1
|
Zhao L, Zhang H, Chen J, Ma H, Liu B. Presence of triple positive driver mutations in JAK2, CALR and MPL in primary myelofibrosis: a case report and literature review. Hematology 2024; 29:2402106. [PMID: 39268974 DOI: 10.1080/16078454.2024.2402106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Primary myelofibrosis (PMF) is the most advanced subtype among the classic Philadelphia chromosomenegative myeloproliferative neoplasms (MPNs). A majority of patients carry one of three mutually-exclusive somatic driver mutations: JAK2 (60-65%), CALR (20-25%), or MPL (5%). Co-occurrence of these mutations is rarely reported. Here we report a case with a triple positive combination of JAK2, CALR and MPL driver mutations. CASE PRESENTATION A 69-year-old male was admitted to hospital for acute exacerbation of chronic obstructive pulmonary disease (COPD) and was found to have splenomegaly and leukocytosis. Nextgeneration revealed JAK2, CALR, MPL mutations, and additional variants in SF3B1, SRSF2, and STAG2. The patient was diagnosed with PMF and treated with ruxolitinib and COPD therapy. Due to nausea, the ruxolitinib dose was reduced. After therapy, spleen volume decreased and hematologic responses were poor. Another genetic mutation of ASXL1 was later found. After adjusting the medication and adding antiemetics, the patient's condition improved. CONCLUSIONS The rare coexistence of JAK2, CALR, and MPL mutations challenges the assumption of their mutual exclusivity. Further study of these mutations is essential for developing better treatment strategies.
Collapse
Affiliation(s)
- Long Zhao
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Hao Zhang
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Juan Chen
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Haizhen Ma
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Bei Liu
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
2
|
Lim J, Ross DM, Brown AL, Scott HS, Hahn CN. Germline genetic variants that predispose to myeloproliferative neoplasms and hereditary myeloproliferative phenotypes. Leuk Res 2024; 146:107566. [PMID: 39316992 DOI: 10.1016/j.leukres.2024.107566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024]
Abstract
Epidemiological evidence of familial predispositions to myeloid malignancies and myeloproliferative neoplasms (MPN) has long been recognised, but recent studies have added to knowledge of specific germline variants in multiple genes that contribute to the familial risk. These variants may be common risk alleles in the general population but have low penetrance and cause sporadic MPN, such as the JAK2 46/1 haplotype, the variant most strongly associated with MPN. Association studies are increasingly identifying other MPN susceptibility genes such as TERT, MECOM, and SH2B3, while some common variants in DDX41 and RUNX1 appear to lead to a spectrum of myeloid malignancies. RBBP6 and ATM variants have been identified in familial MPN clusters and very rare germline variants such as chromosome 14q duplication cause hereditary MPN with high penetrance. Rarely, there are hereditary non-malignant diseases with an MPN-like phenotype. Knowledge of those genes and germline genetic changes which lead to MPN or diseases that mimic MPN helps to improve accuracy of diagnosis, aids with counselling regarding familial risk, and may contribute to clinical decision-making. Large scale population exome and genome sequencing studies will improve our knowledge of both common and rare germline genetic contributions to MPN.
Collapse
Affiliation(s)
- Jonathan Lim
- Department of Haematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, Australia; Haematology Directorate, SA Pathology, Adelaide, Australia.
| | - David M Ross
- Department of Haematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, Australia; Haematology Directorate, SA Pathology, Adelaide, Australia; Department of Haematology and Genetic Pathology, Flinders University and Medical Centre, Adelaide, Australia; Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia; Centre for Cancer Biology, Alliance between SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Anna L Brown
- Centre for Cancer Biology, Alliance between SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| | - Hamish S Scott
- Centre for Cancer Biology, Alliance between SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| | - Christopher N Hahn
- Centre for Cancer Biology, Alliance between SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| |
Collapse
|
3
|
Hussain MA, Das SP, Kulkarni M, Laha S. A review on the functional characteristics of the c-Myeloproliferative Leukaemia (c-MPL) gene and its isoforms. Cell Oncol (Dordr) 2024; 47:1607-1626. [PMID: 39283476 DOI: 10.1007/s13402-024-00988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/11/2024] Open
Abstract
The c-MPL-TPO axis regulates hematopoiesis by activating various signalling cascades, including JAK/STAT, MAPK/ERK, and PIK3/AKT. Here, we have summarized how TPO is regulated by c-MPL and, how mutations in the c-MPL regulate hematopoiesis. We also focus on its non-hematological regulatory role in diseases like Unstable Angina and pathways like DNA damage repair, skeletal homeostasis, & apoptotic regulation of neurons/HSCs at the embryonic state. We discuss the therapeutic efficiency of c-MPL and, its potential to be developed as a bio-marker for detecting metastasis and development of chemo-resistance in various cancers, justifying the multifaceted nature of c-MPL. We have also highlighted the importance of c-MPL isoforms and their stoichiometry in controlling the HSC quiescent and proliferative state. The regulation of the ratio of different isoforms through gene-therapy can open future therapeutic avenues. A systematic understanding of c-MPL-isoforms would undoubtedly take one step closer to facilitating c-MPL from basic-research towards translational medicine.
Collapse
Affiliation(s)
- Mohammad Amjad Hussain
- Cell Biology and Molecular Genetics Division, Yenepoya Research Centre, Yenepoya (Deemed to be) University, 3rd Floor, Academic Block, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics Division, Yenepoya Research Centre, Yenepoya (Deemed to be) University, 3rd Floor, Academic Block, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Mithila Kulkarni
- Cell Biology and Molecular Genetics Division, Yenepoya Research Centre, Yenepoya (Deemed to be) University, 3rd Floor, Academic Block, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Suparna Laha
- Cell Biology and Molecular Genetics Division, Yenepoya Research Centre, Yenepoya (Deemed to be) University, 3rd Floor, Academic Block, University Road, Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
4
|
Tefferi A, Pardanani A, Gangat N. Treatment-associated decline in JAK2V617F allele burden in polycythemia vera: What does it mean? Am J Hematol 2024; 99:1459-1461. [PMID: 38767433 DOI: 10.1002/ajh.27375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Animesh Pardanani
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Naseema Gangat
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Huang J, Zhang P, Shen F, Zheng X, Ding Q, Pan Y, Ruan X. Prediction of acute coronary syndrome in patients with myeloproliferative neoplasms. Front Cardiovasc Med 2024; 11:1369701. [PMID: 38984355 PMCID: PMC11231400 DOI: 10.3389/fcvm.2024.1369701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/28/2024] [Indexed: 07/11/2024] Open
Abstract
Background Patients with myeloproliferative neoplasms (MPN) are exposed to a higher risk of cardiovascular disease, especially cardiovascular calcification. The present research aimed to analyze the clinical features and coronary artery calcium score (CACS) in MPN patients, and construct an effective model to predict acute coronary syndrome (ACS) in MPN patients. Materials and methods A total of 175 MPN patients and 175 controls were recruited from the First Affiliated Hospital of Ningbo University. Based on cardiovascular events, the MPN patients were divided into the ACS group and the non-ACS group. Multivariate Cox analysis was completed to explore ACS-related factors. Furthermore, ROC curves were plotted to assess the predictive effect of CACS combined with white blood cells (WBC) and platelet for ACS in MPN patients. Results The MPN group exhibited a higher CACS than the control group (133 vs. 55, P < 0.001). A total of 16 patients developed ACS in 175 MPN patients. Compared with non-ACS groups, significant differences in age, diabetes, smoking history, WBC, percentage of neutrophil, percentage of lymphocyte, neutrophil count, hemoglobin, hematocrit, platelet, lactate dehydrogenase, β 2-microglobulin, and JAK2V617F mutation were observed in the ACS groups. In addition, the CACS in the ACS group was also significantly higher than that in the non-ACS group (374.5 vs. 121, P < 0.001). The multivariable Cox regression analysis identified WBC, platelet, and CACS as independent risk factors for ACS in MPN patients. Finally, ROC curves indicated that WBC, platelet, and CACS have a high predictive value for ACS in MPN patients (AUC = 0.890). Conclusion CACS combined with WBC and platelet might be a promising model for predicting ACS occurrence in MPN patients.
Collapse
Affiliation(s)
- Jingfeng Huang
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Ping Zhang
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Fangjie Shen
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xiaodong Zheng
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Qianjiang Ding
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yuning Pan
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xinzhong Ruan
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Sharma S, Morisetti M, Gandhi N, Chennapragada SS, Cotelingam JD, Ramadas P. Detecting Multiple Driver Mutations in a Patient with Essential Thrombocythemia. AMERICAN JOURNAL OF CASE REPORTS 2024; 25:e942030. [PMID: 38310350 PMCID: PMC10858393 DOI: 10.12659/ajcr.942030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/27/2023] [Accepted: 11/28/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Three driver mutations have been identified in patients with essential thrombocythemia - JAK2 V617F, CALR, and MPL. Out of these, JAK2 V617F is mostly common. These mutations are thought to be mutually exclusive; therefore, the initial workup may not include the identification of all mutations separately. CASE REPORT We present a case of a 55-year-old woman who was referred to the hematology clinic for an elevated platelet count noted when she was hospitalized for a renal stone. The patient was asymptomatic. A workup was initiated for essential thrombocythemia, and she was tested for JAK2 V617F mutation using an allele-specific polymerase chain reaction (AS-PCR) test in peripheral blood, which came back positive. The variant allele frequency was 2%. She underwent a bone marrow biopsy, and next-generation sequencing (NGS) showed a CALR mutation. A 52 bp deletion-type mutation was detected in the CALR gene on exon 9, with a variant allele frequency of 7%. The NGS did not detect JAK2 mutation due to its low sensitivity. She was started on aspirin alone as she was less than 60 years old and had no history of thrombotic events. The patient has been following up with the hematology clinic for the last 2 years and has not had any thrombotic events. CONCLUSIONS We propose that in patients with a low JAK2 V617 allele variant, testing for other driver mutations should be performed. In our patient, JAK2 mutation could be clonal hematopoiesis of indeterminate potential; therefore, the dominant mutation (CALR) would determine the disease phenotype.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Internal Medicine, Louisiana State University Health, Shreveport, LA, USA
| | - Manasa Morisetti
- Department of Pathology, Louisiana State University Health, Shreveport, LA, USA
| | - Nitesh Gandhi
- Department of Internal Medicine, Louisiana State University Health, Shreveport, LA, USA
| | - Suma Sri Chennapragada
- Department of Hematology and Oncology, Louisiana State University Health, Shreveport, LA, USA
| | - James D. Cotelingam
- Department of Pathology, Louisiana State University Health, Shreveport, LA, USA
| | - Poornima Ramadas
- Department of Hematology and Oncology, Louisiana State University Health, Shreveport, LA, USA
| |
Collapse
|
7
|
Hao Z, Li J, Gao F, Ren W, Lu X, Feng J, Zhang C, Bian S, Xie J, Luo M, Chang J, Yang W, Hou R, Muyey DM, Xu J, Cui J, Chen X, Wang H. A germline JAK2 exon12 mutation and a late somatic CALR mutation in a patient with essential thrombocythemia. Front Oncol 2024; 13:1265022. [PMID: 38239637 PMCID: PMC10794477 DOI: 10.3389/fonc.2023.1265022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Background It has been discovered that Janus kinase 2 (JAK2) exon12 mutations lead to the polycythemia vera (PV) phenotype, while somatic mutations of calreticulin (CALR) are associated with essential thrombocythemia (ET) or primary myelofibrosis. In this article, we report a case of ET with coexistence of JAK2 exon12 and CALR mutations. The objective of this study was to elucidate the pathogenicity mechanism of a JAK2 exon12 mutation (JAK2N533S) and the role of the coexistence of mutations on the hematological phenotype. Methods We designed a colony analysis of tumor cells obtained from this patient, and attempted to identify mutant genes using DNA from hair follicles. Mutation impairment prediction and conservative analysis were conducted to predict the mutation impairment and structure of JAK2N533S. In addition, we conducted a functional analysis of JAK2N533S by constructing Ba/F3 cell models. Results Three distinct tumor subclones, namely JAK2N533Shet+/CALRtype1het +, JAK2N533Shet+/CALR wt, and JAK2N533Shet+/CALRtype1hom +, were identified from the 17 selected erythroid and 21 selected granulocyte colonies. The analysis of hair follicles yielded positive results for JAK2N533S. According to the bioinformatics analysis, JAK2N533S may exert only a minor effect on protein function. Functional studies showed that JAK2N533S did not have a significant effect on the proliferation of Ba/F3 cells in the absence of interleukin-3 (IL-3), similar to wild-type JAK2. Notably, there were no increased phosphorylation levels of JAK2-downstream signaling proteins, including signal transducer and activator of transcription 3 (STAT3) and STAT5, in Ba/F3 cells harboring the JAK2N533S. Conclusion Our study revealed that the JAK2N533Shet+/CALRtype1het+ subclone was linked to a significant expansion advantage in this patient, indicating that it may contribute to the development of the ET phenotype. We further demonstrated that JAK2N533S, as a noncanonical JAK2 exon12 mutation, is a germline mutation that may not exert an effect on cell proliferation and protein function. These results and the present body of available data imply that certain noncanonical JAK2 mutations are not gain-of-function mutations leading to the development of myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Zhuanghui Hao
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Juan Li
- Institute of Genetics, Changzhi Maternal and Child Health Hospital, Changzhi, China
| | - Feng Gao
- Clinical Laboratory, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Weixiao Ren
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaomei Lu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinyi Feng
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chen Zhang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Sicheng Bian
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Juan Xie
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ming Luo
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianmei Chang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Wanfang Yang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruixia Hou
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Daniel Muteb Muyey
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing Xu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiangxia Cui
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiuhua Chen
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
Wang J, Fu W, Bao W, Gong W, Xu S, Ling C, Jin Q, Zhang Q. Genomics of clonal evolution in a rare essential thrombocythemia with coexisting Type 2 CALR and MPL S204P mutations. Platelets 2023; 34:2176167. [PMID: 36786035 DOI: 10.1080/09537104.2023.2176167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Essential thrombocythemia (ET) with double driver mutations is a rare disease. ET patients with both MPL and Type 1 CALR mutations have been reported. Here, we report the first case of an ET patient with both MPL S204P and Type 2 CALR mutations and a summary of our literature review findings. In the patient whose case is reported here, the disease progressed to an accelerated phase 3.5 months after diagnosis. CALR mutation disappeared and new mutations emerged as the disease progressed, such as ASXL1, CBL, ETV6, and PTPN11 mutations. This case highlights that screening for additional mutations using NGS should be considered in patients with ET to assess the prognosis, especially as the disease progresses.
Collapse
Affiliation(s)
- Jing Wang
- Department of Oncology and Hematology, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng, PR China.,Department of Hematology, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Wenjing Fu
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Wenqiang Bao
- Department of Hematology, The First People's Hospital of Chuzhou, Chuzhou Hospital affiliated to Anhui Medical University, Chuzhou, PR China
| | - Wenyu Gong
- Department of Hematology, The First People's Hospital of Chuzhou, Chuzhou Hospital affiliated to Anhui Medical University, Chuzhou, PR China
| | - Shiyun Xu
- Department of Hematology, The First People's Hospital of Chuzhou, Chuzhou Hospital affiliated to Anhui Medical University, Chuzhou, PR China
| | - Chun Ling
- Department of Hematology, The First People's Hospital of Chuzhou, Chuzhou Hospital affiliated to Anhui Medical University, Chuzhou, PR China
| | - Qichuan Jin
- Department of Hematology, The First People's Hospital of Chuzhou, Chuzhou Hospital affiliated to Anhui Medical University, Chuzhou, PR China
| | - Qiguo Zhang
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, Jiangsu, PR China.,Department of Hematology, The First People's Hospital of Chuzhou, Chuzhou Hospital affiliated to Anhui Medical University, Chuzhou, PR China
| |
Collapse
|
9
|
Giraldo-Rincón AI, Naranjo Molina S, Gomez-Lopera N, Aguirre Acevedo D, Ucroz Benavidez A, Gálvez Cárdenas K, Cuellar Ambrosí F, Torres JD, Ospina S, Palacio K, Gaviria Jaramillo L, Muñeton CM, Vasquez Palacio G. JAK2, CALR, and MPL Mutation Profiles in Colombian patients with BCR-ABL Negative Myeloproliferative Neoplasms. Colomb Med (Cali) 2023; 54:e2035353. [PMID: 38111518 PMCID: PMC10726695 DOI: 10.25100/cm.v54i3.5353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/25/2023] [Indexed: 12/20/2023] Open
Abstract
Background Among the chronic myeloproliferative neoplasms (MPNs) not associated with BCR-ABL mutations are polycythemia vera, primary myelofibrosis, and essential thrombocythemia. These diseases are caused by mutations in genes, such as the JAK2, MPL, and CALR genes, which participate in regulating the JAK-STAT signaling pathway. Objective This study aimed to establish the frequencies of mutations in the JAK2, MPL, and CALR genes in a group of Colombian patients with a negative clinical diagnosis of BCR-ABL chronic myeloproliferative neoplasms. Methods The JAK2 V617F and MPL W515K mutations and deletions or insertions in exon 9 of the CALR gene were analyzed in 52 Colombian patients with polycythemia vera, primary myelofibrosis, and essential thrombocythemia. Results The JAK2V617F mutation was carried by 51.9% of the patients, the CALR mutation by 23%, and the MPL mutation by 3.8%; 23% were triple-negative for the mutations analyzed. In these neoplasms, 6 mutation types in CALR were identified, one of which has not been previously reported. Additionally, one patient presented a double mutation in both the CALR and JAK2 genes. Regarding the hematological results for the mutations, significant differences were found in the hemoglobin level, hematocrit level, and platelet count among the three neoplasms. Conclusion Thus, this study demonstrates the importance of the molecular characterization of the JAK2, CALR and MPL mutations in Colombian patients (the genetic context of which remains unclear in the abovementioned neoplasms) to achieve an accurate diagnosis, a good prognosis, adequate management, and patient survival.
Collapse
Affiliation(s)
| | - Sara Naranjo Molina
- Universidad de Antioquia, Facultad de Medicina, Unidad de Genética Médica, Medellín, Colombia
| | - Natalia Gomez-Lopera
- Universidad de Antioquia, Facultad de Medicina, Unidad de Genética Médica, Medellín, Colombia
| | | | - Andrea Ucroz Benavidez
- Universidad de Antioquia, Facultad de Medicina, Unidad de Genética Médica, Medellín, Colombia
| | | | | | | | - Sigifredo Ospina
- Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - Katherine Palacio
- Universidad de Antioquia, Facultad de Medicina, Unidad de Genética Médica, Medellín, Colombia
| | | | - Carlos Mario Muñeton
- Universidad de Antioquia, Facultad de Medicina, Unidad de Genética Médica, Medellín, Colombia
| | - Gonzalo Vasquez Palacio
- Universidad de Antioquia, Facultad de Medicina, Unidad de Genética Médica, Medellín, Colombia
| |
Collapse
|
10
|
Wang Y, Ran F, Lin J, Zhang J, Ma D. Genetic and Clinical Characteristics of Patients with Philadelphia-Negative Myeloproliferative Neoplasm Carrying Concurrent Mutations in JAK2V617F, CALR, and MPL. Technol Cancer Res Treat 2023; 22:15330338231154092. [PMID: 36744404 PMCID: PMC9905029 DOI: 10.1177/15330338231154092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Simultaneous mutations in Janus kinase 2 (JAK2), calreticulin, and myeloproliferative leukemia (MPL) genes are generally not considered for characterizing Philadelphia-negative myeloproliferative neoplasms (MPNs), leading to misdiagnosis. Sanger sequencing and quantitative polymerase chain reaction were used to detect gene mutations in patients with MPN. We retrospectively screened the data of patients with double mutations in our center and from the PubMed database. Two patients tested positive for both JAK2V617F and CALR mutations (2/352 0.57%) in our center, while data of 35 patients from the PubMed database, including 26 patients with essential thrombocythemia (ET), 6 with primary myelofibrosis (PMF), 2 with unexplained thrombosis, and 1 with polycythemia vera were screened for double mutations. Among these mutations, co-mutation of JAKV617F-CALR constituted the majority (80.0%), when compared with JAKV617F-MPL (17.1%) and CALR-MPL (2.9%) mutations. Moreover, patients with concurrent mutational myeloproliferative neoplasm (MPN) were relatively older (P = .010) with significantly higher platelet counts than their counterparts with single gene mutations (P < .001). The occurrence of palpable splenomegaly (P < .001) and leukocyte count (P = .041) were also significantly different between patients with single and simultaneous gene mutations. These 4 risk factors also showed significant test effectiveness in the ET and PMF cohorts (P < .05). In terms of clinical characteristics of patients with ET, those with JAK2V617F-CALR mutation had higher but normal hemoglobin levels (P = .0151) than those carrying JAK2V617F-MPL mutation. From a clinical perspective, patients with multiple mutational MPN are different from those with single gene mutations. The poor treatment response by patients in our center and unfavorable indicators for patients with co-mutations in published literature indicate that customized treatment may be the best choice for patients with MPN carrying co-mutations.
Collapse
Affiliation(s)
- Yan Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Institute of Hematological Malignancies, Guiyang, China
| | - Fei Ran
- Department of Clinical Laboratory Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jin Lin
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Zhang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Institute of Hematological Malignancies, Guiyang, China,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China,Dr Dan Ma, Department of Hematology, Affiliated Hospital of Guizhou Medical University; 28 Guiyi Street, Yunyan District, Guiyang, Guizhou 550004, China.
| |
Collapse
|
11
|
Chia YC, Siti Asmaa MJ, Ramli M, Woon PY, Johan MF, Hassan R, Islam MA. Molecular Genetics of Thrombotic Myeloproliferative Neoplasms: Implications in Precision Oncology. Diagnostics (Basel) 2023; 13:163. [PMID: 36611455 PMCID: PMC9818412 DOI: 10.3390/diagnostics13010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
Classical BCR-ABL-negative myeloproliferative neoplasms (MPN) include polycythaemia vera, essential thrombocythaemia, and primary myelofibrosis. Unlike monogenic disorders, a more complicated series of genetic mutations are believed to be responsible for MPN with various degrees of thromboembolic and bleeding complications. Thrombosis is one of the early manifestations in patients with MPN. To date, the driver genes responsible for MPN include JAK2, CALR, MPL, TET2, ASXL1, and MTHFR. Affords have been done to elucidate these mutations and the incidence of thromboembolic events. Several lines of evidence indicate that mutations in JAK2, MPL, TET2 and ASXL1 gene and polymorphisms in several clotting factors (GPIa, GPIIa, and GPIIIa) are associated with the occurrence and prevalence of thrombosis in MPN patients. Some polymorphisms within XRCC1, FBG, F2, F5, F7, F12, MMP9, HPA5, MTHFR, SDF-1, FAS, FASL, TERT, ACE, and TLR4 genes may also play a role in MPN manifestation. This review aims to provide an insightful overview on the genetic perspective of thrombotic complications in patients with MPN.
Collapse
Affiliation(s)
- Yuh Cai Chia
- Department Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Mat Jusoh Siti Asmaa
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Marini Ramli
- Department Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Peng Yeong Woon
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan
| | - Muhammad Farid Johan
- Department Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Rosline Hassan
- Department Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Md Asiful Islam
- Department Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
12
|
Tarantini F, Cumbo C, Anelli L, Zagaria A, Coccaro N, Tota G, Specchia G, Musto P, Albano F. Clonal hematopoiesis in clinical practice: walking a tightrope. Leuk Lymphoma 2022; 63:2536-2544. [DOI: 10.1080/10428194.2022.2087068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Francesco Tarantini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit – University of Bari “Aldo Moro”, Bari, Italy
| | - Cosimo Cumbo
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit – University of Bari “Aldo Moro”, Bari, Italy
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit – University of Bari “Aldo Moro”, Bari, Italy
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit – University of Bari “Aldo Moro”, Bari, Italy
| | - Nicoletta Coccaro
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit – University of Bari “Aldo Moro”, Bari, Italy
| | - Giuseppina Tota
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit – University of Bari “Aldo Moro”, Bari, Italy
| | | | - Pellegrino Musto
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit – University of Bari “Aldo Moro”, Bari, Italy
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit – University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
13
|
Pizzi M, Croci GA, Ruggeri M, Tabano S, Dei Tos AP, Sabattini E, Gianelli U. The Classification of Myeloproliferative Neoplasms: Rationale, Historical Background and Future Perspectives with Focus on Unclassifiable Cases. Cancers (Basel) 2021; 13:5666. [PMID: 34830822 PMCID: PMC8616346 DOI: 10.3390/cancers13225666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 01/11/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are a heterogeneous group of clonal hematopoietic stem cell disorders, characterized by increased proliferation of one or more myeloid lineages in the bone marrow. The classification and diagnostic criteria of MPNs have undergone relevant changes over the years, reflecting the increased awareness on these conditions and a better understanding of their biological and clinical-pathological features. The current World Health Organization (WHO) Classification acknowledges four main sub-groups of MPNs: (i) Chronic Myeloid Leukemia; (ii) classical Philadelphia-negative MPNs (Polycythemia Vera; Essential Thrombocythemia; Primary Myelofibrosis); (iii) non-classical Philadelphia-negative MPNs (Chronic Neutrophilic Leukemia; Chronic Eosinophilic Leukemia); and (iv) MPNs, unclassifiable (MPN-U). The latter are currently defined as MPNs with clinical-pathological findings not fulfilling the diagnostic criteria for any other entity. The MPN-U spectrum traditionally encompasses early phase MPNs, terminal (i.e., advanced fibrotic) MPNs, and cases associated with inflammatory or neoplastic disorders that obscure the clinical-histological picture. Several lines of evidence and clinical practice suggest the existence of additional myeloid neoplasms that may expand the spectrum of MPN-U. To gain insight into such disorders, this review addresses the history of MPN classification, the evolution of their diagnostic criteria and the complex clinical-pathological and biological features of MPN-U.
Collapse
Affiliation(s)
- Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy;
| | - Giorgio Alberto Croci
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (G.A.C.); (U.G.)
- Division of Pathology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Marco Ruggeri
- Department of Hematology, San Bortolo Hospital, 36100 Vicenza, Italy;
| | - Silvia Tabano
- Laboratory of Medical Genetics, Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Angelo Paolo Dei Tos
- Surgical Pathology and Cytopathology Unit, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy;
| | - Elena Sabattini
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Umberto Gianelli
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (G.A.C.); (U.G.)
- Division of Pathology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
14
|
Nishimura M, Nagaharu K, Ikejiri M, Sugimoto Y, Sasao R, Ohya E, Mizutani M, Ohishi K, Tawara I, Sekine T. Acquisition of JAK2 V617F to CALR-mutated clones accelerates disease progression and might enhance growth capacity. Br J Haematol 2021; 194:e89-e92. [PMID: 34060068 DOI: 10.1111/bjh.17571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Misa Nishimura
- Department of Hematology and Oncology, Matsusaka Chuo General Hospital, Matsusaka, Mie, Japan
| | - Keiki Nagaharu
- Department of Hematology and Oncology, Mie University Graduate School of Medicine/Faculty of Medicine, Tsu, Mie, Japan
| | - Makoto Ikejiri
- Central Laboratory Department, Mie University Hospital, Tsu, Mie, Japan
| | - Yuka Sugimoto
- Department of Community Hematology, Mie University Faculty of Medicine, Takeuchi Hospital, Tsu, Mie, Japan
| | - Ryota Sasao
- Department of Hematology and Oncology, Matsusaka Chuo General Hospital, Matsusaka, Mie, Japan
| | - Eiko Ohya
- Department of Hematology and Oncology, Matsusaka Chuo General Hospital, Matsusaka, Mie, Japan
| | - Minoru Mizutani
- Department of Hematology and Oncology, Matsusaka Chuo General Hospital, Matsusaka, Mie, Japan
| | - Kohshi Ohishi
- Transfusion Medicine and Cell Therapy, Mie University Hospital, Tsu, Mie, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine/Faculty of Medicine, Tsu, Mie, Japan
| | - Takao Sekine
- Department of Hematology and Oncology, Matsusaka Chuo General Hospital, Matsusaka, Mie, Japan
| |
Collapse
|
15
|
Chia YC, Ramli M, Woon PY, Johan MF, Hassan R, Islam MA. WITHDRAWN: Molecular genetics of thrombotic myeloproliferative neoplasms: Implications in precision oncology. Genes Dis 2021. [DOI: 10.1016/j.gendis.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
16
|
Homaei Hadad E, Pezeshki SMS, Shahrabi S, Saki Malehi A, Saki N. Co-existence of mutations in myeloproliferative neoplasms and their clinical significance: a prognostic approach. Expert Rev Hematol 2020; 13:1289-1301. [PMID: 32886563 DOI: 10.1080/17474086.2020.1819232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Myeloproliferative neoplasms (MPNs) are a group of clonal hematopoietic stem cell disorders that may occur after one or more mutations in hematopoietic progenitor cells. In this study, we will review the co-existence of mutations (especially dual mutations) in MPNs and its effect on the prognosis of patients. METHODS To find relevant published papers, we systematically searched six major international indexing databases, namely PubMed/Medline, EmBase, Cochrane central, ISI web of science, and Scopus from Feb. 2000 until Jan. 2020. We included the following keywords in the analyzes: Myeloproliferative Disorders, Mutation, Co-existence of Mutations, Acute myeloid leukemia. RESULTS Co-existence of several mutations in MPNs is mainly associated with a poor prognosis compared with the unimutated MPN disorders. There are several effective factors such as sequence of mutations, incidence of mutations in one cell or different cells, mutation, and MPN type. CONCLUSION AND EXPERT COMMENTARY It seems that monitoring the status of mutations in MPNs and recognizing the co-existence of mutations (especially dual mutations) in order to determine prognosis and possibility of progression to acute form of leukemia can lead to the prediction of prognosis in MPN patients as well as establishment of better and more reliable therapeutic strategies for patients.
Collapse
Affiliation(s)
- Elham Homaei Hadad
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| | - Seyed Mohammad Sadegh Pezeshki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran.,Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences , Semnan, Iran
| | - Amal Saki Malehi
- Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| |
Collapse
|
17
|
Karantanos T, Chaturvedi S, Braunstein EM, Spivak J, Resar L, Karanika S, Williams DM, Rogers O, Gocke CD, Moliterno AR. Sex determines the presentation and outcomes in MPN and is related to sex-specific differences in the mutational burden. Blood Adv 2020; 4:2567-2576. [PMID: 32542392 PMCID: PMC7322953 DOI: 10.1182/bloodadvances.2019001407] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
The factors underlying the variable presentation and clinical course of myeloproliferative neoplasms (MPNs) remain unclear. The aim of this study was to evaluate the independent effect of sex on MPN presentation and outcomes. A total of 815 patients with essential thrombocytosis, polycythemia vera, or primary myelofibrosis were evaluated between 2005 and 2019, and the association of sex with presenting phenotype, JAK2 V617F burden, progression, and survival was examined. Men presented more often with primary myelofibrosis vs essential thrombocytosis (relative risk, 3.2; P < .001) and polycythemia vera (relative risk, 2.1; P < .001), had higher rates of transformation to secondary myelofibrosis (hazard ratio [HR], 1.55; P = .013) and acute myeloid leukemia (HR, 3.67; P < .001), and worse survival (HR, 1.63; P = .001) independent of age, phenotype at diagnosis, and MPN-specific mutation. Men had higher JAK2 V617F allele burdens in their CD34+ cells (P = .001), acquired more somatic mutations (P = .012) apart from the MPN-specific mutations, and had an increased frequency of 1 (odds ratio, 2.35; P = .017) and 2 (odds ratio, 20.20; P = .011) high-risk mutations independent of age, phenotype, and driver mutation. Male sex is an independent predictor of poor outcomes in MPNs. This seems to be due to an increased risk of non-MPN-specific somatic mutations, particularly high-risk mutations, rather than MPN-specific mutation allele frequency. Conversely, disease progression in female subjects is more dependent on JAK2 mutation allele burden than on acquisition of other somatic mutations. Sex should be considered in prognostic models and when evaluating therapeutic strategies in MPNs.
Collapse
Affiliation(s)
- Theodoros Karantanos
- Department of Oncology, Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center
| | | | | | - Jerry Spivak
- Division of Adult Hematology, Department of Medicine
| | - Linda Resar
- Department of Oncology, Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center
- Division of Adult Hematology, Department of Medicine
- Department of Pathology, and
| | - Styliani Karanika
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | | | | |
Collapse
|
18
|
Jang MA, Seo MY, Choi KJ, Hong DS. A Rare Case of Essential Thrombocythemia with Coexisting JAK2 and MPL Driver Mutations. J Korean Med Sci 2020; 35:e168. [PMID: 32537949 PMCID: PMC7295601 DOI: 10.3346/jkms.2020.35.e168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/13/2020] [Indexed: 01/14/2023] Open
Abstract
Philadelphia-negative (Ph-) classical myeloproliferative neoplasms (MPNs) include polycythemia vera, essential thrombocythemia (ET), and primary myelofibrosis. Somatic driver mutations in the JAK2, CALR, and MPL genes serve as major diagnostic criteria of the Ph- MPNs and these mutations occur in a mutually exclusive manner. In this report, we describe the first case of ET harboring double mutations in JAK2 V617F and MPL. For MPL, the patient had multiple clones of MPL mutations: c.1543_1546delinsAGGG (p.Trp515_Gln516delinsArgGlu) and c.1546C>G (p.Gln516Glu). The JAK2 V617F allele burden in our patient is very low (4%) compared to the relatively high (17%-78%) allele frequency of MPL mutations. The low JAK2 mutant burden might be explained by preexisting clonal hematopoiesis before overt signs of MPNs, followed by the acquisition of a second oncogenic mutation of CALR or MPL leading to the MPN phenotype. This highlights that screening for a second driver mutation should be considered in patients with a low JAK2 mutant burden by reporting a 57-year-old Korean man with ET.
Collapse
Affiliation(s)
- Mi Ae Jang
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea.
| | - Mi Yeon Seo
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Kyoung Jin Choi
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Dae Sik Hong
- Division of Hematology & Oncology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| |
Collapse
|
19
|
Koschmieder S, Chatain N. Role of inflammation in the biology of myeloproliferative neoplasms. Blood Rev 2020; 42:100711. [PMID: 32505517 DOI: 10.1016/j.blre.2020.100711] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/11/2019] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
What is the role of inflammation in Myeloproliferative Neoplasms? This is currently a topic of much debate. In this review, we will discuss experimental results and basic concepts of inflammatory processes in the pathogenesis of myeloproliferative neoplasms (MPN). So, which are the players involved? First, these are the clonal hematopoietic stem cells (HSC) and their normal stem cell counterparts in the bone marrow (BM), as well as their more mature progeny in the BM and the peripheral blood (PB), including neutrophils, macrophages, erythrocytes, and platelets, but also other cell lineages. Second, these cells produce a plethora of inflammatory cytokines, such as interleukin 6 (IL6), interleukin 8 (IL8), TNF-alpha (TNFa), interferon-alpha (IFNa), and others. Third, these cells and cytokines act in concert with non-hematopoietic cells, including endothelial cells and mesenchymal stromal cells (MSCs). The latter cells, in particular GLI1 positive or leptin receptor (LepR) positive stromal cells, may become activated by the hematopoietic clone to give rise to myofibroblasts, producing excessive fibrosis in the bone marrow (myelofibrosis). Ultimately, the inflammatory and fibrotic circuit involving these three key players may lead to progression of the disease, resulting in BM failure and transformation into acute leukemia, also termed blast crisis. Here, we review the role of these three effectors in the pathogenesis of MPN.
Collapse
Affiliation(s)
- Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaselogy, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaselogy, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
20
|
Kelkar K, Ramanan V, Anand S, Ranade S, Patil K, Agarwal M, Phadke N. Co-occurrence of CALR and MPL somatic mutations in an Indian patient with a Philadelphia-negative myeloproliferative neoplasm. J Hematop 2019. [DOI: 10.1007/s12308-019-00359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
21
|
Mina AA, Stein B. Next-Generation Sequencing in Myeloproliferative Neoplasms: Is This Indicated in All Patients? Curr Hematol Malig Rep 2019; 14:137-144. [PMID: 31041670 DOI: 10.1007/s11899-019-00514-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW To discuss the impact that next-generation sequencing has had on myeloproliferative neoplasm prognosis and treatment response. RECENT FINDINGS Extended genetic testing has led to a more comprehensive understanding of the mutational landscape in the myeloproliferative neoplasms. More refined prognostic models that predict disease course have therefore been developed. In myelofibrosis, this has led to a more nuanced prognostic assessment which is a necessary tool for the identification of potential transplant patients. The extended molecular profile may also help set expectations for ruxolitinib response duration. In essential thrombocythemia and polycythemia vera, elucidation of the molecular landscape beyond driving mutations may identify patients at risk for more rapid progression. However, results from testing are less likely to lead to action, at least in the current era. Use of next-generation sequencing has become routine in myelofibrosis, as a means of identifying patients at highest risk for progression, who may be eligible for transplantation. Extended genetic sequencing is still investigational in essential thrombocytosis and polycythemia vera, and not recommended by guidelines.
Collapse
Affiliation(s)
- Alain Antoine Mina
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA
| | - Brady Stein
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA. .,, Chicago, USA.
| |
Collapse
|
22
|
Han X, Bai BB, Wang CJ, Zhao S, Chen Y. [Risk factors for recurrent thrombosis in patients with polycythemia vera and essential thrombocythemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:17-23. [PMID: 30704223 PMCID: PMC7351706 DOI: 10.3760/cma.j.issn.0253-2727.2019.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Indexed: 11/14/2022]
Abstract
Objective: To analyze the clinical characteristics of recurrent thrombosis in patients with polycythemia vera (PV) and essential thrombocythemia (ET) to probe the risk factors for recurrent thrombosis in patients with ET and PV. Methods: The clinical data of 104 ET and PV patients with thrombosis in Beijing Anzhen Hospital from February 2001 to November 2016 were retrospectively analyzed. Thrombosis reoccurred in 38 patients. Statistical analyses were performed by multivariate logistic regression for risk factors of recurrent thrombosis in ET and PV patients. Results: Recurrent thrombosis occurred in 36.5% of patients with ET/PV, the total incidence rate in ET and PV patients was 9.8% patient-years, 12.3% patient-years and 5.7% patient-years in ET and PV respectively. There were a total of 56 re-thrombotic events, and 42.1% of events occurred within 1 year after the first thrombosis. The arterial re-thrombosis was 97.4% (most of acute coronary syndrome, ACS), and venous events was 2.6%. The most common cases of re-thrombosis were ACS in ET patients (18 cases, 64.3%), and cerebral infarction in PV patients (7 cases, 70.0%). The number of PV patients with 2 times or more re-thrombotic events was significantly higher than that of ET patients (9 cases, 90.0% vs 7 cases, 25.0%). The proportion of the patients with WBC>12.5×10(9)/L or Hct>45%, and thrombosis history or splenomegaly and high risk thrombotic events were higher than those with a single thrombus (52.6% vs 31.8%; 50.0% vs 30.0%; 86.8% vs 13.6%; 84.2% vs 33.3%; 52.6% vs 15.2%; 94.7% vs 53.0%; P values were 0.036,0.046, <0.001, <0.001, <0.001 and <0.001, respectively). Logistic regression analysis showed that thrombosis history (OR=13.697, P=0.025), splenomegaly (OR=13.301, P=0.034) and high risk stratification of thrombotic events (OR=44.618, P=0.025) were independent risk factors for recurrent thrombotic events. Conclusions: ET and PV patients had a higher risk of re-thrombosis. The incidence of re-thrombosis in ET was higher than in PV, ACS was more common cases of re-thrombotic events; but PV patients were more susceptible to multiple re-thromboses than ET ones, also with more cerebral infarction. Previous thrombus history, splenomegaly and high risk stratification of thrombotic events were independent risk predictors for re-thrombosis of ET and PV patients.
Collapse
Affiliation(s)
- X Han
- Department of Hematology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | | | | | | | | |
Collapse
|
23
|
Haunstrup LM, Ebbesen LH, Hansen M, Severinsen MT, Aggerholm A. Skewed ratio between type 1 and type 2 calreticulin mutations in essential thrombocytosis patients with concomitant Janus kinase 2 V617F mutation. Exp Hematol 2018; 68:62-65. [PMID: 30292681 DOI: 10.1016/j.exphem.2018.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/05/2018] [Accepted: 09/30/2018] [Indexed: 11/25/2022]
Abstract
Detection of somatic mutations in cardinal driver genes is a strong argument for diagnosis in classical Philadelphia-negative myeloproliferative neoplasms (MPNs). Driver mutations in Janus kinase 2 (JAK2), calreticulin (CALR), and thrombopoietin receptor (MPL), are generally considered mutually exclusive, but several reports have suggested that they coexist in a small subgroup of patients. In this study, we retrospectively searched for CALR mutations in 136 suspected MPN patients with low allelic burden (≤5%) JAK2 V617F. Fifteen patients with concomitant JAK2 V617F and CALR mutations were identified, of whom 10 were diagnosed with essential thrombocytosis (ET). More than 50 different indel mutations in exon 9 of CALR have been reported, with type 1 (52 bp deletion) and type 2 (5 bp insertion) accounting for more than 80% of CALR-mutated MPN cases. Type 1 is generally considered the most common mutation, but, interestingly, our double-mutated ET patients seem to have an inversed ratio between type 1 and type 2 CALR mutations. Our findings support the possibility of coexisting JAK2 V617F and CALR mutations and stress the importance of further molecular screening in MPN patients with low allele frequencies of JAK2 V617F.
Collapse
Affiliation(s)
- Laura M Haunstrup
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Lene H Ebbesen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Maria Hansen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Anni Aggerholm
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
24
|
Molecular Markers and Prognosis of Myelofibrosis in the Genomic Era: A Meta-analysis. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 18:558-568. [PMID: 29970342 DOI: 10.1016/j.clml.2018.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/19/2018] [Accepted: 06/04/2018] [Indexed: 12/27/2022]
Abstract
Molecular markers are important in guiding treatment and predicting outcome in the genomic era. Meta-analysis of molecular markers in myelofibrosis through a search of PubMed and Medline through October 31, 2017 was performed. Markers with more than 3 studies that compared overall survival (OS) and leukemia-free survival (LFS) were analyzed. A total of 16 studies were included. Hazard ratios (HRs) for OS were as follows: IDH 2.65 (95% confidence interval [CI], 1.66-4.21), SRSF2 2.12 (95% CI, 1.18-3.79), high-risk myeloma 2.11 (95% CI, 1.70-2.61), ASXL1 1.92 (95% CI, 1.60-2.32), EZH2 1.88 (95% CI, 1.32-2.67), JAK2 1.41 (95% CI, 1.04-1.93) in the univariate analysis and 1.49 (95% CI, 0.42-5.30) in the multivariate analysis. LFS of JAK2 and SRSF2 had HRs of 1.81 (95% CI, 0.42-5.30) and 0.36 (95% CI, 0.02-6.48), respectively. In conclusion, mutations in IDH, SRSF2, and ASXL1 had worse prognosis in OS with HRs around 2. JAK2 and SRSF2 mutation were not associated with increased leukemia transformation. The adverse effect of triple-negative, which was often compared with CALR mutation, needs to be explored.
Collapse
|
25
|
Nie YB, Sun M, He CK, Ju MK, Zhou FL, Wu SY, Zhou Y, Liu L, Shen H, Huang TT, Liu P, Xu Y, Shao L, Zuo XL. ASXL1 mutations in Chinese patients with essential thrombocythemia. Exp Ther Med 2018; 15:4149-4156. [PMID: 29725364 PMCID: PMC5920505 DOI: 10.3892/etm.2018.5939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 11/17/2017] [Indexed: 11/10/2022] Open
Abstract
Essential thrombocythemia (ET) is characterized by thrombotic and hemorrhagic events. The association of clinical characteristics of Chinese ET patients and additional sex combs like 1 (ASXL1) mutations in these patients has remained to be elucidated. In the present study, 72 newly diagnosed Chinese ET patients were enrolled to determine ASXL1 mutations. Mutations in ASXL1, Janus kinase (JAK)2, calreticulin (CALR) and myeloproliferative leukemia (MPL) genes were detected using Sanger sequencing, and data were statistically analyzed. The frequencies of ASXL1, JAK2 V617F, CALR and MPL W515 mutations in ET patients were 19.4% (14/72), 29.2% (21/72), 31.9% (23/72) and 0% (0/72), respectively. Of note, 28 ET patients (38.9%) were negative for JAK2, CALR and MPL mutations; these patients were classified as triple-negative (TN). The frequency of ASXL1 mutations in patients with JAK2 V617F, CALR and TN mutations was 23.8% (5/21), 21.7% (5/23) and 14.3% (4/28), respectively. ASXL1-mutant patients exhibited significant propensities for thrombotic events compared with the ASXL1 wild-type (wt) cohort (42.9 vs. 12.1%; P=0.021). In addition, JAK2 V617F-mutant patients had a higher mean age compared with CALR-mutant (64.76 vs. 52.96 years; P=0.008) or TN patients (64.76 vs. 51.14 years; P=0.002). Furthermore, more white blood cells in the peripheral blood (PB) were observed in JAK2 V617F-mutant patients compared with those in TN patients (12.40 vs. 8.20×109/l; P=0.02). In addition, CALR-mutant patients exhibited more platelets (PLT) in PB than JAK2 V617F-mutant patients (787.91 vs. 562.17×109/l; P=0.047). TN patients had a significantly lower incidence of clinical symptoms, including dizziness, palpitation and chest congestion compared with CALR- or JAK2 V617F-mutant patients (14.1 vs. 39.1%; P=0.043 and 14.1 vs. 38.1%; P=0.050). No significant difference in progression-free survival was observed between ASXL1-mutant and ASXL1-wt patients (P=0.590). In conclusion, ASXL1-mutant ET patients are prone to experiencing thrombotic events. There was no significant difference in the occurrence of thrombotic events among CARL-mutant, JAK2 V617F-mutant and TN patients. Furthermore, ASXL1-mutant/TN patients exhibited a higher number of PLT than ASXL1/JAK2 V617F-double mutant patients. Therefore, ASXL1 mutations may be a risk factor for the occurrence of thrombotic events in ET patients.
Collapse
Affiliation(s)
- Yan-Bo Nie
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Meng Sun
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | | | - Man-Kai Ju
- Department of Hematology, Institute of Hematology and Hospital of Blood Diseases Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 300000, P.R. China
| | - Fu-Ling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - San-Yun Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yi Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Li Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hui Shen
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Ting-Ting Huang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Pan Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Ying Xu
- Department of Hematology, The Fifth Hospital of Wuhan, Wuhan, Hubei 430050, P.R. China
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xue-Lan Zuo
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
26
|
Partouche N, Conejero C, Barathon Q, Moroch J, Tulliez M, Cordonnier C, Giraudier S. Emergence of MPLW515 mutation in a patient with CALR deletion: Evidence of secondary acquisition of MPL mutation in the CALR clone. Hematol Oncol 2017; 36:336-339. [PMID: 28556926 DOI: 10.1002/hon.2431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 04/11/2017] [Indexed: 12/18/2022]
Abstract
Myeloproliferative neoplasms are characterized by transduction pathway recognized as mutually exclusive molecular abnormalities such as BCR-ABL translocation, JAK2V617F or JAK2 exon 12 mutations, MPL w515, and CALR mutations. However, in some rare cases, associations of such mutations are found in 1 patient. This can be related to 2 pathologies (at least 2 different clones harboring 2 mutations) or associated mutations in 1 clone. We describe here such an association of CALR and MPL mutations in a patient harboring the second mutation in a subclone during the phenotypic evolution of the myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Nicolas Partouche
- Hematology Laboratory, Henri Mondor Hospital, AP-HP, Créteil, France
| | | | - Quentin Barathon
- Hematology Laboratory, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Julien Moroch
- Pathology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Michel Tulliez
- Hematology Laboratory, Henri Mondor Hospital, AP-HP, Créteil, France.,University Paris-Est Créteil (UPEC), Créteil, France.,Department of Clinical Hematology and Cell Therapy, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Catherine Cordonnier
- University Paris-Est Créteil (UPEC), Créteil, France.,Department of Clinical Hematology and Cell Therapy, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Stephane Giraudier
- Hematology Laboratory, Henri Mondor Hospital, AP-HP, Créteil, France.,University Paris-Est Créteil (UPEC), Créteil, France.,Department of Clinical Hematology and Cell Therapy, Henri Mondor Hospital, AP-HP, Créteil, France.,INSERM U1131, Saint Louis Hospital, Paris, France
| |
Collapse
|
27
|
Assessing the thrombotic risk of patients with essential thrombocythemia in the genomic era. Leukemia 2017; 31:1845-1854. [PMID: 28529308 DOI: 10.1038/leu.2017.150] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023]
Abstract
The molecular characterization of myeloproliferative neoplasms, including essential thrombocythemia (ET), has enabled deeper understanding of their pathogenesis. A driver lesion, namely, Janus kinase (JAK)2V617F, calreticulin (CALR) or myeloproliferative leukemia (MPL) gene mutation can be identified in the vast majority of patients. Each of these mutations is associated with distinct clinical features and may modulate the patients' clinical course, risk of complications, including vascular events, and survival. JAK2V617F appears to be a risk-modifying mutation and has been shown to increase the likelihood of thrombotic events in patients with ET across studies. As such, it has been included in prognostic models and its presence may influence treatment decisions. The association of CALR and MPL mutations with the incidence of vascular events has been less clear. Even more limited information is available on the contribution of additional non-driver lesions to the thrombotic risk. In this review we discuss the available evidence on the role of recurrent mutations in the risk of thrombotic complications in patients with ET and how these mutations weigh into modern prognostic scores.
Collapse
|
28
|
Martin S, Wright CM, Scott LM. Progenitor genotyping reveals a complex clonal architecture in a subset ofCALR-mutated myeloproliferative neoplasms. Br J Haematol 2017; 177:55-66. [DOI: 10.1111/bjh.14512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/31/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Sarah Martin
- The University of Queensland Diamantina Institute; University of Queensland; Translational Research Institute; Brisbane Australia
| | - Casey M. Wright
- The University of Queensland Diamantina Institute; University of Queensland; Translational Research Institute; Brisbane Australia
| | - Linda M. Scott
- The University of Queensland Diamantina Institute; University of Queensland; Translational Research Institute; Brisbane Australia
| |
Collapse
|