1
|
Srivastava P, Rai A, Kumar M. Expression profile of diagnostic genes in oral submucous fibrosis. Pathol Res Pract 2024; 260:155416. [PMID: 38944023 DOI: 10.1016/j.prp.2024.155416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Oral Submucous Fibrosis (OSMF) is a chronic precancerous disorder of the oral mucosa caused by chewing of areca nut and its other variants. Chewing of areca nuts leads to dysregulated expression of specific genes, leading to various premalignant or malignant disorders. This study aimed to determine the differential expression of the diagnostic genes (MYH6, TNNT3, MYL1, and TPM2) in healthy controls and OSMF patients using saliva and tissue samples, determining the histopathological grade of the clinical samples. A total of 20 patients were included in the study and were divided into two groups: Group I consisted of 10 healthy patients (control group) and Group II consisted of 10 OSMF patients. Unstimulated whole saliva samples were collected from both groups, and the tissue samples were divided into two parts: one for RT-qPCR analysis and the other for histopathological assay. The expression profile of genes concerning OSMF saliva and tissue samples was significantly upregulated compared to the healthy control, and all the clinical samples of the study were categorized into histopathological grade 1. The findings of this study concluded that these genes can be referred to as diagnostic genes for OSMF in early and very early clinical samples, and saliva can be used as a promising diagnostic tool for early OSMF studies.
Collapse
Affiliation(s)
- Prerna Srivastava
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Arpita Rai
- Dental Institute, Rajendra Institute of Medical Sciences, Ranchi 834009, India
| | - Manish Kumar
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India.
| |
Collapse
|
2
|
Fuster-Martínez I, Calatayud S. The current landscape of antifibrotic therapy across different organs: A systematic approach. Pharmacol Res 2024; 205:107245. [PMID: 38821150 DOI: 10.1016/j.phrs.2024.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Fibrosis is a common pathological process that can affect virtually all the organs, but there are hardly any effective therapeutic options. This has led to an intense search for antifibrotic therapies over the last decades, with a great number of clinical assays currently underway. We have systematically reviewed all current and recently finished clinical trials involved in the development of new antifibrotic drugs, and the preclinical studies analyzing the relevance of each of these pharmacological strategies in fibrotic processes affecting tissues beyond those being clinically studied. We analyze and discuss this information with the aim of determining the most promising options and the feasibility of extending their therapeutic value as antifibrotic agents to other fibrotic conditions.
Collapse
Affiliation(s)
- Isabel Fuster-Martínez
- Departamento de Farmacología, Universitat de València, Valencia 46010, Spain; FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Valencia 46020, Spain.
| | - Sara Calatayud
- Departamento de Farmacología, Universitat de València, Valencia 46010, Spain; CIBERehd (Centro de Investigación Biomédica en Red - Enfermedades Hepáticas y Digestivas), Spain.
| |
Collapse
|
3
|
Zhu L, Gou W, Ou L, Liu B, Liu M, Feng H. Role and new insights of microfibrillar-associated protein 4 in fibrotic diseases. APMIS 2024; 132:55-67. [PMID: 37957836 DOI: 10.1111/apm.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Fibrosis is one of the most worrisome complications of chronic inflammatory diseases, leading to tissue damage, organ failure, and ultimately, death. The most notable pathological characteristic of fibrosis is the excessive accumulation of extracellular matrix (ECM) components such as collagen and fibronectin adjacent to foci of inflammation or damage. The human microfibrillar-associated protein 4 (MFAP4), an important member of the superfamily of fibrinogen-related proteins, is considered to have an extremely important role in ECM transformation of fibrogenesis. This review summarizes the structure, characteristics, and physiological functions of MFAP4 and the importance of MFAP4 in various fibrotic diseases. Meanwhile, we elaborated the underlying actions and mechanisms of MFAP4 in the development of fibrosis, suggesting that a better understand of MFAP4 broadens novel perspective for early screening, diagnosis, prognostic risk assessment, and treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Long Zhu
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Changsha, China
- Xiangya Stomatological Hospital, Changsha, China
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Wenqun Gou
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Changsha, China
- Xiangya Stomatological Hospital, Changsha, China
- Xiangya School of Stomatology, Central South University, Changsha, China
- Changsha Stomatological Hospital, Changsha, China
| | - Lijia Ou
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Changsha, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Binjie Liu
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Changsha, China
- Xiangya Stomatological Hospital, Changsha, China
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Manyi Liu
- Xiangya Stomatological Hospital, Changsha, China
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Hui Feng
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Changsha, China
- Xiangya Stomatological Hospital, Changsha, China
- Xiangya School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
4
|
Shang Q, Peng J, Jiang Y, Qing M, Zhou Y, Xu H, Chen Q. SNAI2 promotes the malignant transformation of oral leukoplakia by modulating p-EMT. Oral Dis 2023; 29:3232-3242. [PMID: 35894087 DOI: 10.1111/odi.14321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Snail family transcriptional repressor 2 (SNAI2) is a key regulator of partial epithelial-mesenchymal transition (p-EMT) and is associated with tumorigenesis. Whether SNAI2 promotes oral leukoplakia (OLK) malignant transformation by modulating p-EMT is unclear. MATERIALS AND METHODS This study utilized two clinical datasets (GSE26549 and GSE85195) from the Gene Expression Omnibus database, cytological experiments, and a 4-nitroquinoline 1-oxide-induced mice model to explore the role of SNAI2 in OLK malignant transformation. RESULTS The clinical cohort found SNAI2, as a risk factor (HR = 2.50, 95% CI: 1.08-5.79, p = 0.033), could promote OLK malignant transformation (p = 0.012). Cytological experiments indicated that SNAI2 overexpression promoted DOK cell proliferation, invasion, migration, and increase the protein expression of p-EMT relative signatures, whereas SNAI2 silencing has opposite effects. Furthermore, the mice model and clinical datasets demonstrated the expression of SNAI2 and p-EMT relative signatures were increased with OLK malignant transformation. And SNAI2 was strongly correlated with p-EMT. Besides, co-expressed genes of SNAI2 were also enriched in p-EMT relative biological processes and signaling pathways. CONCLUSIONS p-EMT plays a significant role in promoting the OLK malignant transformation. As an important regulator of p-EMT, SNAI2 could be a target to block the OLK malignant transformation.
Collapse
Affiliation(s)
- Qianhui Shang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Jiakuan Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Maofeng Qing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
5
|
Xin S, Liu L, Li Y, Yang J, Zuo L, Cao P, Yan Q, Li S, Yang L, Cui T, Lu J. Cyclophilin A binds to AKT1 and facilitates the tumorigenicity of Epstein-Barr virus by mediating the activation of AKT/mTOR/NF-κB positive feedback loop. Virol Sin 2022; 37:913-921. [PMID: 36075565 PMCID: PMC9797372 DOI: 10.1016/j.virs.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/31/2022] [Indexed: 01/19/2023] Open
Abstract
The AKT/mTOR and NF-κB signalings are crucial pathways activated in cancers including nasopharyngeal carcinoma (NPC), which is prevalent in southern China and closely related to Epstein-Barr virus (EBV) infection. How these master pathways are persistently activated in EBV-associated NPC remains to be investigated. Here we demonstrated that EBV-encoded latent membrane protein 1 (LMP1) promoted cyclophilin A (CYPA) expression through the activation of NF-κB. The depletion of CYPA suppressed cell proliferation and facilitated apoptosis. CYPA was able to bind to AKT1, thus activating AKT/mTOR/NF-κB signaling cascade. Moreover, the use of mTOR inhibitor, rapamycin, subverted the activation of the positive feedback loop, NF-κB/CYPA/AKT/mTOR. It is reasonable that LMP1 expression derived from initial viral infection is enough to assure the constant potentiation of AKT/mTOR and NF-κB signalings. This may partly explain the fact that EBV serves as a tumor-promoting factor with minimal expression of the viral oncoprotein LMP1 in malignancies. Our findings provide new insight into the understanding of causative role of EBV in tumorigenicity during latent infection.
Collapse
Affiliation(s)
- Shuyu Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, China,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Lingzhi Liu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, China,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Yanling Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Jing Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Lielian Zuo
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Pengfei Cao
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Qijia Yan
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Shen Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Li Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Taimei Cui
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Jianhong Lu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, China,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China,Corresponding author.
| |
Collapse
|
6
|
Yang W, Bai X, Luan X, Min J, Tian X, Li H, Li H, Sun W, Liu W, Fan W, Liu W, Sun L. Delicate regulation of IL-1β-mediated inflammation by cyclophilin A. Cell Rep 2022; 38:110513. [PMID: 35294882 DOI: 10.1016/j.celrep.2022.110513] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 01/12/2023] Open
Abstract
The inflammatory response is tightly regulated, but its regulatory principles are still incompletely understood. Cyclophilin A (CypA) has long been considered as a pro-inflammatory factor. Here, we discover how CypA precisely regulates interleukin-1β (IL-1β)-mediated inflammatory responses. In lipopolysaccharide-treated mice, CypA deficiency initially inhibits and then promotes lung inflammation, which is closely related to IL-1β production. Mechanistically, CypA not only facilitates pro-IL-1β processing by increasing Smurf1-mediated K63-linked ubiquitination in an ATP-dependent manner but also accelerates pro-IL-1β degradation, depending on Smurf1-mediated K48-linked ubiquitination. Moreover, in IL-1β-treated mice, CypA exacerbates lung injury by enhancing cytokine production. It also upregulates the ILK/AKT pathway by inhibiting Cyld-mediated K63-linked ILK deubiquitination, which promotes the epithelial-mesenchymal transition (EMT) to facilitate lung repair. Collectively, CypA promotes inflammation activation by increasing IL-1β production and then promotes inflammation resolution by enhancing redundant pro-IL-1β degradation and IL-1β-induced EMT, indicating the complex and delicate regulation of inflammatory response.
Collapse
Affiliation(s)
- Wenxian Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyuan Bai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohan Luan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Min
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Tian
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Heqiao Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqiang Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing 100101, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangdong 518107, China.
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Integrated Proteomics Based on 2D Gel Electrophoresis and Mass Spectrometry with Validations: Identification of a Biomarker Compendium for Oral Submucous Fibrosis—An Indian Study. J Pers Med 2022; 12:jpm12020208. [PMID: 35207696 PMCID: PMC8878868 DOI: 10.3390/jpm12020208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
Oral Submucous Fibrosis (OSMF) is a chronic debilitating disease more frequently found in the South East Asian population. This disease poses a public health priority, as it is grouped under oral potentially malignant disorders, with malignant transformation rates of around 7 to 13%. Hence, early identification of high-risk OSMF patients is of the utmost importance to prevent malignant transformation. Proteomic expression profiling is a promising method for identifying differentially expressed proteins for disease prognosis and risk stratification in OSMF. In this study, overexpressed proteins in OSMF, OSMF transformed into oral squamous cell carcinoma (OSCC) and normal tissues were evaluated by proteomic analysis using two-dimensional electrophoresis (2DE) and mass spectrometry, which revealed 23 upregulated proteins. Validation was done using immunohistochemistry for three secretory proteins, namely 14-3-3ε (n = 130), carbonic anhydrase 1 (CA 1) (n = 125) and heat shock protein 70 (HSP 70) (n = 117), which showed significant overexpression in OSMF, OSCC compared to normal. The present study is the first of its kind in India to the best of our knowledge, assessing the altered expression of proteins in OSMF and OSMF which has undergone malignant transformation, obtaining a better knowledge of the molecular pathways involved in the disease progression. The current study shows that the biomarkers studied can be potentially useful for risk stratification of OSMF to OSCC serving as novel targets for therapeutic intervention. Clinical validation of the targets can further pave way for precision medicine to improve the quality of life in OSMF patients.
Collapse
|
8
|
Kavitha L, Ranganathan K, Shyam S, Fathima JHS, Umesh W, Warnakulasuriya S. Immunohistochemical Biomarkers in Oral Submucous Fibrosis - A Scoping Review. J Oral Pathol Med 2022; 51:594-602. [PMID: 35102645 DOI: 10.1111/jop.13280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/19/2021] [Accepted: 01/04/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION This scoping review was done to study the immunohistochemical biomarkers involved in pathogenesis and malignant transformation (MT) of oral submucous fibrosis (OSF), in literature published from 2010 to 2021. METHOD The protocol was adapted from the Joanna Briggs Institute Reviewer's Manual (2017, and reported according to the PRISMA guidelines for Scoping Reviews (PRISMA-ScR). RESULTS Eighty-six studies included in this review reported 84 immunohistochemical (IHC) biomarkers in OSF: 9 epithelial markers, 29 connective tissue markers, 22 proliferative markers, and 24 other biomarkers that are transcription factors, cancer stem cell markers, cell signaling markers, proteins, and enzymes. The commonly reported IHC biomarkers were alpha-smooth muscle actin (α-SMA) and E-cadherin (7 articles each) followed by vascular endothelial growth factor (VEGF) and CD34 (6 articles each), p53, p63 and Ki67 (5 articles each). α-SMA, Ki67, CD105, and hTERT were significantly increased in oral squamous cell carcinoma arising in a background of OSF (OSCC-OSF) compared to OSF and normal subjects. CONCLUSION The identified surrogate IHC biomarkers reported in OSF in this scoping review require validation with long-term prospective studies to facilitate early diagnosis, for use in risk assessment, and plan appropriate treatment for OSF in clinical practice.
Collapse
Affiliation(s)
- Loganathan Kavitha
- Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospital, ECR, Uthandi, Chennai, 600119, Tamil Nadu, India.,Affiliated to The Tamil Nadu Dr, MGR Medical University, Guindy, Chennai, 600032, Tamil Nadu, India
| | - Kannan Ranganathan
- Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospital, ECR, Uthandi, Chennai, 600119, Tamil Nadu, India.,Affiliated to The Tamil Nadu Dr, MGR Medical University, Guindy, Chennai, 600032, Tamil Nadu, India
| | - Sivasamy Shyam
- Faculty of Dentistry - Meenakshi Academy of Higher Education and Research, Alapakkam Main Rd, Maduravoyal, Chennai, Tamil Nadu, 600095, India
| | - Jaffer Hussain Shazia Fathima
- Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospital, ECR, Uthandi, Chennai, 600119, Tamil Nadu, India.,Affiliated to The Tamil Nadu Dr, MGR Medical University, Guindy, Chennai, 600032, Tamil Nadu, India
| | - Wadgave Umesh
- Department of Public Health Dentistry, ESIC Dental College, Kalaburagi, Karnataka, 585102, India
| | - Saman Warnakulasuriya
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, WHO Collaborating Centre for Oral Cancer, London, United Kingdom
| |
Collapse
|
9
|
Liu B, Gou W, Feng H. Pathological investigations and correlation research of microfibrillar-associated protein 4 and tropoelastin in oral submucous fibrosis. BMC Oral Health 2021; 21:588. [PMID: 34798886 PMCID: PMC8603475 DOI: 10.1186/s12903-021-01962-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Background Oral submucous fibrosis (OSF), distinguished by abnormal collagen deposition, is a potentially malignant disorder with 4.2% (95% CI 2.7–5.6%) of malignant transformation and rising global prevalence. However, the precise pathogenesis and effective treatment remain elusive and controversial despite the abundance of literature on this topic. Therefore, it is crucial to explore the clinicopathological characteristics and potential markers for the diagnosis and prognosis of OSF. The objective of this study was to evaluate the influence and correlation of Microfibrillar-associated protein 4 (MFAP4) and tropoelastin (TE) in the development of OSF patients. Material and methods Clinicopathological factors, hematoxylin–eosin (HE) and Masson trichome staining, immunohistochemical characteristics and the correlation between MFAP4 and TE were recorded and compared among different stages of OSF progression among cases (n = 60) and controls (n = 10). Student's t test, ANOVA analysis, and the chi-square test were performed to compare the categorical variables for clinicopathological characteristics and the expression level of MFAP4 and TE between the fibrotic and normal tissues. Correlation analysis of MFAP4 and TE was performed using Pearson's correlation test and linear regression. Results MFAP4 and TE proteins are upregulated and increased gradually in patients with varying stages of OSF, relative to the control group. Furthermore, statistical analyses revealed that the expression level of MFAP4 was positively associated with TE, with a Pearson correlation coefficient of 0.3781 (p = 0.0048). Clinically, we found that OSF affected more males than females, with a ratio of 29:1. The age range was 16–60 years, and the mean age was 36.25 ± 10.25 years. In patients younger than 40 years, the positive expression rate of MFAP4 and TE was higher than in those over 40 years. All OSF cases had chewed areca nut, with 51.67% smoking tobacco. Conclusions Our study elucidates that the accumulation of MFAP4 and TE proteins may play a vital role in the occurrence and development of OSF and may be promising candidate moleculars for prevention, diagnosis, and treatment strategies for OSF in the future.
Collapse
Affiliation(s)
- Binjie Liu
- Department of Oral Medicine, Xiangya Stomalogical Hospital, Central South University, Changsha, China
| | - Wenqun Gou
- Department of Oral Medicine, Xiangya Stomalogical Hospital, Central South University, Changsha, China.,Changsha Stomatological Hospital, Changsha, China
| | - Hui Feng
- Department of Oral Medicine, Xiangya Stomalogical Hospital, Central South University, Changsha, China.
| |
Collapse
|
10
|
Singh AG, Roy S, Oza S, Singhavi H, Chatterjee K, Chaturvedi P. A contemporary narrative review to guide molecular epidemiology of oral submucous fibrosis. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2021; 12:61-70. [PMID: 34552689 PMCID: PMC8449189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Oral submucous Fibrosis (OSMF) is a chronic disease that mainly affects the upper part of the aerodigestive tract. Areca nut and betel quid chewing has been established as the most significant causative factor for this condition. While OSMF is a predominantly Asian disease, the migrant populations from the region have taken the disease across the globe. Additionally, areca nut is now easily accessible in flavors and aggressively marketed. Many research activities have been undertaken for decades to understand the etiopathogenesis and risk factors of OSMF. Although OSMF is a slowly progressing disease, it has the potential to transform to an oral malignancy. This article is an attempt to review the literature and provide an update on its prevalence, etiopthogenesis and its diagnosis. We also highlight certain clinical, histopathological and molecular features that aid in the diagnosis and prognostication of OSMF, highlighting the importance of identifying the possibly high risk OSMF that is prone to malignant transformation. Using this information, future directions can be developed to include treatmentof OSMF through a dynamic gene-specific approach.
Collapse
|
11
|
Xia XY, Fang F, Liu Y, Che C, Ke JJ, Jiang SJ. [Expression of cyclophilin A in oral squamous cell carcinoma and its effect on cell proliferation and invasion]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:164-169. [PMID: 33834670 DOI: 10.7518/hxkq.2021.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVES To investigate the expression of cyclophilin A (CyPA) in oral squamous cell carcinoma (OSCC) and explore the effect of downregulating the expression of CyPA gene on the proliferation and invasion of SCC-25 cells. METHODS A total of 77 cases of patients with OSCC were selected. The expression levels of CyPA proteins in OSCC and adjacent normal tissues were evaluated. SCC-25 cells were cultured and divided into the CyPA interference sequence group, negative control group, and blank group. The expression levels of CyPA mRNA and protein in cells were detected by using real-time fluorescent quantitative polymerase chain reaction and Western blot, respectively. Cell proliferation was detected by using methyl thiazolyl tetrazolium and plate colony formation assays. Cell invasion was detected by using Transwell assay. RESULTS The positive expression rate of CyPA protein in OSCC tissues was 76.62%, which was higher than that in adjacent tissues (P<0.05). The positive expression rate of CyPA protein in TNM stage T3+T4, clinical stage Ⅲ+Ⅳ, moderately or poorly differentiated lymph node metastasis was increased (P<0.05). Compared with the negative control and blank groups, the CyPA interference sequence group had decreased relative expression levels of CyPA mRNA and protein (P<0.05); optical density va-lues of cells at 24, 48, 72, and 96 h (P<0.05); and number of cell colonies and invasive cells (P<0.05). CONCLUSIONS The CyPA protein is highly expressed in OSCC tissues, and the downregulation of CyPA gene expression in SCC-25 cells can reduce cell proliferation and inhibit cell invasion.
Collapse
Affiliation(s)
- Xiao-Yang Xia
- Dept. of Stomatology, Hubei Integrated Traditional Chinese and Western Medicine Hospital, Wuhan 430015, China
| | - Fei Fang
- Dept. of Stomatology, Hubei Integrated Traditional Chinese and Western Medicine Hospital, Wuhan 430015, China
| | - Yan Liu
- Dept. of Stomatology, Hubei Integrated Traditional Chinese and Western Medicine Hospital, Wuhan 430015, China
| | - Chao Che
- Dept. of Stomatology, Hubei Integrated Traditional Chinese and Western Medicine Hospital, Wuhan 430015, China
| | - Jin-Juan Ke
- Dept. of Stomatology, Hubei Integrated Traditional Chinese and Western Medicine Hospital, Wuhan 430015, China
| | - Sheng-Jun Jiang
- Dept. of Stomatology, Wuhan University People,s Hospital, Wuhan 430060, China
| |
Collapse
|
12
|
Hao Y, Xiao Y, Liao X, Tang S, Xie X, Liu R, Chen Q. FGF8 induces epithelial-mesenchymal transition and promotes metastasis in oral squamous cell carcinoma. Int J Oral Sci 2021; 13:6. [PMID: 33649301 PMCID: PMC7921665 DOI: 10.1038/s41368-021-00111-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/05/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide, and with 354 864 new cases each year. Cancer metastasis, recurrence, and drug resistance are the main causes to cripples and deaths of OSCC patients. As potent growth factors, fibroblast growth factors (FGFs) are frequently susceptible to being hijacked by cancer cells. In this study, we show that FGF8 is upregulated in OSCC tissues and high FGF8 expression is related with a set of clinicopathologic parameters, including age, drinking, and survival time. FGF8 treatment enhances the invasive capability of OSCC cells. Lentivirus-based FGF8 expression promotes OSCC metastasis in a mouse lung metastasis model. Further, mechanistic study demonstrates that FGF8 induces epithelial-mesenchymal transition (EMT) in OSCC cells. These results highlight a pro-metastatic function of FGF8, and underscore the role of FGF8 in OSCC development.
Collapse
Affiliation(s)
- Yilong Hao
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China.,State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanxuan Xiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyu Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuya Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Shen YW, Shih YH, Fuh LJ, Shieh TM. Oral Submucous Fibrosis: A Review on Biomarkers, Pathogenic Mechanisms, and Treatments. Int J Mol Sci 2020; 21:ijms21197231. [PMID: 33008091 PMCID: PMC7582467 DOI: 10.3390/ijms21197231] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023] Open
Abstract
Oral submucous fibrosis (OSF) is a collagen deposition disorder that affects a patient’s oral function and quality of life. It may also potentially transform into malignancy. This review summarizes the risk factors, pathogenic mechanisms, and treatments of OSF based on clinical and bio-molecular evidence. Betel nut chewing is a major risk factor that causes OSF in Asia. However, no direct evidence of arecoline-induced carcinogenesis has been found in animal models. Despite identification of numerous biomarkers of OSF lesions and conducting trials with different drug combinations, clinicians still adopt conservative treatments that primarily focus on relieving the symptoms of OSF. Treatments focus on reducing inflammation and improving mouth opening to improve a patient’s quality of life. In conclusion, high-quality clinical studies are needed to aid clinicians in developing and applying molecular biomarkers as well as standard treatment guidelines.
Collapse
Affiliation(s)
- Yen-Wen Shen
- School of Dentistry, China Medical University, Taichung 40402, Taiwan;
- Department of Dentistry, China Medical University Hospital, Taichung City 404332, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan;
| | - Lih-Jyh Fuh
- School of Dentistry, China Medical University, Taichung 40402, Taiwan;
- Department of Dentistry, China Medical University Hospital, Taichung City 404332, Taiwan
- Correspondence: (L.-J.F.); (T.-M.S.); Tel.: +88-642-205-3366 (ext. 2312) (L.-J.F.); +88-642-205-3366 (ext. 7707) (T.-M.S.)
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 40402, Taiwan;
- Department of Dental Hygiene, China Medical University, Taichung 40402, Taiwan
- Correspondence: (L.-J.F.); (T.-M.S.); Tel.: +88-642-205-3366 (ext. 2312) (L.-J.F.); +88-642-205-3366 (ext. 7707) (T.-M.S.)
| |
Collapse
|
14
|
Wang Y, Liu G, Zhang J, Zhu L, Yu J, Zhu S, Lv F, Peng B. Overexpression of Cyclophilin A in Human Periapical Lesions. J Endod 2019; 45:1496-1503. [DOI: 10.1016/j.joen.2019.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 08/04/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
|
15
|
Oral Submucous Fibrosis: A Review on Etiopathogenesis, Diagnosis, and Therapy. Int J Mol Sci 2019; 20:ijms20122940. [PMID: 31208114 PMCID: PMC6627879 DOI: 10.3390/ijms20122940] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/24/2022] Open
Abstract
Oral submucous fibrosis (OSF) is characterized by abnormal collagen deposition. It is a precancerous disorder and transforms into a malignant tumor in 1.5–15% of all cases. Symptoms include submucous fibrosis, ulceration, xerostomia, a burning sensation, and restricted mouth opening. All of these greatly interfere with patient quality of life. The present review introduces OSF from a molecular perspective and summarizes what is known about its underlying mechanisms, diagnostic biomarkers, and therapeutic interventions. In addition to the aggressive treatment of OSF, its prevention is also important. Future research should, therefore, focus on improving the oral health literacy of the patients susceptible to OSF.
Collapse
|
16
|
Positive Correlation between Activated CypA/CD147 Signaling and MMP-9 Expression in Mice Inflammatory Periapical Lesion. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8528719. [PMID: 30949512 PMCID: PMC6425416 DOI: 10.1155/2019/8528719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/04/2019] [Accepted: 01/13/2019] [Indexed: 02/07/2023]
Abstract
Aim Cyclophilin A (CypA)/CD147 signaling plays critical roles in the regulation of inflammation and bone metabolism. This study aimed to investigate the participation of CypA/CD147 in mice periapical lesions progression and its relationship with bone resorption. Methodology Periapical lesions were induced by pulp exposure in the first lower molars of 40 C57BL/6J mice. The mice were sacrificed on days 0, 7, 14, 21, 28, 35, 42, and 49. Mandibles were harvested for X-ray imaging, microcomputed tomography scanning, histologic observation, immunohistochemistry, enzyme histochemistry, and double immunofluorescence analysis. Western blot was employed to further detect the related molecular signaling pathways in LPS-stimulated RAW 264.7 cells treated with CypA inhibitor. Results The volume and area of the periapical lesions increased from day 0 to day 35 and remained comparably stable until day 49. Immunohistochemistry demonstrated that the CypA expression levels also increased from day 0 to day 35 and decreased until day 49, similar to CD147 expression (R2 = 0.4423, P < 0.05), osteoclast number (R2 = 0.5101, P < 0.01), and the expression of osteoclastogenesis-related matrix metalloproteinase 9 (MMP-9) (R2 = 0.4715, P < 0.05). Serial sections further confirmed the colocalization of CypA and CD147 on osteoclasts with immunohistochemistry. And the distribution of CypA-positive or CD147-positive cells was positively correlated with the dynamics of MMP-9-positive cells by using immunofluorescence analysis. Furthermore, CD147 and MMP-9 expression in RAW 264.7 cells were both downregulated with CypA inhibitor treatment (P < 0.05). Conclusions The present study reveals the positive correlation of CypA/CD147 signaling and osteoclast-related MMP-9 expression in mice inflammatory periapical lesions progression. Therefore, intervention of CypA/CD147 signaling could probably provide a potential therapeutic target for attenuating inflammatory bone resorption.
Collapse
|