1
|
Kim K, Kim S, Ahn T, Kim H, Shin SJ, Choi CH, Park S, Kim YB, No JH, Suh DH. A differential diagnosis between uterine leiomyoma and leiomyosarcoma using transcriptome analysis. BMC Cancer 2023; 23:1215. [PMID: 38066476 PMCID: PMC10709939 DOI: 10.1186/s12885-023-11394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/11/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The objective of this study was to estimate the accuracy of transcriptome-based classifier in differential diagnosis of uterine leiomyoma and leiomyosarcoma. We manually selected 114 normal uterine tissue and 31 leiomyosarcoma samples from publicly available transcriptome data in UCSC Xena as training/validation sets. We developed pre-processing procedure and gene selection method to sensitively find genes of larger variance in leiomyosarcoma than normal uterine tissues. Through our method, 17 genes were selected to build transcriptome-based classifier. The prediction accuracies of deep feedforward neural network (DNN), support vector machine (SVM), random forest (RF), and gradient boosting (GB) models were examined. We interpret the biological functionality of selected genes via network-based analysis using GeneMANIA. To validate the performance of trained model, we additionally collected 35 clinical samples of leiomyosarcoma and leiomyoma as a test set (18 + 17 as 1st and 2nd test sets). RESULTS We discovered genes expressed in a highly variable way in leiomyosarcoma while these genes are expressed in a conserved way in normal uterine samples. These genes were mainly associated with DNA replication. As gene selection and model training were made in leiomyosarcoma and uterine normal tissue, proving discriminant of ability between leiomyosarcoma and leiomyoma is necessary. Thus, further validation of trained model was conducted in newly collected clinical samples of leiomyosarcoma and leiomyoma. The DNN classifier performed sensitivity 0.88, 0.77 (8/9, 7/9) while the specificity 1.0 (8/8, 8/8) in two test data set supporting that the selected genes in conjunction with DNN classifier are well discriminating the difference between leiomyosarcoma and leiomyoma in clinical sample. CONCLUSION The transcriptome-based classifier accurately distinguished uterine leiomyosarcoma from leiomyoma. Our method can be helpful in clinical practice through the biopsy of sample in advance of surgery. Identification of leiomyosarcoma let the doctor avoid of laparoscopic surgery, thus it minimizes un-wanted tumor spread.
Collapse
Affiliation(s)
- Kidong Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sarah Kim
- Department of Life Science, Handong Global University, Pohang, Republic of Korea
| | - TaeJin Ahn
- Department of Life Science, Handong Global University, Pohang, Republic of Korea.
| | - Hyojin Kim
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - So-Jin Shin
- Department of Gynecology and Obstetrics, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Chel Hun Choi
- Department of Obstetrics and Gynecology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sungmin Park
- Department of Life Science, Handong Global University, Pohang, Republic of Korea
| | - Yong-Beom Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jae Hong No
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
2
|
Ungarreevittaya P, Nintra O, Sirithanaphol W, Chindaprasirt J, Sangkhamanon S. High XB130 expression in renal cell carcinoma is strongly associated with poor prognosis. Ann Diagn Pathol 2023; 67:152190. [PMID: 37729738 DOI: 10.1016/j.anndiagpath.2023.152190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/22/2023]
Abstract
The aim of this study was to assess the prognostic value of XB130 expression in three major RCC subtypes, and its association with clinical outcomes and adverse clinicopathologic features. A total of 101 nephrectomy samples at Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Thailand, from 2007 to 2017 were included in the study. XB130 immunohistochemistry was performed on slides from a tissue microarray comprised of 71 clear cell RCCs, 23 papillary RCCs, and 7 chromophobe RCCs, and were scored using a Histoscore system on a 0-300 scale. High XB130 expression in clear cell RCC and papillary RCC patients was associated with poor prognosis (log-rank test, P = 0.013, and P = 0.001, respectively). WHO/ISUP grade (P = 0.001) and XB130 high expression (P = 0.019) were found to be independent risk factors for mortality in clear cell RCC using multivariate analysis. The high expression of XB130 in clear cell RCC patients was also associated with high WHO/ISUP grade (P = 0.011), distant metastasis (P = 0.036), TNM stage (P = 0.007), sarcomatoid/rhabdoid differentiation (P = 0.061), and urinary collecting system invasion (P = 0.002). Similarly, high XB130 expression (P = 0.038) was associated with poor prognosis among papillary RCC patients as well as with lymphovascular invasion (P = 0.022), TNM stage (P = 0.030), and sarcomatoid/rhabdoid differentiation (P = 0.044). Overall, our findings showed that high XB130 expression in clear cell RCC and papillary RCC patients are associated with a worse prognosis.
Collapse
Affiliation(s)
- Piti Ungarreevittaya
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Orapin Nintra
- Division of Anatomical Pathology, Department of Pathology, Bhumibol Adulyadej Hospital, Directorate of Medical Services, Royal Thai Air Force, Bangkok, Thailand
| | - Wichien Sirithanaphol
- Division of Urologic Surgery, Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jarin Chindaprasirt
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sakkarn Sangkhamanon
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
3
|
Zhu XL, Hu DY, Zeng ZX, Jiang WW, Chen TY, Chen TC, Liao WQ, Lei WZ, Fang WJ, Pan WH. XB130 inhibits healing of diabetic skin ulcers through the PI3K/Akt signalling pathway. World J Diabetes 2023; 14:1369-1384. [PMID: 37771334 PMCID: PMC10523235 DOI: 10.4239/wjd.v14.i9.1369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/06/2023] [Accepted: 08/02/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Diabetic skin ulcers, a significant global healthcare burden, are mainly caused by the inhibition of cell proliferation and impaired angiogenesis. XB130 is an adaptor protein that regulates cell proliferation and migration. However, the role of XB130 in the development of diabetic skin ulcers remains unclear. AIM To investigate whether XB130 can regulate the inhibition of proliferation and vascular damage induced by high glucose. Additionally, we aim to determine whether XB130 is involved in the healing process of diabetic skin ulcers, along with its molecular mechanisms. METHODS We conducted RNA-sequencing analysis to identify the key genes involved in diabetic skin ulcers. We investigated the effects of XB130 on wound healing using histological analyses. In addition, we used reverse transcription-quantitative polymerase chain reaction, Western blot, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining, immunofluorescence, wound healing, and tubule formation experiments to investigate their effects on cellular processes in human umbilical vein endothelial cells (HUVECs) stimulated with high glucose. Finally, we performed functional analysis to elucidate the molecular mechanisms underlying diabetic skin ulcers. RESULTS RNA-sequencing analysis showed that the expression of XB130 was up-regulated in the tissues of diabetic skin ulcers. Knockdown of XB130 promoted the healing of skin wounds in mice, leading to an accelerated wound healing process and shortened wound healing time. At the cellular level, knockdown of XB130 alleviated high glucose-induced inhibition of cell proliferation and angiogenic impairment in HUVECs. Inhibition of the PI3K/Akt pathway removed the proliferative effects and endothelial protection mediated by XB130. CONCLUSION The findings of this study indicated that the expression of XB130 is up-regulated in high glucose-stimulated diabetic skin ulcers and HUVECs. Knockdown of XB130 promotes cell proliferation and angiogenesis via the PI3K/Akt signalling pathway, which accelerates the healing of diabetic skin ulcers.
Collapse
Affiliation(s)
- Xin-Lin Zhu
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Dong-Ying Hu
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Zhao-Xiang Zeng
- Department of Vascular Surgery, Department of Vascular Surgery, Changhai Hospital, Navy Medical University, Shanghai 20003, China
| | - Wei-Wei Jiang
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Tian-Yang Chen
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Tian-Cheng Chen
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wan-Qing Liao
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wen-Zhi Lei
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wen-Jie Fang
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wei-Hua Pan
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
4
|
Yang S, Wang B, Liao J, Hong Z, Zhong X, Chen S, Wu Z, Zhang X, Zuo Q. Molecular mechanism of XB130 adaptor protein mediates trastuzumab resistance in gastric cancer. Clin Transl Oncol 2023; 25:685-695. [PMID: 36284062 DOI: 10.1007/s12094-022-02974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/02/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Recent studies have shown that the activation of PI3K/AKT signaling pathway is an essential molecular mechanism participating in trastuzumab resistance in HER2 + GC (gastric cancer). However, how can we effectively inhibit AKT activity associated with drug resistance during trastuzumab treatment? Screening inhibitors against the upstream receptors of PI3K/AKT signaling pathway or interacting proteins of members has become an important way. METHODS In this study, western blot, qRT-PCR, CCK8, Co-IP and other techniques were used to explore possible mechanisms participating in trastuzumab resistance in vitro. Besides, the xenograft mouse model and GC tissue samples from patients were used to further validate the in-vitro results. RESULTS The expression of XB130 adaptor protein was remarkably increased in GC cell lines resistant to trastuzumab, and knockdown of XB130 could reverse the resistance via downregulating p-AKT. In addition, p-SRC (Tyr416) was increased in resistant cells, which could facilitate the binding of XB130 to PI3K p85α. It was also discovered that XB130 could negatively regulate PTEN gene transcription, and thus a positive feedback loop was formed between SRC-XB130-PTEN. CONCLUSIONS In HER2 + GC, XB130 contributes to trastuzumab resistance by stimulating the PI3K/AKT signaling pathway through binding to PI3K p85α under the mediation of SRC kinase and regulating PTEN gene transcription, and in turn forming a positive feedback loop between SRC-XB130-PTEN.
Collapse
Affiliation(s)
- Shengnan Yang
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Binbin Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Jiaqi Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Ziyang Hong
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Xuxian Zhong
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Suling Chen
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Ziqing Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Xingyu Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Qiang Zuo
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
5
|
Tu CL, Chang W, Sosa JA, Koh J. Digital spatial profiling of human parathyroid tumors reveals cellular and molecular alterations linked to vitamin D deficiency. PNAS NEXUS 2023; 2:pgad073. [PMID: 36992820 PMCID: PMC10042281 DOI: 10.1093/pnasnexus/pgad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Primary hyperparathyroidism (PHPT) is a common endocrine neoplastic disorder characterized by disrupted calcium homeostasis secondary to inappropriately elevated parathyroid hormone (PTH) secretion. Low levels of serum 25-hydroxyvitamin D (25OHD) are significantly more prevalent in PHPT patients than in the general population (1-3), but the basis for this association remains unclear. We employed a spatially defined in situ whole-transcriptomics and selective proteomics profiling approach to compare gene expression patterns and cellular composition in parathyroid adenomas from vitamin D-deficient or vitamin D-replete PHPT patients. A cross-sectional panel of eucalcemic cadaveric donor parathyroid glands was examined in parallel as normal tissue controls. Here, we report that parathyroid tumors from vitamin D-deficient PHPT patients (Def-Ts) are intrinsically different from those of vitamin D-replete patients (Rep-Ts) of similar age and preoperative clinical presentation. The parathyroid oxyphil cell content is markedly higher in Def-Ts (47.8%) relative to Rep-Ts (17.8%) and normal donor glands (7.7%). Vitamin D deficiency is associated with increased expression of electron transport chain and oxidative phosphorylation pathway components. Parathyroid oxyphil cells, while morphologically distinct, are comparable to chief cells at the transcriptional level, and vitamin D deficiency affects the transcriptional profiles of both cell types in a similar manner. These data suggest that oxyphil cells are derived from chief cells and imply that their increased abundance may be induced by low vitamin D status. Gene set enrichment analysis reveals that pathways altered in Def-Ts are distinct from Rep-Ts, suggesting alternative tumor etiologies in these groups. Increased oxyphil content may thus be a morphological indicator of tumor-predisposing cellular stress.
Collapse
Affiliation(s)
- Chia-Ling Tu
- Endocrine Research Unit, Department of Medicine, San Francisco Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94158
| | - Wenhan Chang
- Endocrine Research Unit, Department of Medicine, San Francisco Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94158
| | - Julie A Sosa
- Endocrine Neoplasia Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA 94143
| | - James Koh
- Endocrine Neoplasia Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA 94143
| |
Collapse
|
6
|
Sun B, Ding B, Chen Y, Peng C, Chen X. AFAP1L1 promotes gastric cancer progression by interacting with VAV2 to facilitate CDC42-mediated activation of ITGA5 signaling pathway. J Transl Med 2023; 21:18. [PMID: 36631800 PMCID: PMC9835296 DOI: 10.1186/s12967-023-03871-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/01/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The actin filament-associated protein (AFAP) family genes include AFAP1/AFAP-110, AFAP1L1 and AFAP1L2/XB130. Increasing evidence indicates these three AFAP family members participate in tumor progression, but their clinical significance and molecular mechanisms in gastric cancer (GC) remain unclear. METHODS We first analyzed expression of AFAP family genes using public datasets and verified the results. The clinical significance of AFAP family genes in GC patients was also analyzed. In vitro and in vivo experiments were applied to explore the function of AFAP1L1. Enrichment analysis was used to explore potential molecular mechanisms. We then performed additional experiments, such as cell adhesion assay, co-immunoprecipitation and so on to confirm the downstream molecular mechanisms of AFAP1L1. RESULTS Public data analyses and our verification both showed AFAP1L1 was the only AFAP family members that was significantly upregulated in GC compared with normal gastric tissues. Besides, only AFAP1L1 could predict poor prognosis and act as an independent risk factor for GC patients. In addition, AFAP1L1 promotes GC cells proliferation, migration, invasion in vitro and tumor growth, metastasis in vivo by inducing epithelial-to-mesenchymal transition (EMT). In terms of mechanism, AFAP1L1 interacts with VAV guanine nucleotide exchange factor 2 (VAV2) to activate Rho family GTPases CDC42, which finally promotes expression of integrin subunit alpha 5 (ITGA5) and activation of integrin signaling pathway. CONCLUSION AFAP1L1 promotes GC progression by inducing EMT through VAV2-mediated activation of CDC42 and ITGA5 signaling pathway, indicating AFAP1L1 may be a promising prognostic biomarker and therapeutic target for GC patients.
Collapse
Affiliation(s)
- Bo Sun
- grid.477407.70000 0004 1806 9292Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005 Hunan China
| | - Bai Ding
- grid.477407.70000 0004 1806 9292Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005 Hunan China
| | - Yu Chen
- grid.477407.70000 0004 1806 9292Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005 Hunan China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005, Hunan, China.
| | - Xu Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005, Hunan, China.
| |
Collapse
|
7
|
Poosekeaw P, Pairojkul C, Sripa B, Sa Ngiamwibool P, Iamsaard S, Sakonsinsiri C, Thanan R, Ungarreevittaya P. Adaptor protein XB130 regulates the aggressiveness of cholangiocarcinoma. PLoS One 2021; 16:e0259075. [PMID: 34780466 PMCID: PMC8592414 DOI: 10.1371/journal.pone.0259075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a group of heterogenous malignancies arising from bile duct epithelium with distinct pathological features. Adaptor proteins have implicated in cell proliferation, migration, and invasion of different cancer cells. The objective of this study was to assess whether the adaptor protein XB130 (AFAP1L2) is a critical biological determinant of CCA outcome. XB130 expression levels were investigated in four CCA cell lines compared to an immortalized cholangiocyte cell line by Western blotting. Small interfering (si) RNA-mediated XB130 gene silencing was conducted to evaluate the effects of reduced XB130 expression on cell proliferation, migration, and invasion by MTT, transwell migration and cell invasion assay. The immunohistochemical quantification of XB130 levels were performed in surgically resected formalin-fixed, paraffin-embedded specimens obtained from 151 CCA patients. The relationship between XB130 expression and the clinicopathological parameters of CCA patients were analyzed. Our results showed that XB130 was highly expressed in KKU-213A cell line. Knockdown of XB130 using siRNA significantly decreased the proliferation, migration, and invasion properties of KKU-213A cells through the inhibition of PI3K/Akt pathway, suggesting that XB130 plays an important role in CCA progression. Moreover, elevated XB130 expression levels were positive relationship with lymphovascular space invasion (LVSI), intrahepatic type of CCA, high TNM staging (stage III, IV), high T classification (T3, T4), and lymph node metastasis. We provide the first evidence that the overexpression of XB130 is associated with tumorigenic properties of CCA cells, leading to CCA progression with aggressive clinical outcomes.
Collapse
Affiliation(s)
- Pirawan Poosekeaw
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Banchob Sripa
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Sitthichai Iamsaard
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Piti Ungarreevittaya
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
8
|
Song K, Jiang Y, Zhao Y, Xie Y, Zhou J, Yu W, Wang Q. Members of the miR-30 family inhibit the epithelial-to-mesenchymal transition of non-small-cell lung cancer cells by suppressing XB130 expression levels. Oncol Lett 2020; 20:68. [PMID: 32863901 PMCID: PMC7436119 DOI: 10.3892/ol.2020.11929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/23/2020] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRs) are associated with cancer metastasis. Aberrant expression levels of members of the miR-30 family have been observed in non-small-cell lung cancer (NSCLC). However, the effects of miR-30 family members on the epithelial-to-mesenchymal transition (EMT) of NSCLC cells and the underlying molecular mechanisms have not yet been fully elucidated. The present study investigated the effects of miR-30 family members on EMT, migration and invasion of NSCLC cells and found that overexpression of these miRs inhibited EMT via decreasing the expression levels of N-cadherin, β-catenin and SNAI1, along with weakened migration and invasion abilities. Then, XB130 was identified as a downstream target of the miR-30 family members. XB130-knockdown also inhibited EMT of NSCLC cells, whereas ectopic overexpression of XB130 partly rescued the suppressive effects of miR-30c and miR-30d on EMT. In conclusion, miR-30 family members inhibited EMT of NSCLC cells, partially via suppressing XB130 expression levels.
Collapse
Affiliation(s)
- Kewei Song
- College of Sport and Health and Key Laboratory of Endemic and Ethnic Diseases of The Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yinhui Jiang
- College of Sport and Health and Key Laboratory of Endemic and Ethnic Diseases of The Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yan Zhao
- College of Sport and Health and Key Laboratory of Endemic and Ethnic Diseases of The Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yuan Xie
- College of Sport and Health and Key Laboratory of Endemic and Ethnic Diseases of The Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jianjiang Zhou
- College of Sport and Health and Key Laboratory of Endemic and Ethnic Diseases of The Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Wenfeng Yu
- College of Sport and Health and Key Laboratory of Endemic and Ethnic Diseases of The Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Qinrong Wang
- College of Sport and Health and Key Laboratory of Endemic and Ethnic Diseases of The Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
9
|
Wang Q, Yang G, Jiang Y, Luo M, Li C, Zhao Y, Xie Y, Song K, Zhou J. XB130, regulated by miR-203, miR-219, and miR-4782-3p, mediates the proliferation and metastasis of non-small-cell lung cancer cells. Mol Carcinog 2020; 59:557-568. [PMID: 32159887 DOI: 10.1002/mc.23180] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/09/2020] [Accepted: 02/27/2020] [Indexed: 01/06/2023]
Abstract
XB130 is a novel adapter protein that behaves as a tumor promoter or suppressor mediating cell proliferation and metastasis in the development of different human tumors. Altered expression of XB130 has been verified in human non-small cell-lung cancer (NSCLC). However, the exact effect of XB130 on NSCLC is not well-understood. In this study, we investigated the biological function and posttranscriptional regulation of XB130 in NSCLC. First, the effects of XB130 silence on NSCLC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) were examined. Then the targeting relationship between XB130 and miR-203, miR-219, or miR-4782-3p was demonstrated by dual-luciferase reporter assay. Finally, the effects of miR-203, miR-219, and miR-4782-3p on NSCLC cell function were studied, respectively. We found that XB130 silence significantly inhibited cell growth, migration and invasion, and reversed EMT. Furthermore, XB130 was posttranscriptionally regulated by miR-203, miR-219, and miR-4782-3p. Overexpression of miR-203, miR-219, or miR-4782-3p inhibited cell growth, migration and invasion, and reversed EMT, just like the role of XB130 in NSCLC cells, whereas the suppressive effects of microRNA (miRNA) overexpression were weakened by miRNA inhibitors or ectopic expression of XB130 in NSCLC cells. These data demonstrate that XB130 is posttranscriptionally regulated by miR-203, miR-219, and miR-4782-3p and mediates the proliferation and metastasis of NSCLC cells.
Collapse
Affiliation(s)
- Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Guohui Yang
- Department of Medical Intensive Care Unit, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yinhui Jiang
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Mei Luo
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Chao Li
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Kewei Song
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China.,Department of Sport and Health, Guizhou Medical University, Guiyang, China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| |
Collapse
|
10
|
Cho HR, Wang Y, Bai X, Xiang YY, Lu C, Post A, Al Habeeb A, Liu M. XB130 deficiency enhances carcinogen-induced skin tumorigenesis. Carcinogenesis 2019; 40:1363-1375. [DOI: 10.1093/carcin/bgz042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
AbstractXB130 is an adaptor protein that functions as a mediator of multiple tyrosine kinases important for regulating cell proliferation, survival, migration and invasion. Formerly predicted as an oncogene, alterations of its expression are documented in various human cancers. However, the exact role of XB130 in tumorigenesis is unknown. To address its function in skin tumorigenesis, a two-stage dimethylbenzanthracene (DMBA)/12-O-tetradecanoylphorbol 13-acetate (TPA) study was performed on XB130 knockout (KO), heterozygous (HZ) and wild-type (WT) littermate mice. DMBA/TPA-treated XB130 KO and HZ males developed a significantly higher number of epidermal tumors that were notably larger in size than did WT mice. Interestingly, DMBA/TPA-treated female mice did not show any difference in tumor multiplicity regardless of the genotypes. The skin tumor lesions of XB130 KO males were more progressed with an increased frequency of keratoacanthoma. Deficiency of XB130 dramatically increased epidermal tumor cell proliferation. The responses to DMBA and TPA stimuli were also individually investigated to elucidate the mechanistic role of XB130 at different stages of tumorigenesis. DMBA-treated male XB130 KO mice showed compensatory p53-mediated stress response. TPA-treated XB130 KO males demonstrated more skin ulceration with more severe edema, enhanced cell proliferation, accumulation of infiltrating neutrophils and increased production of pro-inflammatory cytokine genes compared with WT mice. Enhanced activities of nuclear factor-kappa B pathway, increased protein expression of metalloproteinase-9 and ERK1/2 phosphorylation were found in these KO mice. These findings demonstrate that XB130 acts as a tumor suppressor in carcinogen-induced skin tumorigenesis that may be mediated through inhibiting inflammation.
Collapse
Affiliation(s)
- Hae-Ra Cho
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
| | - Xiaohui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
| | - Yun-Yan Xiang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
| | - Christina Lu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
| | - Alexander Post
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
| | - Ayman Al Habeeb
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Xie T, Jiang C, Dai T, Xu R, Zhou X, Su X, Zhao X. Knockdown of XB130 restrains cancer stem cell-like phenotype through inhibition of Wnt/β-Catenin signaling in breast cancer. Mol Carcinog 2019; 58:1832-1845. [PMID: 31219645 DOI: 10.1002/mc.23071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
The cancer stem cells (CSCs) is a subset of cancer cells that possess stem cell properties, which plays a crucial role in the occurrence, metastasis, and recurrence of the tumor. XB130 is a novel adapter protein potentially serves as a functional factor in CSCs. To determine the role of CSCs in breast cancer, we focused on the study of XB130. In our study, we found that XB130 expression was significantly upregulated in breast cancer and was closely related to the clinicopathologic characteristics, overall survival and poor prognosis of breast cancer patients. Functionally, we found that knockdown of XB130 was not only played an important role in proliferation, epithelial-mesenchymal transition (EMT), and metastasis in breast cancer cells but also exhibited potent antitumor activity in animal tumor models. Moreover, we demonstrated that silencing endogenous XB130 regulated the cancer stem cell-like properties of breast cancer, including the formation of self-renewing spheres and the proportion of breast cancer SP+ cells. Mechanistically, our studies indicated that downregulation of XB130 restrained the EMT and Wnt/β-catenin signaling, so as to weaken the tumor-initiating cell-like phenotype of breast cancer cells. This study indicates that XB130 plays an important role in maintaining the EMT and stem cell-like characteristics of breast cancer cells, supporting the significance of XB130 as a new potential therapeutic target for early diagnosis and prognosis of breast cancer.
Collapse
Affiliation(s)
- Tian Xie
- Department of GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Obstetrics, Obstetrics and Prenatal Diagnosis Center, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chao Jiang
- Department of Cancer Center, People's Hospital of Baoan District, Shenzhen, China.,Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Cancer Center, Guangzhou, China
| | - Ting Dai
- Department of GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Rui Xu
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Cancer Center, Guangzhou, China.,Department of Internal Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiang Zhou
- Department of Microsurgery, Trauma and Hand Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaobo Su
- Department of GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Zhao
- Department of GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.,The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| |
Collapse
|
12
|
Li GM, Liang CJ, Zhang DX, Zhang LJ, Wu JX, Xu YC. XB130 Knockdown Inhibits the Proliferation, Invasiveness, and Metastasis of Hepatocellular Carcinoma Cells and Sensitizes them to TRAIL-Induced Apoptosis. Chin Med J (Engl) 2018; 131:2320-2331. [PMID: 30246718 PMCID: PMC6166462 DOI: 10.4103/0366-6999.241800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background XB130 is a recently discovered adaptor protein that is highly expressed in many malignant tumors, but few studies have investigated its role in hepatocellular carcinoma (HCC). Therefore, this study explored the relationship between this protein and liver cancer and investigated its molecular mechanism of action. Methods The expression of XB130 between HCC tissues and adjacent nontumor tissues was compared by real-time polymerase chain reaction, immunochemistry, and Western blotting. XB130 silencing was performed using small hairpin RNA. The effect of silencing XB130 was examined using Cell Counting Kit-8, colony assay, wound healing assay, and cell cycle analysis. Results We found that XB130 was highly expressed in HCC tissues (cancer tissues vs. adjacent tissues: 0.23 ± 0.02 vs. 0.17 ± 0.02, P < 0.05) and liver cancer cell lines, particularly MHCC97H and HepG2 (MHCC97H and HepG2 vs. normal liver cell line LO-2: 2.35 ± 0.26 and 2.04 ± 0.04 vs. 1.00 ± 0.04, respectively, all P < 0.05). The Cell Counting Kit-8 assay, colony formation assay, and xenograft model in nude mice showed that silencing XB130 inhibited cell proliferative ability both in vivo and in vitro, with flow cytometry demonstrating that the cells were arrested in the G0/G1 phase in HepG2 (HepG2 XB130-silenced group [shA] vs. HepG2 scramble group [NA]: 74.32 ± 5.86% vs. 60.21 ± 3.07%, P < 0.05) and that the number of G2/M phase cells was decreased (HepG2 shA vs. HepG2 NA: 8.06 ± 2.41% vs. 18.36 ± 4.42%, P < 0.05). Furthermore, the cell invasion and migration abilities were impaired, and the levels of the epithelial-mesenchymal transition-related indicators vimentin and N-cadherin were decreased, although the level of E-cadherin was increased after silencing XB130. Western blotting showed that the levels of phosphorylated phosphoinositide 3-kinase (PI3K) and phospho-protein kinase B (p-Akt) also increased, although the level of phosphorylated phosphatase and tensin homolog increased, indicating that XB130 activated the PI3K/Akt pathway. Furthermore, we found that a reduction in XB130 increased liver cancer cell sensitivity to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Conclusions Our findings suggest that XB130 might be used as a predictor of liver cancer as well as one of the targets for its treatment.
Collapse
Affiliation(s)
- Guang-Ming Li
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Chao-Jie Liang
- Department of General Surgery, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Dong-Xin Zhang
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Li-Jun Zhang
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ji-Xiang Wu
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ying-Chen Xu
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
13
|
Liu W, Zhang L, Jin Z, Zhao M, Li Z, Chen G, Sun L, Chen B. TUFT1 is expressed in breast cancer and involved in cancer cell proliferation and survival. Oncotarget 2017; 8:74962-74974. [PMID: 29088838 PMCID: PMC5650393 DOI: 10.18632/oncotarget.20472] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/19/2017] [Indexed: 12/16/2022] Open
Abstract
Tuftelin 1 (TUFT1), which plays an important role in the initial stages of the mineralization of ectodermal enamel, is widely expressed in different embryonic and adult tissues and some tumor cells. However, since the roles of this gene have not been thoroughly investigated in tumors, its function in the development of breast cancer remains unclear. We proved both human specimens studies and cell line studies, that TUFT1 expression levels are increased in breast cancer samples, and the increased expression of TUFT1 was shown to be positively correlated with tumor size, histological grade, lymph node metastasis rate, and poor prognosis. Further in vitro studies showed that the inhibition of TUFT1 expression in T-47D and MDA-MB-231 breast cancer cells significantly affected cell proliferation, induced apoptosis, and led to G1-phase cell cycle arrest. Moreover, reduced TUFT1 expression restrained tumor growth compared with the control group in vivo. Furthermore, microarray and pathway analysis demonstrated that TUFT1 inhibition led to significant changes of several signaling pathways and semi-quantitative western blot analysis showed that a decrease in TUFT1 expression was accompanied by changes in MAPK signaling pathway components. The obtained results suggest that TUFT1 may represent a novel breast cancer marker and a potentially effective therapeutic target.
Collapse
Affiliation(s)
- Weiguang Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Lei Zhang
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Zining Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Min Zhao
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Zhan Li
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Guanglei Chen
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Lisha Sun
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bo Chen
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
14
|
Lin E, Kuo PH, Liu YL, Yang AC, Tsai SJ. Detection of susceptibility loci on APOA5 and COLEC12 associated with metabolic syndrome using a genome-wide association study in a Taiwanese population. Oncotarget 2017; 8:93349-93359. [PMID: 29212154 PMCID: PMC5706800 DOI: 10.18632/oncotarget.20967] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022] Open
Abstract
Background Although the association of single nucleotide polymorphisms (SNPs) with metabolic syndrome (MetS) has been reported in various populations in several genome-wide association studies (GWAS), the data is not conclusive. In this GWAS study, we assessed whether SNPs are associated with MetS and its individual components independently and/or through complex interactions in a Taiwanese population. Methods A total of 10,300 Taiwanese subjects were assessed in this study. Metabolic traits such as waist circumference, triglyceride, high-density lipoprotein (HDL) cholesterol, systolic and diastolic blood pressure, and fasting glucose were measured. Results Our data showed an association of MetS at the genome-wide significance level (P < 8.6 x 10-8) with two SNPs, including the rs662799 SNP in the apolipoprotein A5 (APOA5) gene and the rs16944558 SNP in the collectin subfamily member 12 (COLEC12) gene. Moreover, we identified the effect of APOA5 rs662799 on triglyceride and HDL, the effect of rs1106475 in the actin filament associated protein 1 like 2 (AFAP1L2) gene on systolic blood pressure, and the effect of rs17667932 in the mediator complex subunit 30 (MED30) gene on fasting glucose. Additionally, we found that an interaction between the APOA5 rs662799 and COLEC12 rs16944558 SNPs influenced MetS, high triglyceride, and low HDL. Conclusions Our study indicates that the APOA5 and COLEC12 genes may contribute to the risk of MetS and its individual components independently as well as through gene-gene interactions.
Collapse
Affiliation(s)
- Eugene Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Vita Genomics, Inc., Taipei, Taiwan.,TickleFish Systems Corporation, Seattle, WA, USA
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan.,Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
15
|
Karatas OF, Wang J, Shao L, Ozen M, Zhang Y, Creighton CJ, Ittmann M. miR-33a is a tumor suppressor microRNA that is decreased in prostate cancer. Oncotarget 2017; 8:60243-60256. [PMID: 28947967 PMCID: PMC5601135 DOI: 10.18632/oncotarget.19521] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/12/2017] [Indexed: 01/17/2023] Open
Abstract
Prostate cancer is one of the most frequently diagnosed neoplasms among men worldwide. MicroRNAs (miRNAs) are involved in numerous important cellular processes including proliferation, differentiation and apoptosis. They have been found to be aberrantly expressed in many types of human cancers. They can act as either tumor suppressors or oncogenes, and changes in their levels are associated with tumor initiation, progression and metastasis. miR-33a is an intronic miRNA embedded within SREBF2 that has been reported to have tumor suppressive properties in some cancers but has not been examined in prostate cancer. SREBF2 increases cholesterol and lipid levels both directly and via miR-33a action. The levels of SREBF2 and miR-33a are correlated in normal tissues by co-transcription from the same gene locus. Paradoxically, SREBF2 has been reported to be increased in prostate cancer, which would be predicted to increase miR-33a levels potentially leading to tumor suppression. We show here that miR-33a has tumor suppressive activities and is decreased in prostate cancer. The decreased miR-33a increases mRNA for the PIM1 oncogene and multiple genes in the lipid β-oxidation pathway. Levels of miR-33a are not correlated with SREBF2 levels, implying posttranscriptional regulation of its expression in prostate cancer.
Collapse
Affiliation(s)
- Omer Faruk Karatas
- Department of Pathology and Immunology and Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, USA.,Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Jianghua Wang
- Department of Pathology and Immunology and Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, USA
| | - Longjiang Shao
- Department of Pathology and Immunology and Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, USA
| | - Mustafa Ozen
- Department of Medical Genetics, Istanbul University Cerrahpasa Medical School, Istanbul, Turkey
| | - Yiqun Zhang
- Dan L. Duncan Cancer Center Division of Biostatistics, Houston, TX, USA
| | - Chad J Creighton
- Dan L. Duncan Cancer Center Division of Biostatistics, Houston, TX, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Michael Ittmann
- Department of Pathology and Immunology and Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, USA
| |
Collapse
|