1
|
Prejzner W, Piekoś O, Bełdzińska K, Sadowska-Klasa A, Zarzycka E, Bieniaszewska M, Lewandowski K, Zaucha JM. The role of daratumumab in relapsed/refractory CD38 positive acute leukemias-case report on three cases with a literature review. Front Oncol 2023; 13:1228481. [PMID: 37941558 PMCID: PMC10628456 DOI: 10.3389/fonc.2023.1228481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/16/2023] [Indexed: 11/10/2023] Open
Abstract
Primary refractory or relapsed T-cell acute lymphoblastic leukemia (T-ALL) and mixed phenotype myeloid/T-cell acute leukemia have dismal prognoses. New treatment approaches, preferably targeting specific leukemic aberrations to overcome resistance, are urgently needed. The bright expression of the CD38 antigen found in several cases of T-ALL led to an investigation into the role of anti-CD38 antibodies in the treatment of T-ALL. Here, we present three cases of resistant and relapsed T-ALL and myeloid/T-cell treated with daratumumab-based therapy, including venetoclax and bortezomib (Dara-Ven-Bor). All patients achieved complete remission, with minimal residual disease negativity within four weeks of treatment, allowing them to proceed to allogeneic hematopoietic cell transplantation. The toxicity of the triple schema was acceptable. Our patients and other cases reviewed here suggest that daratumumab combined with venetoclax and bortezomib may be a very effective and relatively safe salvage treatment, even in primary resistant T-ALL.
Collapse
Affiliation(s)
- Witold Prejzner
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdańsk, Poland
| | - Oliwia Piekoś
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdańsk, Poland
| | - Karolina Bełdzińska
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdańsk, Poland
| | - Alicja Sadowska-Klasa
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdańsk, Poland
| | - Ewa Zarzycka
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdańsk, Poland
| | - Maria Bieniaszewska
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdańsk, Poland
| | | | - Jan Maciej Zaucha
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
2
|
Li H, Zhang D, Fu Q, Wang S, Wang Z, Zhang X, Chen X, Zhu X, An N, Chen Y, Zhou L, Lu D, Zhao N. YBX1 as an oncogenic factor in T-cell acute lymphoblastic leukemia. Blood Adv 2023; 7:4874-4885. [PMID: 37339496 PMCID: PMC10469076 DOI: 10.1182/bloodadvances.2022009648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/22/2023] Open
Abstract
Y-box-binding protein 1 (YBX1), a member of the RNA-binding protein family, is a critical regulator of cell survival in various solid tumors and acute myeloid leukemia. However, the function of YBX1 in T-cell acute lymphoblastic leukemia (T-ALL) remains elusive. Here, we found that YBX1 was upregulated in patients with T-ALL, T-ALL cell lines, and NOTCH1-induced T-ALL mice. Furthermore, depletion of YBX1 dramatically reduced cell proliferation, induced cell apoptosis, and induced G0/G1 phase arrest in vitro. Moreover, YBX1 depletion significantly decreased the leukemia burden in the human T-ALL xenograft and NOTCH1-induced T-ALL mice model in vivo. Mechanistically, downregulation of YBX1 markedly inhibited the expression of total AKT serine/threonine kinase (AKT), p-AKT, total extracellular signal-regulated kinase (ERK), and p-ERK in T-ALL cells. Taken together, our results uncovered a critical role of YBX1 in the leukemogenesis of T-ALL, which may have great potential as a biomarker and therapeutic target in T-ALL.
Collapse
Affiliation(s)
- Huan Li
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, China
| | - Danlan Zhang
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Qiuxia Fu
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Shang Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Zhongyuan Wang
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Xin Zhang
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Xin Chen
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Xiaoyu Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Na An
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Yun Chen
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, China
| | - Liang Zhou
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Desheng Lu
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Na Zhao
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
3
|
Shah K, Nasimian A, Ahmed M, Al Ashiri L, Denison L, Sime W, Bendak K, Kolosenko I, Siino V, Levander F, Palm-Apergi C, Massoumi R, Lock RB, Kazi JU. PLK1 as a cooperating partner for BCL2-mediated antiapoptotic program in leukemia. Blood Cancer J 2023; 13:139. [PMID: 37679323 PMCID: PMC10484999 DOI: 10.1038/s41408-023-00914-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
The deregulation of BCL2 family proteins plays a crucial role in leukemia development. Therefore, pharmacological inhibition of this family of proteins is becoming a prevalent treatment method. However, due to the emergence of primary and acquired resistance, efficacy is compromised in clinical or preclinical settings. We developed a drug sensitivity prediction model utilizing a deep tabular learning algorithm for the assessment of venetoclax sensitivity in T-cell acute lymphoblastic leukemia (T-ALL) patient samples. Through analysis of predicted venetoclax-sensitive and resistant samples, PLK1 was identified as a cooperating partner for the BCL2-mediated antiapoptotic program. This finding was substantiated by additional data obtained through phosphoproteomics and high-throughput kinase screening. Concurrent treatment using venetoclax with PLK1-specific inhibitors and PLK1 knockdown demonstrated a greater therapeutic effect on T-ALL cell lines, patient-derived xenografts, and engrafted mice compared with using each treatment separately. Mechanistically, the attenuation of PLK1 enhanced BCL2 inhibitor sensitivity through upregulation of BCL2L13 and PMAIP1 expression. Collectively, these findings underscore the dependency of T-ALL on PLK1 and postulate a plausible regulatory mechanism.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ahmad Nasimian
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Mehreen Ahmed
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lina Al Ashiri
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Linn Denison
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Wondossen Sime
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Katerina Bendak
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Iryna Kolosenko
- Department of Laboratory Medicine, Biomolecular & Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund, Sweden
| | - Caroline Palm-Apergi
- Department of Laboratory Medicine, Biomolecular & Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ramin Massoumi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
4
|
Borin C, Pieters T, Serafin V, Ntziachristos P. Emerging Epigenetic and Posttranslational Mechanisms Controlling Resistance to Glucocorticoids in Acute Lymphoblastic Leukemia. Hemasphere 2023; 7:e916. [PMID: 37359189 PMCID: PMC10289758 DOI: 10.1097/hs9.0000000000000916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Glucocorticoids are extensively used for the treatment of acute lymphoblastic leukemia as they pressure cancer cells to undergo apoptosis. Nevertheless, glucocorticoid partners, modifications, and mechanisms of action are hitherto poorly characterized. This hampers our understanding of therapy resistance, frequently occurring in leukemia despite the current therapeutic combinations using glucocorticoids in acute lymphoblastic leukemia. In this review, we initially cover the traditional view of glucocorticoid resistance and ways of targeting this resistance. We discuss recent progress in our understanding of chromatin and posttranslational properties of the glucocorticoid receptor that might be proven beneficial in our efforts to understand and target therapy resistance. We discuss emerging roles of pathways and proteins such as the lymphocyte-specific kinase that antagonizes glucocorticoid receptor activation and nuclear translocation. In addition, we provide an overview of ongoing therapeutic approaches that sensitize cells to glucocorticoids including small molecule inhibitors and proteolysis-targeting chimeras.
Collapse
Affiliation(s)
- Cristina Borin
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| | - Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| | - Valentina Serafin
- Department of Surgery Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Italy
| | - Panagiotis Ntziachristos
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| |
Collapse
|
5
|
Le Floch AC, Rouvière MS, Salem N, Ben Amara A, Orlanducci F, Vey N, Gorvel L, Chretien AS, Olive D. Prognostic Immune Effector Signature in Adult Acute Lymphoblastic Leukemia Patients Is Dominated by γδ T Cells. Cells 2023; 12:1693. [PMID: 37443727 PMCID: PMC10340700 DOI: 10.3390/cells12131693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
The success of immunotherapy has highlighted the critical role of the immune microenvironment in acute lymphoblastic leukemia (ALL); however, the immune landscape in ALL remains incompletely understood and most studies have focused on conventional T cells or NK cells. This study investigated the prognostic impact of circulating γδ T-cell alterations using high-dimensional analysis in a cohort of newly diagnosed adult ALL patients (10 B-ALL; 9 Philadelphia+ ALL; 9 T-ALL). Our analysis revealed common alterations in CD8+ T cells and γδ T cells of relapsed patients, including accumulation of early stage differentiation and increased expression of BTLA and CD73. We demonstrated that the circulating γδ T-cell signature was the most discriminating between relapsed and disease-free groups. In addition, Vδ2 T-cell alterations strongly discriminated patients by relapse status. Taken together, these data highlight the role of ɣδ T cells in adult ALL patients, among whom Vδ2 T cells may be a pivotal contributor to T-cell immunity in ALL. Our findings provide a strong rationale for further monitoring and potentiating Vδ2 T cells in ALL, including in the autologous setting.
Collapse
Affiliation(s)
- Anne-Charlotte Le Floch
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France; (A.-C.L.F.)
- Plateforme d’Immunomonitoring, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Marie-Sarah Rouvière
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France; (A.-C.L.F.)
- Plateforme d’Immunomonitoring, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Nassim Salem
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France; (A.-C.L.F.)
- Plateforme d’Immunomonitoring, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Amira Ben Amara
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France; (A.-C.L.F.)
- Plateforme d’Immunomonitoring, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Florence Orlanducci
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France; (A.-C.L.F.)
- Plateforme d’Immunomonitoring, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Norbert Vey
- Département d’Hématologie, CRCM, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France
| | - Laurent Gorvel
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France; (A.-C.L.F.)
- Plateforme d’Immunomonitoring, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Anne-Sophie Chretien
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France; (A.-C.L.F.)
- Plateforme d’Immunomonitoring, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Daniel Olive
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France; (A.-C.L.F.)
- Plateforme d’Immunomonitoring, Institut Paoli-Calmettes, 13009 Marseille, France
| |
Collapse
|
6
|
IgD/FcδR is involved in T-cell acute lymphoblastic leukemia and regulated by IgD-Fc-Ig fusion protein. Pharmacol Res 2023; 189:106686. [PMID: 36746360 DOI: 10.1016/j.phrs.2023.106686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) has a poor prognosis as a result of severe immunosuppression and rapid tumor progression with resistance to conventional chemotherapy. Excessive IgD may play a role in T cell activation via IgD Fc receptor (FcδR). Here we aimed to investigate the effects of IgD in T-ALL and demonstrated the potential benefit by targeting IgD/FcδR in T-ALL patients with IgD-Fc-Ig fusion protein. In T-ALL patients' blood samples and cell lines, the level of IgD, the percentage of FcδR expressing cells and the binding affinity were determined by flow cytometry. T cell viability, proliferation and apoptosis were analyzed. A mouse xenograft model was used to evaluate the in vivo effect of IgD-Fc-Ig, an IgD-FcδR blocker. The levels of serum IgD and FcδR were abnormally increased in part of T-ALL patients and IgD could induce over-proliferation and inhibit apoptosis of T-ALL cells in vitro. FcδR was constitutively expressed on T-ALL cells. IgD-Fc-Ig showed similar binding affinity to FcδR and selectively blocked the stimulation effect of IgD on T-ALL cells in vitro. In vivo study exhibited that IgD-Fc-Ig may also have therapeutic benefit. IgD-Fc-Ig administration inhibited human T-ALL growth and extended survival in xenograft T-ALL mice. In conclusion, this work supports the idea of targeting IgD/FcδR in T-ALL patients with excessive IgD. IgD-Fc-Ig fusion protein might be a potential biological drug with high selectivity for T-ALL treatment.
Collapse
|
7
|
Zhang L, Zhou L, Wang Y, Li C, Liao P, Zhong L, Geng S, Lai P, Du X, Weng J. Deep learning-based transcriptome model predicts survival of T-cell acute lymphoblastic leukemia. Front Oncol 2022; 12:1057153. [DOI: 10.3389/fonc.2022.1057153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Identifying subgroups of T-cell acute lymphoblastic leukemia (T-ALL) with poor survival will significantly influence patient treatment options and improve patient survival expectations. Current efforts to predict T-ALL survival expectations in multiple patient cohorts are lacking. A deep learning (DL)-based model was developed to determine the prognostic staging of T-ALL patients. We used transcriptome sequencing data from TARGET to build a DL-based survival model using 265 T-ALL patients. We found that patients could be divided into two subgroups (K0 and K1) with significant difference (P< 0.0001) in survival rate. The more malignant subgroup was significantly associated with some tumor-related signaling pathways, such as PI3K-Akt, cGMP-PKG and TGF-beta signaling pathway. DL-based model showed good performance in a cohort of patients from our clinical center (P = 0.0248). T-ALL patients survival was successfully predicted using a DL-based model, and we hope to apply it to clinical practice in the future.
Collapse
|
8
|
Pediatric T-ALL type-1 and type-2 relapses develop along distinct pathways of clonal evolution. Leukemia 2022; 36:1759-1768. [PMID: 35585141 PMCID: PMC9252914 DOI: 10.1038/s41375-022-01587-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/08/2022]
Abstract
The mechanisms underlying T-ALL relapse remain essentially unknown. Multilevel-omics in 38 matched pairs of initial and relapsed T-ALL revealed 18 (47%) type-1 (defined by being derived from the major ancestral clone) and 20 (53%) type-2 relapses (derived from a minor ancestral clone). In both types of relapse, we observed known and novel drivers of multidrug resistance including MDR1 and MVP, NT5C2 and JAK-STAT activators. Patients with type-1 relapses were specifically characterized by IL7R upregulation. In remarkable contrast, type-2 relapses demonstrated (1) enrichment of constitutional cancer predisposition gene mutations, (2) divergent genetic and epigenetic remodeling, and (3) enrichment of somatic hypermutator phenotypes, related to BLM, BUB1B/PMS2 and TP53 mutations. T-ALLs that later progressed to type-2 relapses exhibited a complex subclonal architecture, unexpectedly, already at the time of initial diagnosis. Deconvolution analysis of ATAC-Seq profiles showed that T-ALLs later developing into type-1 relapses resembled a predominant immature thymic T-cell population, whereas T-ALLs developing into type-2 relapses resembled a mixture of normal T-cell precursors. In sum, our analyses revealed fundamentally different mechanisms driving either type-1 or type-2 T-ALL relapse and indicate that differential capacities of disease evolution are already inherent to the molecular setup of the initial leukemia. ![]()
Collapse
|
9
|
High-valency Anti-CD99 Antibodies Toward the Treatment of T Cell Acute Lymphoblastic Leukemia. J Mol Biol 2022; 434:167402. [PMID: 34958778 PMCID: PMC8897262 DOI: 10.1016/j.jmb.2021.167402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive form of leukemia that currently requires intensive chemotherapy. While childhood T-ALL is associated with high cure rates, adult T-ALL is not, and both are associated with significant short- and long-term morbidities. Thus, less toxic and effective strategies to treat T-ALL are needed. CD99 is overexpressed on T-ALL blasts at diagnosis and at relapse. Although targeting CD99 with cytotoxic antibodies has been proposed, the molecular features required for their activity are undefined. We identified human antibodies that selectively bound to the extracellular domain of human CD99, and the most potent clone, 10A1, shared an epitope with a previously described cytotoxic IgM antibody. We engineered clone 10A1 in bivalent, trivalent, tetravalent, and dodecavalent formats. Increasing the antibody valency beyond two had no effects on binding to T-ALL cells. In contrast, a valency of ≥3 was required for cytotoxicity, suggesting a mechanism of action in which an antibody clusters ≥3 CD99 molecules to induce cytotoxicity. We developed a human IgG-based tetravalent version of 10A1 that exhibited cytotoxic activity to T-ALL cells but not to healthy peripheral blood cells. The crystal structure of the 10A1 Fab in complex with a CD99 fragment revealed that the antibody primarily recognizes a proline-rich motif (PRM) of CD99 in a manner reminiscent of SH3-PRM interactions. This work further validates CD99 as a promising therapeutic target in T-ALL and defines a pathway toward the development of a selective therapy against T-ALL.
Collapse
|
10
|
Therapeutic delivery of siRNA with polymeric carriers to down-regulate STAT5A expression in high-risk B-cell acute lymphoblastic leukemia (B-ALL). PLoS One 2021; 16:e0251719. [PMID: 34157051 PMCID: PMC8219370 DOI: 10.1371/journal.pone.0251719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 05/02/2021] [Indexed: 11/19/2022] Open
Abstract
Overexpression and persistent activation of STAT5 play an important role in the development and progression of acute lymphoblastic leukemia (ALL), the most common pediatric cancer. Small interfering RNA (siRNA)-mediated downregulation of STAT5 represents a promising therapeutic approach for ALL to overcome the limitations of current treatment modalities such as high relapse rates and poor prognosis. However, to effectively transport siRNA molecules to target cells, development of potent carriers is of utmost importance to surpass hurdles of delivery. In this study, we investigated the use of lipopolymers as non-viral delivery systems derived from low molecular weight polyethylenimines (PEI) substituted with lauric acid (Lau), linoleic acid (LA) and stearic acid (StA) to deliver siRNA molecules to ALL cell lines and primary samples. Among the lipid-substituted polymers explored, Lau- and LA-substituted PEI displayed excellent siRNA delivery to SUP-B15 and RS4;11 cells. STAT5A gene expression was downregulated (36-92%) in SUP-B15 and (32%) in RS4;11 cells using the polymeric delivery systems, which consequently reduced cell growth and inhibited the formation of colonies in ALL cells. With regard to ALL primary cells, siRNA-mediated STAT5A gene silencing was observed in four of eight patient cells using our leading polymeric delivery system, 1.2PEI-Lau8, accompanied by the significant reduction in colony formation in three of eight patients. In both BCR-ABL positive and negative groups, three of five patients demonstrated marked cell growth inhibition in both MTT and trypan blue exclusion assays using 1.2PEI-Lau8/siRNA complexes in comparison with their control siRNA groups. Three patient samples did not show any positive results with our delivery systems. Differential therapeutic responses to siRNA therapy observed in different patients could result from variable genetic profiles and patient-to-patient variability in delivery. This study supports the potential of siRNA therapy and the designed lipopolymers as a delivery system in ALL therapy.
Collapse
|
11
|
Ghilu S, Kurmasheva RT, Houghton PJ. Developing New Agents for Treatment of Childhood Cancer: Challenges and Opportunities for Preclinical Testing. J Clin Med 2021; 10:jcm10071504. [PMID: 33916592 PMCID: PMC8038510 DOI: 10.3390/jcm10071504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/26/2022] Open
Abstract
Developing new therapeutics for the treatment of childhood cancer has challenges not usually associated with adult malignancies. Firstly, childhood cancer is rare, with approximately 12,500 new diagnoses annually in the U.S. in children 18 years or younger. With current multimodality treatments, the 5-year event-free survival exceeds 80%, and 70% of patients achieve long-term “cure”, hence the overall number of patients eligible for experimental drugs is small. Childhood cancer comprises many disease entities, the most frequent being acute lymphoblastic leukemias (25% of cancers) and brain tumors (21%), and each of these comprises multiple molecular subtypes. Hence, the numbers of diagnoses even for the more frequently occurring cancers of childhood are small, and undertaking clinical trials remains a significant challenge. Consequently, development of preclinical models that accurately represent each molecular entity can be valuable in identifying those agents or combinations that warrant clinical evaluation. Further, new regulations under the Research to Accelerate Cures and Equity for Children Act (RACE For Children Act) will change the way in which drugs are developed. Here, we will consider some of the limitations of preclinical models and consider approaches that may improve their ability to translate therapy to clinical trial more accurately.
Collapse
|
12
|
The effect of co-occurring lesions on leukaemogenesis and drug response in T-ALL and ETP-ALL. Br J Cancer 2019; 122:455-464. [PMID: 31792348 PMCID: PMC7028932 DOI: 10.1038/s41416-019-0647-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/14/2019] [Accepted: 10/30/2019] [Indexed: 01/27/2023] Open
Abstract
Despite advances in the management of acute lymphoblastic leukaemia (ALL), current regimens fail to significantly transform outcomes for patients with high-risk subtypes. Advances in genomic analyses have identified novel lesions including mutations in genes that encode chromatin modifiers and those that influence cytokine and kinase signalling, rendering many of these alterations potentially targetable by tyrosine kinase and epigenetic inhibitors currently in clinical use. Although specific genomic lesions, gene expression patterns, and immunophenotypic profiles have been associated with specific clinical outcomes in some cancers, the application of precision medicine approaches based on these data has been slow. This approach is complicated by the reality that patients often harbour multiple mutations, and in many cases, the precise functional significance and interaction of these mutations in driving leukaemia and drug responsiveness/resistance remains unknown. Given that signalling pathways driving leukaemic pathogenesis could plausibly result from the co-existence of specific lesions and the resultant perturbation of protein interactions, the use of combined therapeutics that target multiple aberrant pathways, according to an individual’s mutational profile, might improve outcomes and lower a patient’s risk of relapse. Here we outline the genomic alterations that occur in T cell ALL (T-ALL) and early T cell precursor (ETP)-ALL and review studies highlighting the possible effects of co-occurring lesions on leukaemogenesis and drug response.
Collapse
|
13
|
Olivas-Aguirre M, Torres-López L, Valle-Reyes JS, Hernández-Cruz A, Pottosin I, Dobrovinskaya O. Cannabidiol directly targets mitochondria and disturbs calcium homeostasis in acute lymphoblastic leukemia. Cell Death Dis 2019; 10:779. [PMID: 31611561 PMCID: PMC6791884 DOI: 10.1038/s41419-019-2024-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/22/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022]
Abstract
Anticancer properties of non-psychoactive cannabinoid cannabidiol (CBD) have been demonstrated on tumors of different histogenesis. Different molecular targets for CBD were proposed, including cannabinoid receptors and some plasma membrane ion channels. Here we have shown that cell lines derived from acute lymphoblastic leukemia of T lineage (T-ALL), but not resting healthy T cells, are highly sensitive to CBD treatment. CBD effect does not depend on cannabinoid receptors or plasma membrane Ca2+-permeable channels. Instead, CBD directly targets mitochondria and alters their capacity to handle Ca2+. At lethal concentrations, CBD causes mitochondrial Ca2+ overload, stable mitochondrial transition pore formation and cell death. Our results suggest that CBD is an attractive candidate to be included into chemotherapeutic protocols for T-ALL treatment.
Collapse
Affiliation(s)
- Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. 25 de Julio 965, Col. 28030, Colima, Mexico
| | - Liliana Torres-López
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. 25 de Julio 965, Col. 28030, Colima, Mexico
| | - Juan Salvador Valle-Reyes
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. 25 de Julio 965, Col. 28030, Colima, Mexico
| | - Arturo Hernández-Cruz
- Department of Cognitive Neuroscience and National Laboratory of Channelopathies (LaNCa), Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico-City, Mexico
| | - Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. 25 de Julio 965, Col. 28030, Colima, Mexico.
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. 25 de Julio 965, Col. 28030, Colima, Mexico.
| |
Collapse
|
14
|
Houghton PJ, Kurmasheva RT. Challenges and Opportunities for Childhood Cancer Drug Development. Pharmacol Rev 2019; 71:671-697. [PMID: 31558580 PMCID: PMC6768308 DOI: 10.1124/pr.118.016972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer in children is rare with approximately 15,700 new cases diagnosed in the United States annually. Through use of multimodality therapy (surgery, radiation therapy, and aggressive chemotherapy), 70% of patients will be "cured" of their disease, and 5-year event-free survival exceeds 80%. However, for patients surviving their malignancy, therapy-related long-term adverse effects are severe, with an estimated 50% having chronic life-threatening toxicities related to therapy in their fourth or fifth decade of life. While overall intensive therapy with cytotoxic agents continues to reduce cancer-related mortality, new understanding of the molecular etiology of many childhood cancers offers an opportunity to redirect efforts to develop effective, less genotoxic therapeutic options, including agents that target oncogenic drivers directly, and the potential for use of agents that target the tumor microenvironment and immune-directed therapies. However, for many high-risk cancers, significant challenges remain.
Collapse
Affiliation(s)
- Peter J Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health, San Antonio, Texas
| | - Raushan T Kurmasheva
- Greehey Children's Cancer Research Institute, University of Texas Health, San Antonio, Texas
| |
Collapse
|
15
|
De Smedt R, Morscio J, Goossens S, Van Vlierberghe P. Targeting steroid resistance in T-cell acute lymphoblastic leukemia. Blood Rev 2019; 38:100591. [PMID: 31353059 DOI: 10.1016/j.blre.2019.100591] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is characterized by a variable response to steroids during induction and/or consolidation therapy. Notably, recent work suggested that these differences in glucocorticoid sensitivity might, at least in part, be mediated by hyperactivation of specific oncogenic pathways such as RAS/MEK/ERK, PI3K/AKT and IL7R/JAK/STAT. In this review, we elaborate on putative associations between aberrant signaling, therapy resistance, incidence of relapse and clinical outcome in human T-ALL. Furthermore, we emphasize that this potential association with clinical parameters might also be mediated by the tumor microenvironment as a result of increased sensitivity of leukemic T-cells towards cytokine induced signaling pathway activation. With this in mind, we provide an overview of small molecule inhibitors that might have clinical potential for the treatment of human T-ALL in the near future as a result of their ability to overcome steroid resistance thereby potentially increasing survival rates in this aggressive hematological neoplasm.
Collapse
Affiliation(s)
- Renate De Smedt
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Julie Morscio
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
16
|
Chonan Y, Taki S, Sampetrean O, Saya H, Sudo R. Endothelium-induced three-dimensional invasion of heterogeneous glioma initiating cells in a microfluidic coculture platform. Integr Biol (Camb) 2018; 9:762-773. [PMID: 28752870 DOI: 10.1039/c7ib00091j] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is a highly invasive primary brain tumor that displays cellular heterogeneity, which is composed of glioma initiating cells (GICs) and their differentiated progeny. GICs play an important role in driving aggressive invasion. In particular, the interaction between GICs and blood vessels is critical because blood vessels are known to serve as routes for the invasion of GICs. However, the effect of endothelial cells on the three-dimensional (3D) invasion process of GICs as well as the spatial relationship between GICs and their differentiated progeny remains unclear. Here, we utilized a microfluidic device to recapitulate the 3D brain tumor microenvironments constituted by human umbilical vein endothelial cells (HUVECs) and type I collagen. Using the device, we found that HUVECs promoted the 3D invasion of heterogeneous glioma cell populations into type I collagen gel. The invasion induced by HUVECs was predominantly preceded by cells positive for nestin, a neural stem cell marker. In contrast, cells positive for tubulin β3 (TUBB3), a differentiated cell marker, rarely preceded invasion. In addition, HUVECs induced the upregulation of TUBB3 in GICs. Finally, we found that the genes associated with invasion, such as integrins α2 and β3, were significantly upregulated in the presence of HUVECs. These results as well as the experimental approach provide valuable knowledge for the development of effective therapeutic strategies targeting the aggressive invasion of GBM.
Collapse
Affiliation(s)
- Yuta Chonan
- Department of System Design Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | | | | | | | | |
Collapse
|
17
|
Vadillo E, Dorantes-Acosta E, Pelayo R, Schnoor M. T cell acute lymphoblastic leukemia (T-ALL): New insights into the cellular origins and infiltration mechanisms common and unique among hematologic malignancies. Blood Rev 2017; 32:36-51. [PMID: 28830639 DOI: 10.1016/j.blre.2017.08.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 02/06/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) accounts for 15% and 25% of total childhood and adult ALL cases, respectively. During T-ALL, patients are at risk of organ infiltration by leukemic T-cells. Infiltration is a major consequence of disease relapse and correlates with poor prognosis. Transendothelial migration of leukemic cells is required to exit the blood stream into target organs. While mechanisms of normal T-cell transmigration are well known, the mechanisms of leukemic T-cell extravasation remain elusive; but involvement of chemokines, integrins and Notch signaling play critical roles. Here, we summarize current knowledge about molecular mechanisms of leukemic T-cell infiltration with special emphasis on the newly identified subtype early T-cell-progenitor (ETP)-ALL. Furthermore, we compare the extravasation potential of T-ALL cells with that of other hematologic malignancies such as B-ALL and acute myeloid leukemia (AML).
Collapse
Affiliation(s)
- Eduardo Vadillo
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), 07360 Mexico City, Mexico.
| | - Elisa Dorantes-Acosta
- Leukemia Clinic, Children's Hospital of Mexico Federico Gómez, 06720 Mexico City, Mexico
| | - Rosana Pelayo
- Oncology Research Unit, National Medical Center, Mexican Institute for Social Security, 06720 Mexico City, Mexico
| | - Michael Schnoor
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), 07360 Mexico City, Mexico.
| |
Collapse
|
18
|
Yu Y, Li J, Zhu X, Tang X, Bao Y, Sun X, Huang Y, Tian F, Liu X, Yang L. Humanized CD7 nanobody-based immunotoxins exhibit promising anti-T-cell acute lymphoblastic leukemia potential. Int J Nanomedicine 2017; 12:1969-1983. [PMID: 28331319 PMCID: PMC5357075 DOI: 10.2147/ijn.s127575] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Nanobodies, named as VHHs (variable domain of heavy chain of HCAb [heavy-chain antibodies]), are derived from heavy-chain-only antibodies that circulate in sera of camelids. Their exceptional physicochemical properties, possibility of humanization, and unique antigen recognition properties make them excellent candidates for targeted delivery of biologically active components, including immunotoxins. In our previous efforts, we have successfully generated the monovalent and bivalent CD7 nanobody-based immunotoxins, which can effectively trigger the apoptosis of CD7-positive malignant cells. To pursue the possibility of translating those immunotoxins into clinics, we humanized the nanobody sequences (designated as dhuVHH6) as well as further truncated the Pseudomonas exotoxin A (PE)-derived PE38 toxin to produce a more protease-resistant form, which is named as PE-LR, by deleting majority of PE domain II. METHODS AND RESULTS Three new types of immunotoxins, dhuVHH6-PE38, dVHH6-PE-LR, and dhuVHH6-PE-LR, were successfully constructed. These recombinant immunotoxins were expressed in Escherichia coli and showed that nanobody immunotoxins have the benefits of easy soluble expression in a prokaryotic expression system. Flow cytometry results revealed that all immunotoxins still maintained the ability to bind specifically to CD7-positive T lymphocyte strains without binding to CD7-negative control cells. Laser scanning confocal microscopy revealed that these proteins can be endocytosed into the cytoplasm after binding with CD7-positive cells and that this phenomenon was not observed in CD7-negative cells. WST-8 experiments showed that all immunotoxins retained the highly effective and specific growth inhibition activity in CD7-positive cell lines and primary T-cell acute lymphoblastic leukemia (T-ALL) cells. Further in vivo animal model experiments showed that humanized dhuVHH6-PE38 immunotoxin can tolerate higher doses and extend the survival of NOD-Prkdcem26Il2rgem26Nju (NCG) mice transplanted with CEM cells without any obvious decrease in body weight. Further studies on NCG mice model with patient-derived T-ALL cells, dhuVHH6-PE38 treatment, significantly prolonged mice survival with ~40% survival improvement. However, it was also noticed that although dhuVHH6-PE-LR showed strong antitumor effect in vitro, its in vivo antitumor efficacy was disappointing. CONCLUSION We have successfully constructed a targeted CD7 molecule-modified nanobody (CD7 molecule-improved nanobody) immunotoxin dhuVHH6-PE38 and demonstrated its potential for treating CD7-positive malignant tumors, especially T-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Yuan Yu
- The Cyrus Tang Hematology Center
- Collaborative Innovation Center of Hematology, Soochow University
- Suzhou Cancer Immunotherapy and Diagnosis Engineering Center, Suzhou
| | - Jialu Li
- The Cyrus Tang Hematology Center
- Collaborative Innovation Center of Hematology, Soochow University
- Suzhou Cancer Immunotherapy and Diagnosis Engineering Center, Suzhou
| | - Xuejun Zhu
- Central Laboratory, Department of Hematology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing
| | - Xiaowen Tang
- Collaborative Innovation Center of Hematology, Soochow University
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou
| | - Yangyi Bao
- Department of Hematology-Oncology, The First People’s Hospital of Hefei, Hefei, People’s Republic of China
| | - Xiang Sun
- Department of Hematology-Oncology, The First People’s Hospital of Hefei, Hefei, People’s Republic of China
| | - Yuhui Huang
- The Cyrus Tang Hematology Center
- Collaborative Innovation Center of Hematology, Soochow University
| | - Fang Tian
- Central Laboratory, Department of Hematology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing
| | - Xiaomei Liu
- The Cyrus Tang Hematology Center
- Collaborative Innovation Center of Hematology, Soochow University
| | - Lin Yang
- The Cyrus Tang Hematology Center
- Collaborative Innovation Center of Hematology, Soochow University
- Suzhou Cancer Immunotherapy and Diagnosis Engineering Center, Suzhou
| |
Collapse
|