation, possibly underlying its resistance to atrophy versus soleus. Spaceflight and hindlimb unloading mice shared differential regulation of proliferation, circadian, and neuronal signaling. Shared gene regulation in muscles of humans on bedrest and space flown rodents suggest targets for mitigating muscle atrophy in space and on Earth. Spaceflight responses of C. elegans were more similar to EDL. Discrete life stages of D. melanogaster have distinct utility in anticipating EDL and soleus responses. In summary, spaceflight leads to shared and discrete molecular responses between muscle types and invertebrate models may augment mechanistic knowledge gained from rodent spaceflight and ground-based studies.
Collapse
Affiliation(s)
- Thomas Cahill
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
| | - Henry Cope
- Nottingham Biomedical Research Centre (BRC), School of Computer Science, University of Nottingham, Nottingham NG7 2QL, UK;
| | - Joseph J. Bass
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham NG7 2QL, UK; (J.J.B.); (N.J.S.)
| | - Eliah G. Overbey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA;
| | - Rachel Gilbert
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Universities Space Research Association, Columbia, MD 21046, USA
| | - Willian Abraham da Silveira
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
- Department of Biological Sciences, School of Life Sciences and Education, Staffordshire University, Stoke-on-Trent ST4 2DF, UK
| | - Amber M. Paul
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - Tejaswini Mishra
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA 94305, USA;
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas–CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| | - Sigrid S. Reinsch
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
| | - Sylvain V. Costes
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
| | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathaniel J. Szewczyk
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham NG7 2QL, UK; (J.J.B.); (N.J.S.)
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Candice G. T. Tahimic
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
- Correspondence:
| |
Collapse
|
7
|
Mao L, Wu X, Gong Z, Yu M, Huang Z. PDIA6 contributes to aerobic glycolysis and cancer progression in oral squamous cell carcinoma. World J Surg Oncol 2021; 19:88. [PMID: 33761940 PMCID: PMC7992853 DOI: 10.1186/s12957-021-02190-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/09/2021] [Indexed: 01/04/2023] Open
Abstract
Background/objective Accumulated evidence has demonstrated that aerobic glycolysis serves as a regulator of tumor cell growth, invasion, and angiogenesis. Herein, we explored the role of protein disulfide isomerase family 6 (PDIA6) in the aerobic glycolysis and the progression of oral squamous cell carcinoma (OSCC). Methods The expression pattern of PDIA6 in OSCC tissues was determined by qPCR and western blotting. Lentivirus and small interfering RNAs (siRNAs) were introduced into cells to upregulate and downregulate PDIA6 expression. CCK-8, flow cytometry, transwell, and xenotransplantation models were applied to detect cell proliferation, apoptosis, migration, invasion, and tumorigenesis, respectively. Results A high expression pattern of PDIA6 was observed in OSCC tissues, which was closely associated with lower overall survival and malignant clinical features in OSCC. Compared with the control group, overexpression of PDIA6 induced significant enhancements in cell growth, migration, invasiveness, and tumorigenesis and decreased cell apoptosis, while knockdown of PDIA6 caused opposite results. In addition, overexpression of PDIA6 increased glucose consumption, lactate production, and ATP level in OSCC cells. Conclusion This study demonstrated that PDIA6 expression was elevated in OSCC tissues, and overexpression of it promoted aerobic glycolysis and OSCC progression.
Collapse
Affiliation(s)
- Ling Mao
- The Laboratory of Head and Neck Cancer Research, Hospital and School of Stomatology, Guizhou Medical University, Guiyang, 550004, People's Republic of China.,Imaging department, Liaocheng People's Hospital, Liaocheng, China
| | - Xiaoweng Wu
- Department of Imaging, Liaocheng People's Hospital, 252000, Guiyang, People's Republic of China
| | - Zhengpeng Gong
- Department of Otorhinolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ming Yu
- Laryngology and Otology, the Affiliated Baiyun Hospital of Guizhou Medical University, No. 108 Gangyu Road, Guiyang, 550005, People's Republic of China. .,Department of Interventional Radiology, the Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, 550002, People's Republic of China.
| | - Zhi Huang
- Department of Interventional Radiology, the Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, 550002, People's Republic of China. .,College of Basic Medicine, Guizhou Medical University, No. 1 Beijingxi Road, Guiyang, 550002, People's Republic of China.
| |
Collapse
|
8
|
Yan C, Song X, Wang S, Wang J, Li L. Knockdown of PDIA6 Inhibits Cell Proliferation and Enhances the Chemosensitivity in Gastric Cancer Cells. Cancer Manag Res 2020; 12:11051-11062. [PMID: 33173338 PMCID: PMC7646476 DOI: 10.2147/cmar.s267711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022] Open
Abstract
Background Protein disulfide isomerase A6 (PDIA6), a member of the disulfide isomerase (PDI) family, has been reported to be closely associated with progression of various cancers. However, the specific effects of PDIA6 on gastric cancer (GC) remain unclear. In this study, we investigated the expression pattern and biological functions of PDIA6 in GC. Materials and Methods The CCK-8 assay was carried out to examine cell proliferation and cisplatin cytotoxicity. The Western blot analysis was used to measure the protein expression of PDIA6, Wnt3a and β-catenin. The xenograft tumor assay was performed to evaluate the in vivo effect of PDIA6 on GC cell proliferation and chemoresistance. Results PDIA6 was significantly elevated in GC tissues and cell lines. Down-regulation of PDIA6 inhibited GC cell proliferation and chemoresistance to cisplatin while up-regulation of PDIA6 promoted the proliferation and chemoresistance of GC cells. Besides, PDIA6 regulated the chemosensitivity of GC cells to cisplatin in vivo. Mechanically, PDIA6 served as a regulator of the Wnt/β-catenin signaling pathway by affecting the protein expression of Wnt3a and β-catenin in GC cells. Additionally, Wnt activator reversed the inhibitory effect of PDIA6 knockdown on cisplatin resistance in GC cells. Conclusion These findings provided new insight into the potential role of PDIA6 as a promising target for drug resistance in GC chemotherapy.
Collapse
Affiliation(s)
- Chao Yan
- Department of Radiation Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, People's Republic of China
| | - Xiaolei Song
- Intervention Department, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, People's Republic of China
| | - Su Wang
- Department of General Surgery, Qingdao Chengyang People's Hospital, Qingdao 266109, People's Republic of China
| | - Jinhai Wang
- Gastroenterology Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Lu Li
- Gastroenterology Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| |
Collapse
|
9
|
Shergalis AG, Hu S, Bankhead A, Neamati N. Role of the ERO1-PDI interaction in oxidative protein folding and disease. Pharmacol Ther 2020; 210:107525. [PMID: 32201313 DOI: 10.1016/j.pharmthera.2020.107525] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/04/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Protein folding in the endoplasmic reticulum is an oxidative process that relies on protein disulfide isomerase (PDI) and endoplasmic reticulum oxidase 1 (ERO1). Over 30% of proteins require the chaperone PDI to promote disulfide bond formation. PDI oxidizes cysteines in nascent polypeptides to form disulfide bonds and can also reduce and isomerize disulfide bonds. ERO1 recycles reduced PDI family member PDIA1 using a FAD cofactor to transfer electrons to oxygen. ERO1 dysfunction critically affects several diseases states. Both ERO1 and PDIA1 are overexpressed in cancers and implicated in diabetes and neurodegenerative diseases. Cancer-associated ERO1 promotes cell migration and invasion. Furthermore, the ERO1-PDIA1 interaction is critical for epithelial-to-mesenchymal transition. Co-expression analysis of ERO1A gene expression in cancer patients demonstrated that ERO1A is significantly upregulated in lung adenocarcinoma (LUAD), glioblastoma and low-grade glioma (GBMLGG), pancreatic ductal adenocarcinoma (PAAD), and kidney renal papillary cell carcinoma (KIRP) cancers. ERO1Α knockdown gene signature correlates with knockdown of cancer signaling proteins including IGF1R, supporting the search for novel, selective ERO1 inhibitors for the treatment of cancer. In this review, we explore the functions of ERO1 and PDI to support inhibition of this interaction in cancer and other diseases.
Collapse
Affiliation(s)
- Andrea G Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, United States
| | - Shuai Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, United States; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Armand Bankhead
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, United States.
| |
Collapse
|
10
|
Wang Z, Zhang H, Cheng Q. PDIA4: The basic characteristics, functions and its potential connection with cancer. Biomed Pharmacother 2019; 122:109688. [PMID: 31794946 DOI: 10.1016/j.biopha.2019.109688] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/07/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022] Open
Abstract
Disulfide bond formation is catalyzed by the protein disulfide Isomerases (PDI) family. This is a critical step in protein folding which occurs within the endoplasmic reticulum. PDIA4, as a member of the PDI family, can cause the adjustment of αIIβ 3 affinities which activate platelet and promote thrombosis formation. Endoplasmic reticulum response is triggered by accumulation of abnormal folding proteins concomitant with increasing PDIA4 expression. Besides, current researches indicate that activated platelets and ERS response affect tumor progression. And PDIA4, as previous reported, also participates in tumor progression by affecting cell apoptosis and DNA repair machinery without specific mechanisms revealed.Therefore, PDI inhibitor might possess great potential value in against tumor progression. In this review, we summarize information on PDIA4 including its the basic characteristics and its implication on tumor.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China.
| |
Collapse
|
11
|
Spiniello M, Steinbrink MI, Cesnik AJ, Miller RM, Scalf M, Shortreed MR, Smith LM. Comprehensive in vivo identification of the c-Myc mRNA protein interactome using HyPR-MS. RNA (NEW YORK, N.Y.) 2019; 25:1337-1352. [PMID: 31296583 PMCID: PMC6800478 DOI: 10.1261/rna.072157.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/27/2019] [Indexed: 05/10/2023]
Abstract
Proteins bind mRNA through their entire life cycle from transcription to degradation. We analyzed c-Myc mRNA protein interactors in vivo using the HyPR-MS method to capture the crosslinked mRNA by hybridization and then analyzed the bound proteins using mass spectrometry proteomics. Using HyPR-MS, 229 c-Myc mRNA-binding proteins were identified, confirming previously proposed interactors, suggesting new interactors, and providing information related to the roles and pathways known to involve c-Myc. We performed structural and functional analysis of these proteins and validated our findings with a combination of RIP-qPCR experiments, in vitro results released in past studies, publicly available RIP- and eCLIP-seq data, and results from software tools for predicting RNA-protein interactions.
Collapse
Affiliation(s)
- Michele Spiniello
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Medicine of Precision, University of Studi della Campania Luigi Vanvitelli, Naples 80138, Italy
- Division of Immuno-Hematology and Transfusion Medicine, Cardarelli Hospital, Naples 80131, Italy
| | - Maisie I Steinbrink
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Anthony J Cesnik
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Rachel M Miller
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
12
|
Pan X, Ma L, Wang J. Correlation between CK1α and β-catenin Ser45-phosphorylation in patients with esophageal squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3928-3933. [PMID: 31933784 PMCID: PMC6949772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
UNLABELLED Wnt/β-catenin signaling plays important role in development and tumorigenesis. The accumulation of β-catenin in cytoplasm/nucleus leads to many diseases including cancer. In the normal cells, β-catenin is phosphorylated by CKIα and GSK-3, then phosphorylated β-catenin is sequentially degraded. However, the exact role and correlation of CK1α and β-catenin Ser45-phosphorylation in esophageal squamous cell carcinoma (ESCC) remains little known. PURPOSE The present study was aimed at exploring the role and the correlation between the expression of CK1α and β-catenin Ser45-phosphorylation in ESCC. METHODS The expression of CK1α and β-catenin Ser45-phosphorylation were detected by immunohistochemical technique in 90 cases of ESCC and their corresponding adjacent nonneoplastic esophageal tissues (n=90), and evaluated the correlation between the expression of CK1α, phosphorylation at Ser45 of β-catenin and clinicopathological parameters of ESCC patients. RESULTS The lever of the expression of CK1α in ESCC was 63.3% (57/90), significantly lower than that in nonneoplastic esophageal tissues was 84.4% (76/90), (X2=16.567, P=0.000). The lever of the expression of phosphorylation at Ser45 of β-catenin in ESCC was 65.6% (59/90), significantly lower than that in nonneoplastic esophageal tissues was 88.9% (80/90), (X2=10.340, P=0.003). The expression of CK1α and β-catenin Ser45-phosphorylation was significantly related to the degree of tumor cell differentiation, but not with age, gender, tumor size, AJCC clinical stage and lymphatic metastasis. And CK1α and β-catenin Ser45-phosphorylation expression were also positively correlated (0.356, P=0.001). CONCLUSION CK1α and β-catenin Ser45-phosphorylation may play an important role in the pathogenesis and development of ESCC, and provide clinically useful information.
Collapse
Affiliation(s)
- Xinning Pan
- Department of Pathology, Changzhi Medical CollegeChangzhi, Shanxi, China
| | - Lili Ma
- Department of Pathology, Heping Hospital Affiliated to Changzhi Medical CollegeChangzhi, Shanxi, China
| | - Jinsheng Wang
- Department of Pathology, Changzhi Medical CollegeChangzhi, Shanxi, China
| |
Collapse
|
13
|
Pan X, Ma L, Wang J. The clinicopathological significance and prognostic value of β-catenin Ser45-phosphorylation expression in esophageal squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3507-3513. [PMID: 31934197 PMCID: PMC6949858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
UNLABELLED β-Catenin is a multifunctional protein which plays a central role in physiological homeostasis, and it acts both as an adaptor protein for intracellular adhesion and a transcriptional co-regulator. As a pivotal component of the Wnt signaling pathway, the accumulation of β-catenin in the cytoplasm/nucleus leads to many diseases including cancer. The phosphorylation at Ser45 of β-catenin causes the degradation of β-catenin, which makes β-catenin at a very low level. It has been shown that phosphorylation at Ser45 of β-catenin is closely related to the occurrence and development of tumors. However, little is known about the exact role of β-catenin Ser45-phosphorylation in esophageal squamous cell carcinoma (ESCC). PURPOSE The present study was aimed at exploring the role and the prognostic value of the expression of β-catenin Ser45-phosphorylation in ESCC. METHODS The expression of phosphorylation at Ser45of β-catenin was detected by immunohistochemistry in 90 cases of ESCC and their corresponding adjacent nonneoplastic esophageal tissues (n = 90). We then evaluated the relationships among the expressions of phosphorylation at Ser45 of β-catenin, the clinicopathological parameters, and the prognoses of the ESCC patients. RESULTS The expression level of phosphorylation at Ser45 of β-catenin in ESCC was 65.6% (59/90), significantly lower than the expression level in nonneoplastic esophageal tissues, where it was 88.9% (80/90), (X2 = 10.340, P = 0.003). The expression of β-catenin Ser45-phosphorylation was significantly related to the degree of tumor cell differentiation, but not to age, gender, tumor size, AJCC clinical stage, or lymphatic metastasis. In univariate and multivariate Cox regression analyses, we found that lymphatic invasion and depth of invasion were independent risk factors for the poor prognosis of ESCC patients. Furthermore, a survival analysis revealed that the positive expression of β-catenin Ser45-phosphorylation had a significantly better survival date than the negative group after curative surgery. CONCLUSION β-catenin Ser45-phosphorylation may play an important role in the pathogenesis and development of ESCC and may provide clinically useful prognostic information.
Collapse
Affiliation(s)
- Xinning Pan
- Department of Pathology, Changzhi Medical CollegeChangzhi, China
| | - Lili Ma
- Department of Pathology, Heping Hospital Affiliated to Changzhi Medical CollegeChangzhi, China
| | - Jinsheng Wang
- Department of Pathology, Changzhi Medical CollegeChangzhi, China
| |
Collapse
|
14
|
P4HB, a Novel Hypoxia Target Gene Related to Gastric Cancer Invasion and Metastasis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9749751. [PMID: 31467922 PMCID: PMC6699373 DOI: 10.1155/2019/9749751] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 03/10/2019] [Indexed: 12/15/2022]
Abstract
Gastric cancer (GC) is a common tumor-associated lethal disease, and invasiveness and metastasis are primary challenges in its clinical treatment. Hypoxia microenvironment cannot be ignored in the process of metastasis. Hypoxia inducible factor-1α (HIF-1α) is the core component of the hypoxia signaling pathway. The aim of this study was to identify potential hub genes and signaling pathways associated with HIF-1α. We explored the invasiveness- and metastasis-associated phenotype of GC via bioinformatics analysis and molecular studies. Differentially expressed genes (DEGs) were identified in GC cells and HIF-1α-knockdown GC cells. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed, and a protein-protein interaction (PPI) network was constructed. Hub genes were identified via centrality analysis and Molecular Complex Detection (MCODE) module analysis. The findings suggested that prolyl 4-hydroxylase beta polypeptide (P4HB) has strong associations with HIF-1α. Further, we observed that HIF-1α and P4HB were upregulated in SGC-7901 and BGC-823 cells. In addition, inhibition of HIF-1α expression reduced invasion and metastasis in GC cells; this effect was partially reversed by P4HB overexpression. Our results confirm that P4HB plays a significant role in the regulatory network of HIF-1α. Therefore, HIF-1α and P4HB may be considered potential biomarkers of GC.
Collapse
|
15
|
Ankney JA, Xie L, Wrobel JA, Wang L, Chen X. Novel secretome-to-transcriptome integrated or secreto-transcriptomic approach to reveal liquid biopsy biomarkers for predicting individualized prognosis of breast cancer patients. BMC Med Genomics 2019; 12:78. [PMID: 31146747 PMCID: PMC6543675 DOI: 10.1186/s12920-019-0530-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 05/13/2019] [Indexed: 02/08/2023] Open
Abstract
Background Presently, a 50-gene expression model (PAM50) serves as a breast cancer (BC) subtype classifier that is insufficient to distinguish, within each single PAM50-classified subtype, patient subpopulations having different prognosis. There is a pressing need for inexpensive and minimally invasive biomarker tests to easily and accurately predict individuals’ clinical outcomes and response to treatments. Although quantitative proteomic approaches have been developed to identify/profile proteins secreted (secretome) from various cancer cell lines in vitro, missing are the clinicopathological relevance and the associated prognostic value of these secretomic identifications. Methods To discover biomarkers to predict individualized prognosis we introduce a new multi-omics (secreto-transcriptomics) method that identifies, in their oncogenically secreted states, candidate markers of BC subtypes whose genes bear patient-specific mRNA expression alterations of prognostic significance. First, we used label-free quantitative (LFQ) proteomics to identify the proteins showing BC-subtypic secretion from a series of BC cell lines representing major BC-subtypes. To determine and externally validate the prognostic value of these secreted proteins, we developed a secreto-transcriptomic approach that discovered a PAM50-subtypic Secretion-Correlated mRNA Expression Pattern (SeCEP) wherein the PAM50-subtypic secretion of select proteins statistically correlated with cis-mRNA expression of their encoding genes in patients of the corresponding PAM50-subtypes. Kaplan-Meier analysis of SeCEP genes was used to identify new liquid biopsy biomarkers for predicting individualized prognosis. Results The mRNA expression-to-secretion correlation (SeCEP) pinpointed multiple genes that are fully translated into the oncogenically active secretome in a PAM50-subtypic manner. Further, multiple SeCEP genes in distinct combinations or panels of multiple SeCEP genes were identified as ‘systems prognostic markers’ that showed mRNA co-overexpression patterns in the distinct subpopulations of PAM50-subtypic patients with poor prognosis or high-risk of relapse. Thus, our secreto-transcriptomic approach statistically linked BC subtypic secretome genes with patient-specific information about their mRNA expression alterations and significantly improved the sensitivity and specificity in patient stratification in the context of clinical outcomes or prognosis. Conclusions By combining LFQ secretome screening with proteo-transcriptomic retrospective analysis of patient data our integrated multi-omics approach bypasses costly, tedious, genome-wide fishing and predictive modeling that are commonly required to distinguish a few prognostically altered genes from thousands of other non-BC related genes in a genome. Electronic supplementary material The online version of this article (10.1186/s12920-019-0530-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Astor Ankney
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ling Xie
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - John A Wrobel
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Li Wang
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xian Chen
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
16
|
Ludwig LS, Lareau CA, Ulirsch JC, Christian E, Muus C, Li LH, Pelka K, Ge W, Oren Y, Brack A, Law T, Rodman C, Chen JH, Boland GM, Hacohen N, Rozenblatt-Rosen O, Aryee MJ, Buenrostro JD, Regev A, Sankaran VG. Lineage Tracing in Humans Enabled by Mitochondrial Mutations and Single-Cell Genomics. Cell 2019; 176:1325-1339.e22. [PMID: 30827679 PMCID: PMC6408267 DOI: 10.1016/j.cell.2019.01.022] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/29/2018] [Accepted: 01/09/2019] [Indexed: 01/22/2023]
Abstract
Lineage tracing provides key insights into the fate of individual cells in complex organisms. Although effective genetic labeling approaches are available in model systems, in humans, most approaches require detection of nuclear somatic mutations, which have high error rates, limited scale, and do not capture cell state information. Here, we show that somatic mutations in mtDNA can be tracked by single-cell RNA or assay for transposase accessible chromatin (ATAC) sequencing. We leverage somatic mtDNA mutations as natural genetic barcodes and demonstrate their utility as highly accurate clonal markers to infer cellular relationships. We track native human cells both in vitro and in vivo and relate clonal dynamics to gene expression and chromatin accessibility. Our approach should allow clonal tracking at a 1,000-fold greater scale than with nuclear genome sequencing, with simultaneous information on cell state, opening the way to chart cellular dynamics in human health and disease.
Collapse
Affiliation(s)
- Leif S Ludwig
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Caleb A Lareau
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Jacob C Ulirsch
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Elena Christian
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christoph Muus
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Lauren H Li
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Karin Pelka
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Will Ge
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yaara Oren
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alison Brack
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Travis Law
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Jonathan H Chen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Genevieve M Boland
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Martin J Aryee
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jason D Buenrostro
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Society of Fellows, Harvard University, Cambridge, MA 02138, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology and Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Vijay G Sankaran
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
17
|
Zhang Y, Li T, Zhang L, Shangguan F, Shi G, Wu X, Cui Y, Wang X, Wang X, Liu Y, Lu B, Wei T, Wang CC, Wang L. Targeting the functional interplay between endoplasmic reticulum oxidoreductin-1α and protein disulfide isomerase suppresses the progression of cervical cancer. EBioMedicine 2019; 41:408-419. [PMID: 30826359 PMCID: PMC6443025 DOI: 10.1016/j.ebiom.2019.02.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/30/2019] [Accepted: 02/19/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) oxidoreductin-1α (Ero1α) and protein disulfide isomerase (PDI) constitute the pivotal pathway of oxidative protein folding, and are highly expressed in many cancers. However, whether targeting the functional interplay between Ero1α and PDI could be a new approach for cancer therapy remains unknown. METHODS We performed wound healing assays, transwell migration and invasion assays and xenograft assays to assess cell migration, invasion and tumorigenesis; gel filtration chromatography, oxygen consumption assay and in cells folding assays were used to detect Ero1α-PDI interaction and Ero1α oxidase activity. FINDINGS Here, we report that elevated expression of Ero1α is correlated with poor prognosis in human cervical cancer. Knockout of ERO1A decreases the growth, migration and tumorigenesis of cervical cancer cells, through downregulation of the H2O2-correlated epithelial-mesenchymal transition. We identify that the conserved valine (Val) 101 of Ero1α is critical for Ero1α-PDI complex formation and Ero1α oxidase activity. Val101 of Ero1α is specifically involved in the recognition of PDI catalytic domain. Mutation of Val101 results in a reduced ER, retarded oxidative protein folding and decreased H2O2 levels in the ER of cervical cancer cells and further impairs cell migration, invasion, and tumor growth. INTERPRETATION Our study identifies the critical residue of Ero1α for recognizing PDI, which underlines the molecular mechanism of oxidative protein folding for tumorigenesis and provides a proof-of-concept for cancer therapy by targeting Ero1α-PDI interaction. FUND: This work was supported by National Key R&D Program of China, National Natural Science Foundation of China, and Youth Innovation Promotion Association, CAS.
Collapse
Affiliation(s)
- Yini Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihui Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fugen Shangguan
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guizhi Shi
- Laboratory Animal Center of Institute of Biophysics, Chinese Academy of Sciences, Aviation General Hospital of Beijing, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xun Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi'e Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongzhang Liu
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bin Lu
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Taotao Wei
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
The Isoquinoline Alkaloid Dauricine Targets Multiple Molecular Pathways to Ameliorate Alzheimer-Like Pathological Changes In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2025914. [PMID: 30057671 PMCID: PMC6051032 DOI: 10.1155/2018/2025914] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/02/2018] [Accepted: 04/22/2018] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease, has no effective treatment. Dauricine (DAU), a benzyl tetrahydroisoquinoline alkaloid isolated from the root of Menispermum dauricum DC, reportedly has neuroprotective effects in cerebral ischemia. Here, we investigated the effects of DAU on N2a cells stably transfected with Swedish mutant amyloid precursor protein (N2a/APP), an AD-like cell model. ELISA and Western blot analysis revealed that DAU inhibited APP processing and reduced Aβ accumulation. In addition, DAU ameliorated tau hyperphosphorylation via PP2A, p35/25, and CDK5 pathways in N2a/APP cells. The amelioration of tau hyperphosphorylation by DAU was also validated in HEK293/Tau cells, another cell line with tau hyperphosphorylation. Proteomic analysis revealed 85 differentially expressed proteins in the lysates between the wild-type N2a cells (N2a/WT) and the N2a/APP cells in the presence or absence of DAU; these were classified into 6 main categories according to their functions: endoplasmic reticulum (ER) stress-associated proteins, oxidative stress-associated proteins, cytoskeleton proteins, molecular chaperones, mitochondrial respiration and metabolism-related proteins, and signaling proteins. Taken together, we demonstrated that DAU treatment reduces AD-like pathology, thereby suggesting that DAU has potential therapeutic utility in AD.
Collapse
|
19
|
Guo W, Zhang J, Zhang D, Cao S, Li G, Zhang S, Wang Z, Wen P, Yang H, Shi X, Pan J, Ye H. Polymorphisms and expression pattern of circular RNA circ-ITCH contributes to the carcinogenesis of hepatocellular carcinoma. Oncotarget 2018. [PMID: 28636993 PMCID: PMC5564635 DOI: 10.18632/oncotarget.18327] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks the sixth most common cancer and the third cause of cancer-related mortality worldwide. Recent studies identified that circ-ITCH Suppresses mutiple cancers proliferation via inhibiting the Wnt/beta-Catenin pathway. In current study, conducted a genetic association study together with epidemiological follow-up study to delineate the role of circ-ITCH in the development and progression of HCC. we found rs10485505 (adjusted OR =1.18; 95% CI=1.06-1.31; P value =3.1×10-3) and rs4911154 (adjusted OR =1.27; 95% CI=1.14-1.43; P value =3.7×10-5) were significantly associated with increased HCC risk. The expression level of circ-ITCH was significantly lower in HCC tissues, compared with that in adjacent tissues (P value < 0.001). Cox regression analysis indicated that high expression of circ-ITCH was associated with favorable survival of HCC (HR=0.45; 95% CI=0.29-0.68; P value < 0.001). These results indicate that circ-ITCH may have an inhibitory effect on HCC, and could serve as susceptibility and prognostic biomarkers for HCC patients.
Collapse
Affiliation(s)
- Wenzhi Guo
- Department of Hepatic and Biliary Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Jiakai Zhang
- Department of Hepatic and Biliary Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Dongyu Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Shengli Cao
- Department of Hepatic and Biliary Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Gongquan Li
- Department of Hepatic and Biliary Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Shuijun Zhang
- Department of Hepatic and Biliary Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Zhihui Wang
- Department of Hepatic and Biliary Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Peihao Wen
- Department of Hepatic and Biliary Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Han Yang
- Department of Hepatic and Biliary Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Xiaoyi Shi
- Department of Hepatic and Biliary Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Jie Pan
- Department of Hepatic and Biliary Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Hua Ye
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| |
Collapse
|
20
|
Ma J, Huang C, Ma K, Wu YP, Li BX, Sun Y. Effect of Wnt1 and Wnt5a on the development of dopaminergic neurons, and toxicity induced by combined exposure to paraquat and maneb during gestation and lactation. Mol Med Rep 2017; 16:9721-9728. [PMID: 29152652 DOI: 10.3892/mmr.2017.7833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/13/2017] [Indexed: 11/06/2022] Open
Abstract
Paraquat (PQ) and maneb (MB) are widely used herbicides. Wingless (Wnt) proteins serve a role in the development and differentiation of dopaminergic neurons. Previous studies demonstrated that combined exposure to PQ and MB damages dopaminergic neurons in the midbrain. Effects of PQ and MB exposure on midbrain Wnt proteins have also been previously reported. In the present study, from the 5th day of gestation to weaning of the offspring, pregnant Sprague‑Dawley rats were administrated saline, or PQ and MB at two different doses: high, 15 mg/kg body weight PQ + 45 mg/kg body weight MB; or low, 10 mg/kg body weight PQ + 30 mg/kg body weight MB. Dopamine content in the striatum was examined by high performance liquid chromatography with a fluorescence detector and mRNA and protein expression of Wnt1, Wnt5a, nuclear receptor related factor 1 (Nurr1) and tyrosine hydroxylase (TH) in the midbrain was examined by reverse transcription‑quantitative polymerase chain reaction and western blotting. Combined exposure to PQ and MB during development decreased mRNA and protein expression of Wnt1, TH and Nurr1 and increased expression of Wnt5a in the offspring.
Collapse
Affiliation(s)
- Jing Ma
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Cui Huang
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Kun Ma
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yan-Ping Wu
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Bai-Xiang Li
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yan Sun
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
21
|
Samanta S, Tamura S, Dubeau L, Mhawech-Fauceglia P, Miyagi Y, Kato H, Lieberman R, Buckanovich RJ, Lin YG, Neamati N. Expression of protein disulfide isomerase family members correlates with tumor progression and patient survival in ovarian cancer. Oncotarget 2017; 8:103543-103556. [PMID: 29262583 PMCID: PMC5732749 DOI: 10.18632/oncotarget.21569] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
Objective Protein disulfide isomerase (PDI) is an oxidoreductase that is overexpressed in several cancers. PDI family members (PDIs) play a role in various diseases including cancer. Select PDIs were reported as useful markers in other cancers but their expression in ovarian cancer has not been thoroughly assessed. We sought to evaluate the expression of PDI, PDIA6, PDIR, ERp57, ERp72 and AGR3 in ovarian cancer patient samples and examine their prognostic significance. Methods TMA samples from 415 tissues collected from three cancer centers (UM, USC, and KCCRI) were used to assess the expression levels of PDI family proteins using IHC. Results We observed significant increases in PDI (p = 9.16E-36), PDIA6 (p = 5.51E-33), PDIR (p = 1.81E-12), ERp57 (p = 9.13E-07), ERp72 (p = 3.65E-22), and AGR3 (p = 4.56E-24) expression in ovarian cancers compared to normal tissues. Expression of PDI family members also increases during disease progression (p <0.001). All PDI family members are overexpressed in serous ovarian cancer (p<0.001). However, PDI, PDIA6, PDIR, ERp72 and AGR3 are more significantly overexpressed (p<0.001) than ERp57 (p<0.05) in clear cell ovarian carcinoma. Importantly, overexpression of PDI family members is associated with poor survival in ovarian cancer (p = 0.045 for PDI, p = 0.047 for PDIR, p = 0.037 for ERp57, p = 0.046 for ERp72, p = 0.040 for AGR3) with the exception of PDIA6 (p = 0.381). Conclusions Our findings demonstrate that select PDI family members (PDI, PDIR, ERp72, ERp57 and AGR3) are potential prognostic markers for ovarian cancer.
Collapse
Affiliation(s)
- Soma Samanta
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Shuzo Tamura
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Louis Dubeau
- USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paulette Mhawech-Fauceglia
- USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yohei Miyagi
- Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Hisamori Kato
- Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Rich Lieberman
- Department of Internal Medicine, Division of Hematology Oncology, Division of Gynecologic Oncology, University of Michigan, Ann Arbor, Michigan
| | - Ronald J Buckanovich
- Department of Internal Medicine, Division of Hematology Oncology, Division of Gynecologic Oncology, University of Michigan, Ann Arbor, Michigan.,Current/Present affiliation: Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yvonne G Lin
- USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Current/Present affiliation: Genentech-Roche, South San Francisco, California, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
22
|
Herr I, Sähr H, Zhao Z, Yin L, Omlor G, Lehner B, Fellenberg J. MiR-127 and miR-376a act as tumor suppressors by in vivo targeting of COA1 and PDIA6 in giant cell tumor of bone. Cancer Lett 2017; 409:49-55. [PMID: 28866093 DOI: 10.1016/j.canlet.2017.08.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 11/19/2022]
Abstract
Giant cell tumors of bone (GCTB) are generally benign bone tumors associated with expansive osteolytic defects, a high rate of recurrence and potential malignant transformation. We recently observed silencing of miR-127-3p and miR-376a-3p in GCTB and identified COA1 and PDIA6 as their target genes. Here, we investigate the impact of these microRNAs and their target genes on tumor engraftment and progression of giant cell tumor stromal cells (GCTSC) in vivo by xenotransplantation on the chorioallantoic membrane of chicken eggs. Prior to transplantation, the neoplastic GCTSCs were transfected with miRNA mimics or siRNAs directed against their target genes. Restoration of miR-127-3p and miR-376a-3p reduced the tumor take rate to 17% and 47% compared to 95% in the controls. The tumor volumes were significantly reduced to 29% by both miRNAs. Silencing of COA1 and PDIA6 significantly decreased the tumor volumes to 37.7% and 42.7%, while the tumor take rates remained stable. Our results indicate that re-expression of miR-127-3p and miR-376a-3p induces a strong tumor suppressor effect in GCTSC, which is partially mediated via COA1 and PDIA6.
Collapse
Affiliation(s)
- Ingrid Herr
- General, Visceral & Transplant Surgery, Section Surgical Research, University of Heidelberg, Germany.
| | - Heiner Sähr
- Research Centre for Experimental Orthopedics, Clinic for Orthopedics and Trauma Surgery, University of Heidelberg, Germany.
| | - Zhefu Zhao
- General, Visceral & Transplant Surgery, Section Surgical Research, University of Heidelberg, Germany.
| | - Libo Yin
- General, Visceral & Transplant Surgery, Section Surgical Research, University of Heidelberg, Germany.
| | - Georg Omlor
- Research Centre for Experimental Orthopedics, Clinic for Orthopedics and Trauma Surgery, University of Heidelberg, Germany.
| | - Burkhard Lehner
- Research Centre for Experimental Orthopedics, Clinic for Orthopedics and Trauma Surgery, University of Heidelberg, Germany.
| | - Jörg Fellenberg
- Research Centre for Experimental Orthopedics, Clinic for Orthopedics and Trauma Surgery, University of Heidelberg, Germany.
| |
Collapse
|
23
|
Gao F, Xu T, Wang X, Zhong S, Chen S, Zhang M, Zhang X, Shen Y, Wang X, Xu C, Shen Z. CIP2A mediates fibronectin-induced bladder cancer cell proliferation by stabilizing β-catenin. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:70. [PMID: 28521777 PMCID: PMC5437599 DOI: 10.1186/s13046-017-0539-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022]
Abstract
Background Fibronectin (FN) is associated with tumorigenesis and progression in bladder cancer, however, the underlying mechanisms causing this remain largely unknown. Furthermore, cancerous inhibitor of protein phosphatase 2A (CIP2A) has been shown to play important regulatory roles in cancer proliferation. Here, we investigated whether FN regulates CIP2A expression to promote bladder cancer cell proliferation. Methods The correlations of stromal FN with CIP2A and proliferating cell nuclear antigen (PCNA) expression were analyzed in a cohort bladder cancer patients. The roles of FN and CIP2A in regulating bladder cancer cell proliferation were evaluated in cell and animal models. Cycloheximide treatment was used to determine the effects of CIP2A on β-catenin stabilization. The CIP2A-β-catenin interaction was confirmed by immunofluorescence staining and co-immunoprcipitation. Results In this study, we found that stromal FN expression correlated positively with the levels of CIP2A and PCNA in bladder cancer tissues. Meanwhile, in human bladder cancer cell lines (T24 and J82), exogenous FN significantly promoted cell proliferation, however, CIP2A depletion inhibited this process. Furthermore, the interaction between CIP2A and β-catenin enhanced the stabilization of β-catenin, which was involved in FN-induced cell proliferation. In vivo, CIP2A depletion repressed FN-accelerated subcutaneous xenograft growth rates. Conclusions These data reveal that CIP2A is a crucial mediator of FN-induced bladder cancer cell proliferation via enhancing the stabilization of β-catenin. Promisingly, FN and CIP2A could serve as potential therapeutic targets for bladder cancer treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0539-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fengbin Gao
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, No.197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Tianyuan Xu
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, No.197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Xianjin Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, No.197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Shan Zhong
- Department of Urology, Huashan Hospital, Fudan University, No.12 Middle Urumqi Road, 200040, Shanghai, China
| | - Shanwen Chen
- Department of Urology, Huashan Hospital, Fudan University, No.12 Middle Urumqi Road, 200040, Shanghai, China
| | - Minguang Zhang
- Department of Urology, Huashan Hospital, Fudan University, No.12 Middle Urumqi Road, 200040, Shanghai, China
| | - Xiaohua Zhang
- Department of Urology, Huashan Hospital, Fudan University, No.12 Middle Urumqi Road, 200040, Shanghai, China
| | - Yifan Shen
- Department of Urology, Huashan Hospital, Fudan University, No.12 Middle Urumqi Road, 200040, Shanghai, China
| | - Xiaojing Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, No.197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Chen Xu
- Shanghai Key Laboratory of Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, No.227 South Chongqing Road, 200025, Shanghai, China
| | - Zhoujun Shen
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, No.197 Ruijin 2nd Road, 200025, Shanghai, China.
| |
Collapse
|
24
|
Cheng HP, Liu Q, Li Y, Li XD, Zhu CY. The Inhibitory Effect of PDIA6 Downregulation on Bladder Cancer Cell Proliferation and Invasion. Oncol Res 2017; 25:587-593. [PMID: 27760590 PMCID: PMC7841030 DOI: 10.3727/096504016x14761811155298] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein disulfide isomerases A6 (PDIA6) belongs to the PDI family. Recently, PDIA6 was found to have a close association with various cancers. However, there has been little investigation into the biological functions of PDIA6 in bladder cancer (BC). In this study, we explored the expression pattern and functional significance of PDIA6 in BC. We found that PDIA6 was overexpressed in BC tissues and cell lines. The in vitro study showed that PDIA6 downregulation significantly inhibited BC proliferation and invasion. In addition, the in vivo experiment demonstrated that PDIA6 downregulation decreased the volume, weight, and metastasis of tumors. Furthermore, PDIA6 downregulation reduced the protein expression of β-catenin, cyclin D1, and c-Myc and thus suppressed the Wnt/β-catenin signaling pathway. In conclusion, we suggest that PDIA6 could be targeted for the treatment of BC.
Collapse
Affiliation(s)
- He-Peng Cheng
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, Henan Province, P.R. China
| | - Qian Liu
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, Henan Province, P.R. China
| | - Yang Li
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, Henan Province, P.R. China
| | - Xiao-Dong Li
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, Henan Province, P.R. China
| | - Chao-Yang Zhu
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, Henan Province, P.R. China
| |
Collapse
|