1
|
Maejima I, Sato K. New aspects of a small GTPase RAB35 in brain development and function. Neural Regen Res 2025; 20:1971-1980. [PMID: 39254551 PMCID: PMC11691468 DOI: 10.4103/nrr.nrr-d-23-01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 09/11/2024] Open
Abstract
In eukaryotic cells, organelles in the secretory, lysosomal, and endocytic pathways actively exchange biological materials with each other through intracellular membrane trafficking, which is the process of transporting the cargo of proteins, lipids, and other molecules to appropriate compartments via transport vesicles or intermediates. These processes are strictly regulated by various small GTPases such as the RAS-like in rat brain (RAB) protein family, which is the largest subfamily of the RAS superfamily. Dysfunction of membrane trafficking affects tissue homeostasis and leads to a wide range of diseases, including neurological disorders and neurodegenerative diseases. Therefore, it is important to understand the physiological and pathological roles of RAB proteins in brain function. RAB35, a member of the RAB family, is an evolutionarily conserved protein in metazoans. A wide range of studies using cultured mammalian cells and model organisms have revealed that RAB35 mediates various processes such as cytokinesis, endocytic recycling, actin bundling, and cell migration. RAB35 is also involved in neurite outgrowth and turnover of synaptic vesicles. We generated brain-specific Rab35 knockout mice to study the physiological roles of RAB35 in brain development and function. These mice exhibited defects in anxiety-related behaviors and spatial memory. Strikingly, RAB35 is required for the precise positioning of pyramidal neurons during hippocampal development, and thereby for normal hippocampal lamination. In contrast, layer formation in the cerebral cortex occurred superficially, even in the absence of RAB35, suggesting a predominant role for RAB35 in hippocampal development rather than in cerebral cortex development. Recent studies have suggested an association between RAB35 and neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. In this review, we provide an overview of the current understanding of subcellular functions of RAB35. We also provide insights into the physiological role of RAB35 in mammalian brain development and function, and discuss the involvement of RAB35 dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ikuko Maejima
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
2
|
Bova V, Mannino D, Capra AP, Lanza M, Palermo N, Filippone A, Esposito E. CK and LRRK2 Involvement in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:11661. [PMID: 39519213 PMCID: PMC11546471 DOI: 10.3390/ijms252111661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Neurodegenerative diseases (NDDs) are currently the most widespread neuronal pathologies in the world. Among these, the most widespread are Alzheimer's disease (AD), dementia, Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD)-all characterized by a progressive loss of neurons in specific regions of the brain leading to varied clinical symptoms. At the basis of neurodegenerative diseases, an emerging role is played by genetic mutations in the leucine-rich repeat kinase 2 (LRRK2) gene that cause increased LRRK2 activity with consequent alteration of neuronal autophagy pathways. LRRK2 kinase activity requires GTPase activity which functions independently of kinase activity and is required for neurotoxicity and to potentiate neuronal death. Important in the neurodegeneration process is the upregulation of casein kinase (CK), which causes the alteration of the AMPK pathway by enhancing the phosphorylation of α-synuclein and huntingtin proteins, known to be involved in PD and HD, and increasing the accumulation of the amyloid-β protein (Aβ) for AD. Recent research has identified CK of the kinases upstream of LRRK2 as a regulator of the stability of the LRRK2 protein. Based on this evidence, this review aims to understand the direct involvement of individual kinases in NDDs and how their crosstalk may impact the pathogenesis and early onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Valentina Bova
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Nicoletta Palermo
- Department of Biochemical, Dental, Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| |
Collapse
|
3
|
Maejima I, Hara T, Tsukamoto S, Koizumi H, Kawauchi T, Akuzawa T, Hirai R, Kobayashi H, Isobe I, Emoto K, Kosako H, Sato K. RAB35 is required for murine hippocampal development and functions by regulating neuronal cell distribution. Commun Biol 2023; 6:440. [PMID: 37085665 PMCID: PMC10121692 DOI: 10.1038/s42003-023-04826-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/07/2023] [Indexed: 04/23/2023] Open
Abstract
RAB35 is a multifunctional small GTPase that regulates endocytic recycling, cytoskeletal rearrangement, and cytokinesis. However, its physiological functions in mammalian development remain unclear. Here, we generated Rab35-knockout mice and found that RAB35 is essential for early embryogenesis. Interestingly, brain-specific Rab35-knockout mice displayed severe defects in hippocampal lamination owing to impaired distribution of pyramidal neurons, although defects in cerebral cortex formation were not evident. In addition, Rab35-knockout mice exhibited defects in spatial memory and anxiety-related behaviors. Quantitative proteomics indicated that the loss of RAB35 significantly affected the levels of other RAB proteins associated with endocytic trafficking, as well as some neural cell adhesion molecules, such as contactin-2. Collectively, our findings revealed that RAB35 is required for precise neuronal distribution in the developing hippocampus by regulating the expression of cell adhesion molecules, thereby influencing spatial memory.
Collapse
Affiliation(s)
- Ikuko Maejima
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Taichi Hara
- Laboratory of Food and Life Science, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, 359-1192, Japan
| | - Satoshi Tsukamoto
- Laboratory Animal and Genome Sciences Section, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba, 263-8555, Japan
| | - Hiroyuki Koizumi
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Molecular and Cellular Biology, School of Pharmaceutical Sciences, Ohu University, Koriyama, Fukushima, 963-8611, Japan
| | - Takeshi Kawauchi
- Department of Adaptive and Maladaptive Responses in Health and Diseases, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Tomoko Akuzawa
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Rika Hirai
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Hisae Kobayashi
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Inoya Isobe
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Kazuo Emoto
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Tokushima, 770-8503, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan.
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, 371-8512, Japan.
| |
Collapse
|
4
|
Khosousi S, Hye A, Velayudhan L, Bloth B, Tsitsi P, Markaki I, Svenningsson P. Complement system changes in blood in Parkinson's disease and progressive Supranuclear Palsy/Corticobasal Syndrome. Parkinsonism Relat Disord 2023; 108:105313. [PMID: 36739794 DOI: 10.1016/j.parkreldis.2023.105313] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Parkinson's Disease (PD) is diagnosed clinically, and early PD is often challenging to differentiate from atypical parkinsonian disorders such as the Four-repeat (4R-) Tauopathies Progressive Supranuclear Palsy and Corticobasal Syndrome. Diagnostic biomarkers are needed, and proteomic studies have suggested that the plasma complement system is altered in PD, but validation studies are lacking. In this study, plasma from 148 individuals (PD, 4R-Tauopathies, and healthy controls (HC)) were used to quantify 12 complement proteins with immunoassays, and CH50 classical pathway complement activity was quantified in sera from further 78 individuals (PD and HC). Complement factors C1q and C3 in plasma were lower in individuals with 4R-Tauopathies (ANOVA, p = 0.0041, p = 0.0057 respectively) compared to both PD and HC. None of the complement proteins were altered between PD and HC, however a few proteins correlated with clinical parameters within the PD group. Notably, levels of C3 correlated with non-motor symptoms in female patients. Classical pathway complement activity was not altered in PD serum, but did correlate with mental fatigue. In conclusion, individuals with 4R-Tauopathies showed lower plasma C1q and C3 compared PD and HC. Neither complement levels nor CH50 activity were significantly altered in PD versus HC but may associate with PD symptom severity.
Collapse
Affiliation(s)
- Shervin Khosousi
- Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, United Kingdom Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, SE5 9NU, London, United Kingdom; Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden, Bioclinicum, J5:20, 171 64, Solna, Sweden.
| | - Abdul Hye
- Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, United Kingdom Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, SE5 9NU, London, United Kingdom
| | - Latha Velayudhan
- Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, United Kingdom Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, SE5 9NU, London, United Kingdom
| | - Björn Bloth
- Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden, Bioclinicum, J5:20, 171 64, Solna, Sweden
| | - Panagiota Tsitsi
- Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden, Bioclinicum, J5:20, 171 64, Solna, Sweden; Center for Neurology, Academic Specialist Center, Stockholm, Solnavägen 1E, 11365, Stockholm, Sweden
| | - Ioanna Markaki
- Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden, Bioclinicum, J5:20, 171 64, Solna, Sweden; Center for Neurology, Academic Specialist Center, Stockholm, Solnavägen 1E, 11365, Stockholm, Sweden
| | - Per Svenningsson
- Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden, Bioclinicum, J5:20, 171 64, Solna, Sweden; Center for Neurology, Academic Specialist Center, Stockholm, Solnavägen 1E, 11365, Stockholm, Sweden; Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, United Kingdom Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, SE5 9NU, London, United Kingdom
| |
Collapse
|
5
|
Kulkarni A, Preeti K, Tryphena KP, Srivastava S, Singh SB, Khatri DK. Proteostasis in Parkinson's disease: Recent development and possible implication in diagnosis and therapeutics. Ageing Res Rev 2023; 84:101816. [PMID: 36481490 DOI: 10.1016/j.arr.2022.101816] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The protein dyshomeostasis is identified as the hallmark of many age-related neurodegenerative disorders including Parkinson's disease (PD). The diseased brain shows the deposition of Lewy bodies composed of α-synuclein protein aggregates. Functional proteostasis is characterized by the well-coordinated signaling network constituting unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), and the autophagy-lysosome pathway (ALP). These networks ensure proper synthesis, folding, confirmation, and degradation of protein i.e., α-synuclein protein in PD. The proper functioning the of intricately woven proteostasis network is quite resilient to sustain under the influence of stressors. The synuclein protein turnover is hugely influenced by the autosomal dominant, recessive, and X-linked mutational changes of a gene involved in UPR, UPS, and ALP. The methylation, acetylation-related epigenetic modifications of DNA and histone proteins along with microRNA-mediated transcriptional changes also lead to extensive proteostasis dysregulation. The result of defective proteostasis is the deposition of many proteins which start appearing in the biofluids and can be identified as potential biomarkers for early diagnosis of PD. The therapeutic intervention targeted at different strata of proteostasis machinery holds great possibilities for delaying the age-related accumulation of pathological hallmarks.
Collapse
Affiliation(s)
- Amrita Kulkarni
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Kamatham Pushpa Tryphena
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER), Hyderabad, Telangana 500037, India.
| |
Collapse
|
6
|
Ravinther AI, Dewadas HD, Tong SR, Foo CN, Lin YE, Chien CT, Lim YM. Molecular Pathways Involved in LRRK2-Linked Parkinson’s Disease: A Systematic Review. Int J Mol Sci 2022; 23:ijms231911744. [PMID: 36233046 PMCID: PMC9569706 DOI: 10.3390/ijms231911744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Parkinson’s disease is one of the most common neurodegenerative diseases affecting the ageing population, with a prevalence that has doubled over the last 30 years. As the mechanism of the disease is not fully elucidated, the current treatments are unable to effectively prevent neurodegeneration. Studies have found that mutations in Leucine-rich-repeat-kinase 2 (LRRK2) are the most common cause of familial Parkinson’s disease (PD). Moreover, aberrant (higher) LRRK2 kinase activity has an influence in idiopathic PD as well. Hence, the aim of this review is to categorize and synthesize current information related to LRRK2-linked PD and present the factors associated with LRRK2 that can be targeted therapeutically. A systematic review was conducted using the databases PubMed, Medline, SCOPUS, SAGE, and Cochrane (January 2016 to July 2021). Search terms included “Parkinson’s disease”, “mechanism”, “LRRK2”, and synonyms in various combinations. The search yielded a total of 988 abstracts for initial review, 80 of which met the inclusion criteria. Here, we emphasize molecular mechanisms revealed in recent in vivo and in vitro studies. By consolidating the recent updates in the field of LRRK2-linked PD, researchers can further evaluate targets for therapeutic application.
Collapse
Affiliation(s)
- Ailyn Irvita Ravinther
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hemaniswarri Dewi Dewadas
- Centre for Biomedical and Nutrition Research, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Perak, Malaysia
| | - Shi Ruo Tong
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
| | - Chai Nien Foo
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Department of Population Medicine, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
| | - Yu-En Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Ting Chien
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yang Mooi Lim
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Department of Pre-Clinical Sciences, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
7
|
Tsafaras G, Baekelandt V. The role of LRRK2 in the periphery: link with Parkinson's disease and inflammatory diseases. Neurobiol Dis 2022; 172:105806. [PMID: 35781002 DOI: 10.1016/j.nbd.2022.105806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/30/2022] [Accepted: 06/22/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is currently considered a multisystemic disorder rather than a pure brain disease, in line with the multiple hit hypothesis from Braak. However, despite increasing evidence that the pathology might originate in the periphery, multiple unknown aspects and contradictory data on the pathological processes taking place in the periphery jeopardize the interpretation and therapeutic targeting of PD. Mutations in the leucine-rich-repeat kinase 2 (LRRK2) gene have been widely linked with familial and sporadic PD cases. However, the actual role of LRRK2 in PD pathophysiology is far from understood. There is evidence that LRRK2 may be involved in alpha-synuclein (α-synuclein) pathology and immune cell regulation, but it has also been associated with inflammatory diseases such as inflammatory bowel disease, tuberculosis, leprosy, and several other bacterial infections. In this review, we focus on the different roles of LRRK2 in the periphery. More specifically, we discuss the involvement of LRRK2 in the propagation of α-synuclein pathology and its regulatory role in peripheral inflammation. A deeper understanding of the multidimensional functions of LRRK2 will pave the way for more accurate characterization of PD pathophysiology and its association with other inflammatory diseases.
Collapse
Affiliation(s)
- George Tsafaras
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Sahoo S, Padhy AA, Kumari V, Mishra P. Role of Ubiquitin-Proteasome and Autophagy-Lysosome Pathways in α-Synuclein Aggregate Clearance. Mol Neurobiol 2022; 59:5379-5407. [PMID: 35699874 DOI: 10.1007/s12035-022-02897-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/21/2022] [Indexed: 11/26/2022]
Abstract
Synuclein aggregation in neuronal cells is the primary underlying cause of synucleinopathies. Changes in gene expression patterns, structural modifications, and altered interactions with other cellular proteins often trigger aggregation of α-synuclein, which accumulates as oligomers or fibrils in Lewy bodies. Although fibrillar forms of α-synuclein are primarily considered pathological, recent studies have revealed that even the intermediate states of aggregates are neurotoxic, complicating the development of therapeutic interventions. Autophagy and ubiquitin-proteasome pathways play a significant role in maintaining the soluble levels of α-synuclein inside cells; however, the heterogeneous nature of the aggregates presents a significant bottleneck to its degradation by these cellular pathways. With studies focused on identifying the proteins that modulate synuclein aggregation and clearance, detailed mechanistic insights are emerging about the individual and synergistic effects of these degradation pathways in regulating soluble α-synuclein levels. In this article, we discuss the impact of α-synuclein aggregation on autophagy-lysosome and ubiquitin-proteasome pathways and the therapeutic strategies that target various aspects of synuclein aggregation or degradation via these pathways. Additionally, we also highlight the natural and synthetic compounds that have shown promise in alleviating the cellular damage caused due to synuclein aggregation.
Collapse
Affiliation(s)
- Subhashree Sahoo
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Amrita Arpita Padhy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Varsha Kumari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Parul Mishra
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
9
|
Chelliah SS, Bhuvanendran S, Magalingam KB, Kamarudin MNA, Radhakrishnan AK. Identification of blood-based biomarkers for diagnosis and prognosis of Parkinson's disease: A systematic review of proteomics studies. Ageing Res Rev 2022; 73:101514. [PMID: 34798300 DOI: 10.1016/j.arr.2021.101514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022]
Abstract
Parkinson's Disease (PD), a neurodegenerative disorder, is characterised by the loss of motor function and dopamine neurons. Therapeutic avenues remain a challenge due to lack of accuracy in early diagnosis, monitoring of disease progression and limited therapeutic options. Proteomic platforms have been utilised to discover biomarkers for numerous diseases, a tool that may benefit the diagnosis and monitoring of disease progression in PD patients. Therefore, this systematic review focuses on analysing blood-based candidate biomarkers (CB) identified via proteomics platforms for PD. This study systematically reviewed articles across six databases (EMBASE, Cochrane, Ovid Medline, Scopus, Science Direct and PubMed) published between 2010 and 2020. Of the 504 articles identified, 12 controlled-PD studies were selected for further analysis. A total of 115 candidate biomarkers (CB) were identified across selected 12-controlled studies, of which 23 CB were found to be replicable in more than two cohorts. Using the PANTHER Go-Slim classification system and STRING network, the gene function and protein interactions between biomarkers were analysed. Our analysis highlights Apolipoprotein A-I (ApoA-I), which is essential in lipid metabolism, oxidative stress, and neuroprotection demonstrates high replicability across five cohorts with consistent downregulation across four cohorts. Since ApoA-I was highly replicable across blood fractions, proteomic platforms and continents, its relationship with cholesterol, statin and oxidative stress as PD biomarker, its role in the pathogenesis of PD is discussed in this paper. The present study identified ApoA-I as a potential biomarker via proteomics analysis of PD for the early diagnosis and prediction of disease progression.
Collapse
Affiliation(s)
- Shalini Sundramurthi Chelliah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Saatheeyavaane Bhuvanendran
- Brain Research Institute Monash Sunway (BRIMS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Kasthuri Bai Magalingam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Muhamad Noor Alfarizal Kamarudin
- Brain Research Institute Monash Sunway (BRIMS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
10
|
Wang HL, Yeh TH, Huang YZ, Weng YH, Chen RS, Lu CS, Wei KC, Liu YC, Chen YL, Chen CL, Chen YJ, Lin YW, Hsu CC, Chiu CH, Chiu CC. Functional variant rs17525453 within RAB35 gene promoter is possibly associated with increased risk of Parkinson's disease in Taiwanese population. Neurobiol Aging 2021; 107:189-196. [PMID: 34275689 DOI: 10.1016/j.neurobiolaging.2021.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/19/2021] [Accepted: 06/13/2021] [Indexed: 11/17/2022]
Abstract
Our previous study suggests that upregulated RAB35 is implicated in etiology of Parkinson's disease (PD). We hypothesized that upregulated RAB35 results from single nucleotide polymorphisms (SNPs) in RAB35 gene promoter. We identified SNPs within RAB35 gene promoter by analyzing DNA samples of discovery cohort and validation cohort. SNP rs17525453 within RAB35 gene promoter (T>C at position of -66) was significantly associated with idiopathic PD patients. Compared to normal controls, sporadic PD patients had higher C allele frequency. CC and CT genotype significantly increased risk of PD compared with TT genotype. SNP rs17525453 within RAB35 gene promoter leads to formation of transcription factor TFII-I binding site. Results of EMSA and supershift assay indicated that TFII-I binds to rs17525453 sequence of RAB35 gene promoter. Luciferase reporter assays showed that rs17525453 variant of RAB35 gene promoter possesses an augmented transcriptional activity. Our results suggest that functional variant rs17525453 within RAB35 gene promoter is likely to enhance transcriptional activity and upregulate RAB35 protein, which could lead to increased risk of PD in Taiwanese population.
Collapse
Affiliation(s)
- Hung-Li Wang
- Department of Physiology and Pharmacology, Chang Gung University College of Medicine, Taoyuan, Taiwan; Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taiwan
| | - Ying-Zu Huang
- Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsin Weng
- Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Rou-Shayn Chen
- Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chin-Song Lu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Chuan Liu
- Landseed Sports Medicine Center, Landseed International Hospital, Taoyuan, Taiwan
| | - Ying-Ling Chen
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chao-Lang Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Jie Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yan-Wei Lin
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chia-Chen Hsu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chi-Han Chiu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ching-Chi Chiu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Small GTPases of the Rab and Arf Families: Key Regulators of Intracellular Trafficking in Neurodegeneration. Int J Mol Sci 2021; 22:ijms22094425. [PMID: 33922618 PMCID: PMC8122874 DOI: 10.3390/ijms22094425] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Small guanosine triphosphatases (GTPases) of the Rab and Arf families are key regulators of vesicle formation and membrane trafficking. Membrane transport plays an important role in the central nervous system. In this regard, neurons require a constant flow of membranes for the correct distribution of receptors, for the precise composition of proteins and organelles in dendrites and axons, for the continuous exocytosis/endocytosis of synaptic vesicles and for the elimination of dysfunctional proteins. Thus, it is not surprising that Rab and Arf GTPases have been associated with neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Both pathologies share characteristics such as the presence of protein aggregates and/or the fragmentation of the Golgi apparatus, hallmarks that have been related to both Rab and Arf GTPases functions. Despite their relationship with neurodegenerative disorders, very few studies have focused on the role of these GTPases in the pathogenesis of neurodegeneration. In this review, we summarize their importance in the onset and progression of Alzheimer’s and Parkinson’s diseases, as well as their emergence as potential therapeutical targets for neurodegeneration.
Collapse
|
12
|
Pathological Functions of LRRK2 in Parkinson's Disease. Cells 2020; 9:cells9122565. [PMID: 33266247 PMCID: PMC7759975 DOI: 10.3390/cells9122565] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are common genetic risk factors for both familial and sporadic Parkinson’s disease (PD). Pathogenic mutations in LRRK2 have been shown to induce changes in its activity, and abnormal increase in LRRK2 kinase activity is thought to contribute to PD pathology. The precise molecular mechanisms underlying LRRK2-associated PD pathology are far from clear, however the identification of LRRK2 substrates and the elucidation of cellular pathways involved suggest a role of LRRK2 in microtubule dynamics, vesicular trafficking, and synaptic transmission. Moreover, LRRK2 is associated with pathologies of α-synuclein, a major component of Lewy bodies (LBs). Evidence from various cellular and animal models supports a role of LRRK2 in the regulation of aggregation and propagation of α-synuclein. Here, we summarize our current understanding of how pathogenic mutations dysregulate LRRK2 and discuss the possible mechanisms leading to neurodegeneration.
Collapse
|
13
|
Abstract
Parkinson's disease (PD) is a leading cause of neurodegeneration that is defined by the selective loss of dopaminergic neurons and the accumulation of protein aggregates called Lewy bodies (LBs). The unequivocal identification of Mendelian inherited mutations in 13 genes in PD has provided transforming insights into the pathogenesis of this disease. The mechanistic analysis of several PD genes, including α-synuclein (α-syn), leucine-rich repeat kinase 2 (LRRK2), PTEN-induced kinase 1 (PINK1), and Parkin, has revealed central roles for protein aggregation, mitochondrial damage, and defects in endolysosomal trafficking in PD neurodegeneration. In this review, we outline recent advances in our understanding of these gene pathways with a focus on the emergent role of Rab (Ras analog in brain) GTPases and vesicular trafficking as a common mechanism that underpins how mutations in PD genes lead to neuronal loss. These advances have led to previously distinct genes such as vacuolar protein-sorting-associated protein 35 (VPS35) and LRRK2 being implicated in a common signaling pathway. A greater understanding of these common nodes of vesicular trafficking will be crucial for linking other PD genes and improving patient stratification in clinical trials underway against α-syn and LRRK2 targets.
Collapse
Affiliation(s)
- Pawan Kishor Singh
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom;
| | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom;
| |
Collapse
|
14
|
O'Hara DM, Pawar G, Kalia SK, Kalia LV. LRRK2 and α-Synuclein: Distinct or Synergistic Players in Parkinson's Disease? Front Neurosci 2020; 14:577. [PMID: 32625052 PMCID: PMC7311858 DOI: 10.3389/fnins.2020.00577] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, characterized by prominent degeneration of dopaminergic neurons in the substantia nigra and aggregation of the protein α-synuclein within intraneuronal inclusions known as Lewy bodies. Ninety percent of PD cases are idiopathic while the remaining 10% are associated with gene mutations that affect cellular functions ranging from kinase activity to mitochondrial quality control, hinting at a multifactorial disease process. Mutations in LRRK2 and SNCA (the gene coding for α-synuclein) cause monogenic forms of autosomal dominant PD, and polymorphisms in either gene are also associated with increased risk of idiopathic PD. Although Lewy bodies are a defining neuropathological feature of PD, an appreciable subset of patients with LRRK2 mutations present with a clinical phenotype indistinguishable from idiopathic PD but lack Lewy pathology at autopsy, suggesting that LRRK2-mediated PD may occur independently of α-synuclein aggregation. Here, we examine whether LRRK2 and α-synuclein, as mediators of neurodegeneration in PD, exist in common or distinct pathways. Specifically, we review evidence from preclinical models and human neuropathological studies examining interactions between the two proteins. Elucidating the degree of interplay between LRRK2 and α-synuclein will be necessary for treatment stratification once effective targeted disease-modifying therapies are developed.
Collapse
Affiliation(s)
- Darren M O'Hara
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Grishma Pawar
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Suneil K Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Wallings RL, Herrick MK, Tansey MG. LRRK2 at the Interface Between Peripheral and Central Immune Function in Parkinson's. Front Neurosci 2020; 14:443. [PMID: 32508566 PMCID: PMC7253584 DOI: 10.3389/fnins.2020.00443] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022] Open
Abstract
It is becoming increasingly accepted that there is an interplay between the peripheral immune response and neuroinflammation in the pathophysiology of Parkinson's disease (PD). Mutations in the leucine-rich-repeat kinase 2 (LRRK2) gene are associated with familial and sporadic cases of PD but are also found in immune-related disorders, such as inflammatory bowel disease (IBD) and leprosy. Furthermore, LRRK2 has been associated with bacterial infections such as Mycobacterium tuberculosis and Salmonella typhimurium. Recent evidence suggests a role of LRRK2 in the regulation of the immune system and modulation of inflammatory responses, at a systemic level, with LRRK2 functionally implicated in both the immune system of the central nervous system (CNS) and the periphery. It has therefore been suggested that peripheral immune signaling may play an important role in the regulation of neurodegeneration in LRRK2 as well as non-LRRK2-associated PD. This review will discuss the current evidence for this hypothesis and will provide compelling rationale for placing LRRK2 at the interface between peripheral immune responses and neuroinflammation.
Collapse
Affiliation(s)
- Rebecca L. Wallings
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, United States
| | - Mary K. Herrick
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, United States
- Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Malú Gámez Tansey
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
16
|
Kuwahara T, Iwatsubo T. The Emerging Functions of LRRK2 and Rab GTPases in the Endolysosomal System. Front Neurosci 2020; 14:227. [PMID: 32256311 PMCID: PMC7095371 DOI: 10.3389/fnins.2020.00227] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/02/2020] [Indexed: 12/25/2022] Open
Abstract
The leucine-rich repeat kinase 2 (LRRK2), the most common causative gene for autosomal-dominant familial Parkinson’s disease, encodes a large protein kinase harboring multiple characteristic domains. LRRK2 phosphorylates a set of Rab GTPases in cells, which is enhanced by the Parkinson-associated LRRK2 mutations. Accumulating evidence suggests that LRRK2 regulates intracellular vesicle trafficking and organelle maintenance including Golgi, endosomes and lysosomes. Furthermore, genetic knockout or inhibition of LRRK2 cause lysosomal abnormalities in rodents and primates, and cells from Parkinson’s patients with LRRK2 mutations also exhibit altered lysosome morphology. Cell biological studies on LRRK2 in a diverse cellular context further strengthen the potential connection between LRRK2 and regulation of the endolysosomal system, part of which is mediated by Rab phosphorylation by LRRK2. We will focus on the latest advances on the role of LRRK2 and Rab in relation to the endolysosomal system, and discuss the possible link to the pathomechanism of Parkinson’s disease.
Collapse
Affiliation(s)
- Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Abstract
Defects in membrane trafficking are hallmarks of neurodegeneration. Rab GTPases are key regulators of membrane trafficking. Alterations of Rab GTPases, or the membrane compartments they regulate, are associated with virtually all neuronal activities in health and disease. The observation that many Rab GTPases are associated with neurodegeneration has proven a challenge in the quest for cause and effect. Neurodegeneration can be a direct consequence of a defect in membrane trafficking. Alternatively, changes in membrane trafficking may be secondary consequences or cellular responses. The secondary consequences and cellular responses, in turn, may protect, represent inconsequential correlates or function as drivers of pathology. Here, we attempt to disentangle the different roles of membrane trafficking in neurodegeneration by focusing on selected associations with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and selected neuropathies. We provide an overview of current knowledge on Rab GTPase functions in neurons and review the associations of Rab GTPases with neurodegeneration with respect to the following classifications: primary cause, secondary cause driving pathology or secondary correlate. This analysis is devised to aid the interpretation of frequently observed membrane trafficking defects in neurodegeneration and facilitate the identification of true causes of pathology.
Collapse
|
18
|
Qu L, Pan C, He SM, Lang B, Gao GD, Wang XL, Wang Y. The Ras Superfamily of Small GTPases in Non-neoplastic Cerebral Diseases. Front Mol Neurosci 2019; 12:121. [PMID: 31213978 PMCID: PMC6555388 DOI: 10.3389/fnmol.2019.00121] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
The small GTPases from the Ras superfamily play crucial roles in basic cellular processes during practically the entire process of neurodevelopment, including neurogenesis, differentiation, gene expression, membrane and protein traffic, vesicular trafficking, and synaptic plasticity. Small GTPases are key signal transducing enzymes that link extracellular cues to the neuronal responses required for the construction of neuronal networks, as well as for synaptic function and plasticity. Different subfamilies of small GTPases have been linked to a number of non-neoplastic cerebral diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), intellectual disability, epilepsy, drug addiction, Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS) and a large number of idiopathic cerebral diseases. Here, we attempted to make a clearer illustration of the relationship between Ras superfamily GTPases and non-neoplastic cerebral diseases, as well as their roles in the neural system. In future studies, potential treatments for non-neoplastic cerebral diseases which are based on small GTPase related signaling pathways should be explored further. In this paper, we review all the available literature in support of this possibility.
Collapse
Affiliation(s)
- Liang Qu
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Chao Pan
- Beijing Institute of Biotechnology, Beijing, China
| | - Shi-Ming He
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China.,Department of Neurosurgery, Xi'an International Medical Center, Xi'an, China
| | - Bing Lang
- The School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Dong Gao
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Xue-Lian Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Yuan Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
19
|
Bonet-Ponce L, Cookson MR. The role of Rab GTPases in the pathobiology of Parkinson' disease. Curr Opin Cell Biol 2019; 59:73-80. [PMID: 31054512 DOI: 10.1016/j.ceb.2019.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/23/2022]
Abstract
Rab GTPases are key regulators of vesicle-mediated transport and are proposed to play a crucial role in the pathobiology of Parkinson's disease. As membrane trafficking seems to be a relevant pathway altered in Parkinson' disease, understanding the role of Rab GTPases in the disease progression could open a window for therapeutic interventions. In this review, we focus on the recent advances on the role of Rab GTPases in the biology of two main proteins involved in Parkinson's disease: LRRK2 and α-synuclein, given that mutations in their genes (LRRK2 and SNCA) cause familial and sporadic Parkinson's disease.
Collapse
Affiliation(s)
- Luis Bonet-Ponce
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Lin L, Shi Y, Wang M, Wang C, Zhu J, Zhang R. Rab35/ACAP2 and Rab35/RUSC2 Complex Structures Reveal Molecular Basis for Effector Recognition by Rab35 GTPase. Structure 2019; 27:729-740.e3. [PMID: 30905672 DOI: 10.1016/j.str.2019.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/03/2019] [Accepted: 02/24/2019] [Indexed: 11/16/2022]
Abstract
Rab35, a master regulator of membrane trafficking, regulates diverse cellular processes and is associated with various human diseases. Although a number of effectors have been identified, the molecular basis of Rab35-effector interactions remains unclear. Here, we provide the high-resolution crystal structures of Rab35 in complex with its two specific effectors ACAP2 and RUSC2, respectively. In the Rab35/ACAP2 complex structure, Rab35 binds to the terminal ankyrin repeat and a C-terminal extended α helix of ACAP2, revealing a previously uncharacterized binding mode both for Rabs and ankyrin repeats. In the Rab35/RUSC2 complex structure, Arg1015 of RUSC2 functions as a "pseudo-arginine finger" that stabilizes the GTP-bound Rab35, thus facilitating the assembly of Rab35/RUSC2 complex. The structural analysis allows us to design specific Rab35 mutants capable of eliminating Rab35/ACAP2 and Rab35/RUSC2 interactions, but not interfering with other effector bindings. The atomic structures also offer possible explanations to disease-associated mutants identified at the Rab35-effector interfaces.
Collapse
Affiliation(s)
- Lin Lin
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai Science Research Center, 333 Haike Road, Shanghai 201210, China
| | - Yingdong Shi
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Mengli Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Chao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jinwei Zhu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai Science Research Center, 333 Haike Road, Shanghai 201210, China.
| | - Rongguang Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai Science Research Center, 333 Haike Road, Shanghai 201210, China.
| |
Collapse
|
21
|
Wang HL, Lu CS, Yeh TH, Shen YM, Weng YH, Huang YZ, Chen RS, Liu YC, Cheng YC, Chang HC, Chen YL, Chen YJ, Lin YW, Hsu CC, Lin HL, Chiu CH, Chiu CC. Combined Assessment of Serum Alpha-Synuclein and Rab35 is a Better Biomarker for Parkinson's Disease. J Clin Neurol 2019; 15:488-495. [PMID: 31591837 PMCID: PMC6785464 DOI: 10.3988/jcn.2019.15.4.488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE It is essential to develop a reliable predictive serum biomarker for Parkinson's disease (PD). The accumulation of alpha-synuclein (αSyn) and up-regulated expression of Rab35 participate in the etiology of PD. The purpose of this investigation was to determine whether the combined assessment of serum αSyn and Rab35 is a useful predictive biomarker for PD. METHODS Serum levels of αSyn or Rab35 were determined in serum samples from 59 sporadic PD patients, 19 progressive supranuclear palsy (PSP) patients, 20 multiple system atrophy (MSA) patients, and 60 normal controls (NC). Receiver operating characteristics (ROC) curves were calculated to determine the diagnostic accuracy of αSyn or/and Rab35 in discriminating PD patients from NC or atypical parkinsonian patients. RESULTS The levels of αSyn and Rab35 were increased in PD patients. The serum level of Rab35 was positively correlated with that of αSyn in PD patients. Compared to analyzing αSyn or Rab35 alone, the combined analysis of αSyn and Rab35 produced a larger area under the ROC curve and performed better in discriminating PD patients from NC, MSA patients, or PSP patients. When age was dichotomized at 55, 60, 65, or 70 years, the combined assessment of αSyn and Rab35 for classifying PD was better in the group below the cutoff age than in the group above the cutoff age. CONCLUSIONS Combined assessment of serum αSyn and Rab35 is a better biomarker for discriminating PD patients from NC or atypical parkinsonian patients, and is a useful predictive biomarker for younger sporadic PD patients.
Collapse
Affiliation(s)
- Hung Li Wang
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chin Song Lu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tu Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu Ming Shen
- Institute for Medical Informatics, Biometrics and Epidemiology, Ludwig-Maximilians-Universität, München, Germany
| | - Yi Hsin Weng
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying Zu Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Rou Shayn Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu Chuan Liu
- Department of Sports Medicine, Landseed Hospital, Taoyuan, Taiwan
| | - Yi Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiu Chen Chang
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ying Ling Chen
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu Jie Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yan Wei Lin
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia Chen Hsu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Huang Li Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chi Han Chiu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ching Chi Chiu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
22
|
Proteomic analysis of protein homeostasis and aggregation. J Proteomics 2018; 198:98-112. [PMID: 30529741 DOI: 10.1016/j.jprot.2018.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/24/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
Protein homeostasis (proteostasis) refers to the ability of cells to preserve the correct balance between protein synthesis, folding and degradation. Proteostasis is essential for optimal cell growth and survival under stressful conditions. Various extracellular and intracellular stresses including heat shock, oxidative stress, proteasome malfunction, mutations and aging-related modifications can result in disturbed proteostasis manifested by enhanced misfolding and aggregation of proteins. To limit protein misfolding and aggregation cells have evolved various strategies including molecular chaperones, proteasome system and autophagy. Molecular chaperones assist folding of proteins, protect them from denaturation and facilitate renaturation of the misfolded polypeptides, whereas proteasomes and autophagosomes remove the irreversibly damaged proteins. The impairment of proteostasis results in protein aggregation that is a major pathological hallmark of numerous age-related disorders, such as cataract, Alzheimer's, Parkinson's, Huntington's, and prion diseases. To discover protein markers and speed up diagnosis of neurodegenerative diseases accompanied by protein aggregation, proteomic tools have increasingly been used in recent years. Systematic and exhaustive analysis of the changes that occur in the proteomes of affected tissues and biofluids in humans or in model organisms is one of the most promising approaches to reveal mechanisms underlying protein aggregation diseases, improve their diagnosis and develop therapeutic strategies. Significance: In this review we outline the elements responsible for maintaining cellular proteostasis and present the overview of proteomic studies focused on protein-aggregation diseases. These studies provide insights into the mechanisms responsible for age-related disorders and reveal new potential biomarkers for Alzheimer's, Parkinson's, Huntigton's and prion diseases.
Collapse
|
23
|
Araki M, Ito G, Tomita T. Physiological and pathological functions of LRRK2: implications from substrate proteins. Neuronal Signal 2018; 2:NS20180005. [PMID: 32714591 PMCID: PMC7373236 DOI: 10.1042/ns20180005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) encodes a 2527-amino acid (aa) protein composed of multiple functional domains, including a Ras of complex proteins (ROC)-type GTP-binding domain, a carboxyl terminal of ROC (COR) domain, a serine/threonine protein kinase domain, and several repeat domains. LRRK2 is genetically involved in the pathogenesis of both sporadic and familial Parkinson's disease (FPD). Parkinson's disease (PD) is the second most common neurodegenerative disorder, manifesting progressive motor dysfunction. PD is pathologically characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, and the presence of intracellular inclusion bodies called Lewy bodies (LB) in the remaining neurons. As the most frequent PD-causing mutation in LRRK2, G2019S, increases the kinase activity of LRRK2, an abnormal increase in LRRK2 kinase activity is believed to contribute to PD pathology; however, the precise biological functions of LRRK2 involved in PD pathogenesis remain unknown. Although biochemical studies have discovered several substrate proteins of LRRK2 including Rab GTPases and tau, little is known about whether excess phosphorylation of these substrates is the cause of the neurodegeneration in PD. In this review, we summarize latest findings regarding the physiological and pathological functions of LRRK2, and discuss the possible molecular mechanisms of neurodegeneration caused by LRRK2 and its substrates.
Collapse
Affiliation(s)
- Miho Araki
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Genta Ito
- Laboratory of Brain and Neurological Disorders, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory of Brain and Neurological Disorders, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
24
|
Bae EJ, Kim DK, Kim C, Mante M, Adame A, Rockenstein E, Ulusoy A, Klinkenberg M, Jeong GR, Bae JR, Lee C, Lee HJ, Lee BD, Di Monte DA, Masliah E, Lee SJ. LRRK2 kinase regulates α-synuclein propagation via RAB35 phosphorylation. Nat Commun 2018; 9:3465. [PMID: 30150626 PMCID: PMC6110743 DOI: 10.1038/s41467-018-05958-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 07/17/2018] [Indexed: 01/08/2023] Open
Abstract
Propagation of α-synuclein aggregates has been suggested as a contributing factor in Parkinson's disease (PD) progression. However, the molecular mechanisms underlying α-synuclein aggregation are not fully understood. Here, we demonstrate in cell culture, nematode, and rodent models of PD that leucine-rich repeat kinase 2 (LRRK2), a PD-linked kinase, modulates α-synuclein propagation in a kinase activity-dependent manner. The PD-linked G2019S mutation in LRRK2, which increases kinase activity, enhances propagation efficiency. Furthermore, we show that the role of LRRK2 in α-synuclein propagation is mediated by RAB35 phosphorylation. Constitutive activation of RAB35 overrides the reduced α-synuclein propagation phenotype in lrk-1 mutant C. elegans. Finally, in a mouse model of synucleinopathy, administration of an LRRK2 kinase inhibitor reduced α-synuclein aggregation via enhanced interaction of α-synuclein with the lysosomal degradation pathway. These results suggest that LRRK2-mediated RAB35 phosphorylation is a potential therapeutic target for modifying disease progression.
Collapse
Affiliation(s)
- Eun-Jin Bae
- Departments of Biomedical Sciences and Medicine, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Dong-Kyu Kim
- Departments of Biomedical Sciences and Medicine, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Changyoun Kim
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.,Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael Mante
- Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anthony Adame
- Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Edward Rockenstein
- Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ayse Ulusoy
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Michael Klinkenberg
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Ga Ram Jeong
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Jae Ryul Bae
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Cheolsoon Lee
- Department of Anatomy, School of Medicine, Konkuk University, Seoul, 05029, Korea
| | - He-Jin Lee
- Department of Anatomy, School of Medicine, Konkuk University, Seoul, 05029, Korea
| | - Byung-Dae Lee
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Donato A Di Monte
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Eliezer Masliah
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.,Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.,Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Seung-Jae Lee
- Departments of Biomedical Sciences and Medicine, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
25
|
Jeong GR, Jang EH, Bae JR, Jun S, Kang HC, Park CH, Shin JH, Yamamoto Y, Tanaka-Yamamoto K, Dawson VL, Dawson TM, Hur EM, Lee BD. Dysregulated phosphorylation of Rab GTPases by LRRK2 induces neurodegeneration. Mol Neurodegener 2018; 13:8. [PMID: 29439717 PMCID: PMC5811984 DOI: 10.1186/s13024-018-0240-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/06/2018] [Indexed: 12/19/2022] Open
Abstract
Background Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial and sporadic Parkinson’s disease (PD). Elevated kinase activity is associated with LRRK2 toxicity, but the substrates that mediate neurodegeneration remain poorly defined. Given the increasing evidence suggesting a role of LRRK2 in membrane and vesicle trafficking, here we systemically screened Rab GTPases, core regulators of vesicular dynamics, as potential substrates of LRRK2 and investigated the functional consequence of such phosphorylation in cells and in vivo. Methods In vitro LRRK2 kinase assay with forty-five purified human Rab GTPases was performed to identify Rab family proteins as substrates of LRRK2. We identified the phosphorylation site by tandem mass-spectrometry and confirmed it by assessing phosphorylation in the in vitro LRRK2 kinase assay and in cells. Effects of Rab phosphorylation on neurodegeneration were examined in primary cultures and in vivo by intracranial injection of adeno-associated viral vectors (AAV) expressing wild-type or phosphomutants of Rab35. Results Our screening revealed that LRRK2 phosphorylated several Rab GTPases at a conserved threonine residue in the switch II region, and by using the kinase-inactive LRRK2-D1994A and the pathogenic LRRK2-G2019S along with Rab proteins in which the LRRK2 site was mutated, we verified that a subset of Rab proteins, including Rab35, were authentic substrates of LRRK2 both in vitro and in cells. We also showed that phosphorylation of Rab regulated GDP/GTP-binding property in cells. Moreover, in primary cortical neurons, mutation of the LRRK2 site in several Rabs caused neurotoxicity, which was most severely induced by phosphomutants of Rab35. Furthermore, intracranial injection of the AAV-Rab35 -T72A or AAV-Rab35-T72D into the substantia nigra substantially induced degeneration of dopaminergic neurons in vivo. Conclusions Here we show that a subset of Rab GTPases are authentic substrates of LRRK2 both in vitro and in cells. We also provide evidence that dysregulation of Rab phosphorylation in the LRRK2 site induces neurotoxicity in primary neurons and degeneration of dopaminergic neurons in vivo. Our study suggests that Rab GTPases might mediate LRRK2 toxicity in the progression of PD. Electronic supplementary material The online version of this article (10.1186/s13024-018-0240-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ga Ram Jeong
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Eun-Hae Jang
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, South Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, South Korea.,Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| | - Jae Ryul Bae
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Soyoung Jun
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, South Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, South Korea.,Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| | - Ho Chul Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
| | | | - Joo-Ho Shin
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Single Cell Network Research Center, SungKyunKwan University School of Medicine, Suwon, South Korea
| | - Yukio Yamamoto
- Center for Functional Connectomics, KIST, Seoul, South Korea
| | - Keiko Tanaka-Yamamoto
- Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea.,Center for Functional Connectomics, KIST, Seoul, South Korea
| | - Valina L Dawson
- Neurodegeneration and Stem Cell Program, Institute for Cell Engineering and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, USA.,Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ted M Dawson
- Neurodegeneration and Stem Cell Program, Institute for Cell Engineering and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA.,Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA.,Department of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Eun-Mi Hur
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, South Korea. .,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, South Korea. .,Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea.
| | - Byoung Dae Lee
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, South Korea. .,Department of Physiology, School of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea.
| |
Collapse
|
26
|
Shi MM, Shi CH, Xu YM. Rab GTPases: The Key Players in the Molecular Pathway of Parkinson's Disease. Front Cell Neurosci 2017; 11:81. [PMID: 28400718 PMCID: PMC5369176 DOI: 10.3389/fncel.2017.00081] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/09/2017] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive movement disorder with multiple non-motor symptoms. Although family genetic mutations only account for a small proportion of the cases, these mutations have provided several lines of evidence for the pathogenesis of PD, such as mitochondrial dysfunction, protein misfolding and aggregation, and the impaired autophagy-lysosome system. Recently, vesicle trafficking defect has emerged as a potential pathogenesis underlying this disease. Rab GTPases, serving as the core regulators of cellular membrane dynamics, may play an important role in the molecular pathway of PD through the complex interplay with numerous factors and PD-related genes. This might shed new light on the potential therapeutic strategies. In this review, we emphasize the important role of Rab GTPases in vesicle trafficking and summarize the interactions between Rab GTPases and different PD-related genes.
Collapse
Affiliation(s)
- Meng-Meng Shi
- Department of Neurology, The first affiliated Hospital, Zhengzhou University Zhengzhou, China
| | - Chang-He Shi
- Department of Neurology, The first affiliated Hospital, Zhengzhou University Zhengzhou, China
| | - Yu-Ming Xu
- Department of Neurology, The first affiliated Hospital, Zhengzhou University Zhengzhou, China
| |
Collapse
|
27
|
Sheehan P, Waites CL. Coordination of synaptic vesicle trafficking and turnover by the Rab35 signaling network. Small GTPases 2017; 10:54-63. [PMID: 28129039 PMCID: PMC6343537 DOI: 10.1080/21541248.2016.1270392] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab35 and the Rab35 network of GAPs, GEFs, and effectors are important regulators of membrane trafficking for a variety of cellular processes, from cytokinesis and phagocytosis to neurite outgrowth. In the past five years, components of this signaling network have also been implicated as critical mediators of synaptic vesicle (SV) recycling and protein homeostasis. Recent studies by several groups, including our own, have demonstrated that Rab35-mediated endosomal sorting is required for the degradation of SV proteins via the ESCRT pathway, thereby eliminating old or damaged proteins from the SV pool. This sorting process is regulated by Rab35 activation in response to neuronal activity, and potentially by an antagonistic signaling relationship between Rab35 and the small GTPase Arf6 that directs SVs into distinct recycling pathways depending on neuronal activity levels. Furthermore, mutations in genes encoding Rab35 regulatory proteins are emerging as causative factors in human neurologic and neurodegenerative diseases, consistent with their important roles in synaptic and neuronal health. Here, we review these recent findings and offer our perspective on how the Rab35 signaling network functions to maintain neurotransmission and synaptic fitness.
Collapse
Affiliation(s)
- Patricia Sheehan
- a Department of Pathology and Cell Biology , Columbia University Medical Center , New York , NY , USA
| | - Clarissa L Waites
- a Department of Pathology and Cell Biology , Columbia University Medical Center , New York , NY , USA.,b Department of Neuroscience , Columbia University Medical Center , New York , NY , USA
| |
Collapse
|
28
|
Kang UB, Marto JA. Leucine-rich repeat kinase 2 and Parkinson's disease. Proteomics 2016; 17. [PMID: 27723254 DOI: 10.1002/pmic.201600092] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/13/2016] [Accepted: 10/06/2016] [Indexed: 12/21/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain protein that is expressed in many tissues and participates in numerous biological pathways. Mutations in LRRK2 are recognized as genetic risk factors for familial Parkinson's disease (PD) and may also represent causal factors in the more common sporadic form of PD. The structure of LRRK2 comprises a combination of GTPase, kinase, and scaffolding domains. This functional diversity, combined with a potentially central role in genetic and idiopathic PD motivates significant effort to further credential LRRK2 as a therapeutic target. Here, we review the current understanding for LRRK2 function in normal physiology and PD, with emphasis on insight gained from proteomic approaches.
Collapse
Affiliation(s)
- Un-Beom Kang
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jarrod A Marto
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|