1
|
Jin M, Zhao L, Yang H, Zhao J, Ma H, Chen Y, Zhang J, Luo Y, Zhang Y, Liu J. A long non-coding RNA essential for early embryonic development improves somatic cell nuclear transfer somatic cell nuclear transfer efficiency in goats. Reproduction 2023; 166:285-297. [PMID: 37490350 PMCID: PMC10502959 DOI: 10.1530/rep-23-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
In brief Early embryonic development in goats is a complex and an important process. This study identified a novel long non-coding RNA (lncRNA), lncRNA3720, that appears to affect early embryonic development in goats through histone variants. Abstract Although abundant lncRNAs have been found to be highly expressed in early embryos, the functions and mechanisms of most lncRNAs in regulating embryonic development remain unclear. This study was conducted to identify the key lncRNAs during embryonic genome activation (EGA) for promoting embryonic development after somatic cell nuclear transfer (SCNT) in goats. We screened and characterized lncRNAs from transcriptome data of in vitro-fertilized, two-cell (IVF-2c) and eight-cell embryos (IVF-8c) and eight-cell SCNT embryos (SCNT-8c). We obtained 12 differentially expressed lncRNAs that were highly expressed in IVF-8c embryos compared to IVF-2c and less expressed in SCNT-8c embryos. After target gene prediction, expression verification, and functional deletion experiments, we found that the expression level of lncRNA3720 affected the early embryonic development in goats. We cloned full-length lncRNA3720 and over-expressed it in goat fetal fibroblasts (GFFs). We identified histone variants by analyzing the transcriptome data from both GFFs and embryos. Gene annotation of the gene library and the literature search revealed that histone variants may have important roles in early embryo development, so we selected them as the potential target genes for lncRNA3720. Lastly, we compensated for the low expression of lncRNA3720 in SCNT embryos by microinjection and showed that the development rate and quality of SCNT embryos were significantly improved. We speculate that lncRNA3720 is a key promoter of embryonic development in goats by interacting with histone variants.
Collapse
Affiliation(s)
- Miaomiao Jin
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Lu Zhao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Hanwen Yang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jianglin Zhao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Hongwei Ma
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yanzhi Chen
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jingcheng Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yan Luo
- College of Animal Engineering, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Paloviita P, Vuoristo S. The non-coding genome in early human development - Recent advancements. Semin Cell Dev Biol 2022; 131:4-13. [PMID: 35177347 DOI: 10.1016/j.semcdb.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022]
Abstract
Not that long ago, the human genome was discovered to be mainly non-coding, that is comprised of DNA sequences that do not code for proteins. The initial paradigm that non-coding is also non-functional was soon overturned and today the work to uncover the functions of non-coding DNA and RNA in human early embryogenesis has commenced. Early human development is characterized by large-scale changes in genomic activity and the transcriptome that are partly driven by the coordinated activation and repression of repetitive DNA elements scattered across the genome. Here we provide examples of recent novel discoveries of non-coding DNA and RNA interactions and mechanisms that ensure accurate non-coding activity during human maternal-to-zygotic transition and lineage segregation. These include studies on small and long non-coding RNAs, transposable element regulation, and RNA tailing in human oocytes and early embryos. High-throughput approaches to dissect the non-coding regulatory networks governing early human development are a foundation for functional studies of specific genomic elements and molecules that has only begun and will provide a wider understanding of early human embryogenesis and causes of infertility.
Collapse
Affiliation(s)
- Pauliina Paloviita
- Department of Obstetrics and Gynaecology, University of Helsinki, 00014 Helsinki, Finland
| | - Sanna Vuoristo
- Department of Obstetrics and Gynaecology, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
3
|
Jia Y, Liu L, Gong S, Li H, Zhang X, Zhang R, Wang A, Jin Y, Lin P. Hand2os1 Regulates the Secretion of Progesterone in Mice Corpus Luteum. Vet Sci 2022; 9:vetsci9080404. [PMID: 36006319 PMCID: PMC9415164 DOI: 10.3390/vetsci9080404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
The corpus luteum plays a key role in pregnancy maintenance and estrous cycle regulation by secreting progesterone. Hand2os1 is an lncRNA located upstream of Hand2, with which a bidirectional promoter is shared and is involved in the regulation of cardiac development and embryo implantation in mice. The aim of this study was to investigate the expression and regulation of Hand2os1 in the ovaries. Here, we used RNAscope to detect differential expression of Hand2os1 in the ovaries of cycling and pregnant mice. Hand2os1 was specifically detected in luteal cells during the proestrus and estrus phases, showing its highest expression in the corpus luteum at estrus. Additionally, Hand2os1 was strongly expressed in the corpus luteum on day 4 of pregnancy, but the positive signal progressively disappeared after day 8, was detected again on day 18, and gradually decreased after delivery. Hand2os1 significantly promoted the synthesis of progesterone and the expression of StAR and Cyp11a1. The decreased progesterone levels caused by Hand2os1 interference were rescued by the overexpression of StAR. Our findings suggest that Hand2os1 may regulate the secretion of progesterone in the mouse corpus luteum by affecting the key rate-limiting enzyme StAR, which may have an impact on the maintenance of pregnancy.
Collapse
Affiliation(s)
- Yanni Jia
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Y.J.); (L.L.); (S.G.); (H.L.); (X.Z.); (R.Z.); (A.W.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
| | - Lu Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Y.J.); (L.L.); (S.G.); (H.L.); (X.Z.); (R.Z.); (A.W.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
| | - Suhua Gong
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Y.J.); (L.L.); (S.G.); (H.L.); (X.Z.); (R.Z.); (A.W.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
| | - Haijing Li
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Y.J.); (L.L.); (S.G.); (H.L.); (X.Z.); (R.Z.); (A.W.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
| | - Xinyan Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Y.J.); (L.L.); (S.G.); (H.L.); (X.Z.); (R.Z.); (A.W.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
| | - Ruixue Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Y.J.); (L.L.); (S.G.); (H.L.); (X.Z.); (R.Z.); (A.W.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Y.J.); (L.L.); (S.G.); (H.L.); (X.Z.); (R.Z.); (A.W.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Y.J.); (L.L.); (S.G.); (H.L.); (X.Z.); (R.Z.); (A.W.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
- Correspondence: (Y.J.); (P.L.)
| | - Pengfei Lin
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Y.J.); (L.L.); (S.G.); (H.L.); (X.Z.); (R.Z.); (A.W.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
- Correspondence: (Y.J.); (P.L.)
| |
Collapse
|
4
|
Qiu J, Ma X, Zeng F, Yan J. RNA editing regulates lncRNA splicing in human early embryo development. PLoS Comput Biol 2021; 17:e1009630. [PMID: 34851956 PMCID: PMC8668112 DOI: 10.1371/journal.pcbi.1009630] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 12/13/2021] [Accepted: 11/11/2021] [Indexed: 01/13/2023] Open
Abstract
RNA editing is a co- or post-transcriptional modification through which some cells can make discrete changes to specific nucleotide sequences within an RNA molecule after transcription. Previous studies found that RNA editing may be critically involved in cancer and aging. However, the function of RNA editing in human early embryo development is still unclear. In this study, through analyzing single cell RNA sequencing data, 36.7% RNA editing sites were found to have a have differential editing ratio among early embryo developmental stages, and there was a great reprogramming of RNA editing rates at the 8-cell stage, at which most of the differentially edited RNA editing sites (99.2%) had a decreased RNA editing rate. In addition, RNA editing was more likely to occur on RNA splicing sites during human early embryo development. Furthermore, long non-coding RNA (lncRNA) editing sites were found more likely to be on RNA splicing sites (odds ratio = 2.19, P = 1.37×10-8), while mRNA editing sites were less likely (odds ratio = 0.22, P = 8.38×10-46). Besides, we found that the RNA editing rate on lncRNA had a significantly higher correlation coefficient with the percentage spliced index (PSI) of lncRNA exons (R = 0.75, P = 4.90×10-16), which indicated that RNA editing may regulate lncRNA splicing during human early embryo development. Finally, functional analysis revealed that those RNA editing-regulated lncRNAs were enriched in signal transduction, the regulation of transcript expression, and the transmembrane transport of mitochondrial calcium ion. Overall, our study might provide a new insight into the mechanism of RNA editing on lncRNAs in human developmental biology and common birth defects.
Collapse
Affiliation(s)
- Jiajun Qiu
- Shanghai Children’s Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University, Shanghai, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Xiao Ma
- Group of Signal Transduction, Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Fanyi Zeng
- Shanghai Children’s Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University, Shanghai, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Jingbin Yan
- Shanghai Children’s Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University, Shanghai, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| |
Collapse
|
5
|
Building Pluripotency Identity in the Early Embryo and Derived Stem Cells. Cells 2021; 10:cells10082049. [PMID: 34440818 PMCID: PMC8391114 DOI: 10.3390/cells10082049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
The fusion of two highly differentiated cells, an oocyte with a spermatozoon, gives rise to the zygote, a single totipotent cell, which has the capability to develop into a complete, fully functional organism. Then, as development proceeds, a series of programmed cell divisions occur whereby the arising cells progressively acquire their own cellular and molecular identity, and totipotency narrows until when pluripotency is achieved. The path towards pluripotency involves transcriptome modulation, remodeling of the chromatin epigenetic landscape to which external modulators contribute. Both human and mouse embryos are a source of different types of pluripotent stem cells whose characteristics can be captured and maintained in vitro. The main aim of this review is to address the cellular properties and the molecular signature of the emerging cells during mouse and human early development, highlighting similarities and differences between the two species and between the embryos and their cognate stem cells.
Collapse
|
6
|
The evolutionary acquisition and mode of functions of promoter-associated non-coding RNAs (pancRNAs) for mammalian development. Essays Biochem 2021; 65:697-708. [PMID: 34328174 DOI: 10.1042/ebc20200143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/13/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Increasing evidence has shown that many long non-coding RNAs (lncRNAs) are involved in gene regulation in a variety of ways such as transcriptional, post-transcriptional and epigenetic regulation. Promoter-associated non-coding RNAs (pancRNAs), which are categorized into the most abundant single-copy lncRNA biotype, play vital regulatory roles in finely tuning cellular specification at the epigenomic level. In short, pancRNAs can directly or indirectly regulate downstream genes to participate in the development of organisms in a cell-specific manner. In this review, we will introduce the evolutionarily acquired characteristics of pancRNAs as determined by comparative epigenomics and elaborate on the research progress on pancRNA-involving processes in mammalian embryonic development, including neural differentiation.
Collapse
|
7
|
Corral-Vazquez C, Blanco J, Aiese Cigliano R, Sarrate Z, Rivera-Egea R, Vidal F, Garrido N, Daub C, Anton E. The RNA content of human sperm reflects prior events in spermatogenesis and potential post-fertilization effects. Mol Hum Reprod 2021; 27:6265603. [PMID: 33950245 DOI: 10.1093/molehr/gaab035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/09/2021] [Indexed: 01/18/2023] Open
Abstract
Transcriptome analyses using high-throughput methodologies allow a deeper understanding of biological functions in different cell types/tissues. The present study provides an RNA-seq profiling of human sperm mRNAs and lncRNAs (messenger and long non-coding RNAs) in a well-characterized population of fertile individuals. Sperm RNA was extracted from twelve ejaculate samples under strict quality controls. Poly(A)-transcripts were sequenced and aligned to the human genome. mRNAs and lncRNAs were classified according to their mean expression values (FPKM: Fragments Per Kilobase of transcript per Million mapped reads) and integrity. Gene Ontology analysis of the Expressed and Highly Expressed mRNAs showed an involvement in diverse reproduction processes, while the Ubiquitously Expressed and Highly Stable mRNAs were mainly involved in spermatogenesis. Transcription factor enrichment analyses revealed that the Highly Expressed and Ubiquitously Expressed sperm mRNAs were primarily regulated by zinc-fingers and spermatogenesis-related proteins. Regarding the Expressed lncRNAs, only one-third of their potential targets corresponded to Expressed mRNAs and were enriched in cell-cycle regulation processes. The remaining two-thirds were absent in sperm and were enriched in embryogenesis-related processes. A significant amount of post-testicular sperm mRNAs and lncRNAs was also detected. Even though our study is solely directed to the poly-A fraction of sperm transcripts, results indicate that both sperm mRNAs and lncRNAs constitute a footprint of previous spermatogenesis events and are configured to affect the first stages of embryo development.
Collapse
Affiliation(s)
- C Corral-Vazquez
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - J Blanco
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Z Sarrate
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - R Rivera-Egea
- IVIRMA Valencia, IVI Foundation, Laboratorio de Andrología, Valencia, Spain
| | - F Vidal
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - N Garrido
- IVI Foundation, Instituto de Investigación Sanitaria la Fe, Valencia, Spain
| | - C Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - E Anton
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
8
|
Duan Y, Zhang W, Cheng Y, Shi M, Xia XQ. A systematic evaluation of bioinformatics tools for identification of long noncoding RNAs. RNA (NEW YORK, N.Y.) 2021; 27:80-98. [PMID: 33055239 PMCID: PMC7749630 DOI: 10.1261/rna.074724.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
High-throughput RNA sequencing unveiled the complexity of transcriptome and significantly increased the records of long noncoding RNAs (lncRNAs), which were reported to participate in a variety of biological processes. Identification of lncRNAs is a key step in lncRNA analysis, and a bunch of bioinformatics tools have been developed for this purpose in recent years. While these tools allow us to identify lncRNA more efficiently and accurately, they may produce inconsistent results, making selection a confusing issue. We compared the performance of 41 analysis models based on 14 software packages and different data sets, including high-quality data and low-quality data from 33 species. In addition, computational efficiency, robustness, and joint prediction of the models were explored. As a practical guidance, key points for lncRNA identification under different situations were summarized. In this investigation, no one of these models could be superior to others under all test conditions. The performance of a model relied to a great extent on the source of transcripts and the quality of assemblies. As general references, FEELnc_all_cl, CPC, and CPAT_mouse work well in most species while COME, CNCI, and lncScore are good choices for model organisms. Since these tools are sensitive to different factors such as the species involved and the quality of assembly, researchers must carefully select the appropriate tool based on the actual data. Alternatively, our test suggests that joint prediction could behave better than any single model if proper models were chosen. All scripts/data used in this research can be accessed at http://bioinfo.ihb.ac.cn/elit.
Collapse
Affiliation(s)
- You Duan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanting Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingyin Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Mijuan Shi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
9
|
Zheng LL, Xiong JH, Zheng WJ, Wang JH, Huang ZL, Chen ZR, Sun XY, Zheng YM, Zhou KR, Li B, Liu S, Qu LH, Yang JH. ColorCells: a database of expression, classification and functions of lncRNAs in single cells. Brief Bioinform 2020; 22:6032628. [PMID: 33313674 DOI: 10.1093/bib/bbaa325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/22/2020] [Accepted: 10/21/2020] [Indexed: 11/12/2022] Open
Abstract
Although long noncoding RNAs (lncRNAs) have significant tissue specificity, their expression and variability in single cells remain unclear. Here, we developed ColorCells (http://rna.sysu.edu.cn/colorcells/), a resource for comparative analysis of lncRNAs expression, classification and functions in single-cell RNA-Seq data. ColorCells was applied to 167 913 publicly available scRNA-Seq datasets from six species, and identified a batch of cell-specific lncRNAs. These lncRNAs show surprising levels of expression variability between different cell clusters, and has the comparable cell classification ability as known marker genes. Cell-specific lncRNAs have been identified and further validated by in vitro experiments. We found that lncRNAs are typically co-expressed with the mRNAs in the same cell cluster, which can be used to uncover lncRNAs' functions. Our study emphasizes the need to uncover lncRNAs in all cell types and shows the power of lncRNAs as novel marker genes at single cell resolution.
Collapse
Affiliation(s)
- Ling-Ling Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jing-Hua Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Wu-Jian Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jun-Hao Wang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zi-Liang Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhi-Rong Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xin-Yao Sun
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yi-Min Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Ke-Ren Zhou
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, California 91016, USA
| | - Bin Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Shun Liu
- Department of Chemistry and Institute for Biophysical Dynamics, the University of Chicago, Chicago, IL 60637, USA
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jian-Hua Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
10
|
A Single Cell but Many Different Transcripts: A Journey into the World of Long Non-Coding RNAs. Int J Mol Sci 2020; 21:ijms21010302. [PMID: 31906285 PMCID: PMC6982300 DOI: 10.3390/ijms21010302] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
In late 2012 it was evidenced that most of the human genome is transcribed but only a small percentage of the transcripts are translated. This observation supported the importance of non-coding RNAs and it was confirmed in several organisms. The most abundant non-translated transcripts are long non-coding RNAs (lncRNAs). In contrast to protein-coding RNAs, they show a more cell-specific expression. To understand the function of lncRNAs, it is fundamental to investigate in which cells they are preferentially expressed and to detect their subcellular localization. Recent improvements of techniques that localize single RNA molecules in tissues like single-cell RNA sequencing and fluorescence amplification methods have given a considerable boost in the knowledge of the lncRNA functions. In recent years, single-cell transcription variability was associated with non-coding RNA expression, revealing this class of RNAs as important transcripts in the cell lineage specification. The purpose of this review is to collect updated information about lncRNA classification and new findings on their function derived from single-cell analysis. We also retained useful for all researchers to describe the methods available for single-cell analysis and the databases collecting single-cell and lncRNA data. Tables are included to schematize, describe, and compare exposed concepts.
Collapse
|
11
|
Ma H, Qu J, Luo J, Qi T, Tan H, Jiang Z, Zhang H, Qu Q. Super-Enhancer-Associated Hub Genes In Chronic Myeloid Leukemia Identified Using Weighted Gene Co-Expression Network Analysis. Cancer Manag Res 2019; 11:10705-10718. [PMID: 31920381 PMCID: PMC6934127 DOI: 10.2147/cmar.s214614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/26/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose Super-enhancer (SE)-associated oncogenes extensively potentiate the uncontrolled proliferation capacity of cancer cells. In this study, we aimed to identify the SE-associated hub genes associated with the clinical characteristics of chronic myeloid leukemia (CML). Methods Eigengenes from CML clinical modules were determined using weighted gene co-expression network analysis (WGCNA). Overlapping genes between eigengenes and SE-associated genes were used to construct protein–protein interaction (PPI) networks and annotate for pathway enrichment analysis. Expression patterns of the top-ranked SE-associated hub genes were further determined in CML patients and healthy controls via real-time PCR. After treatment of K562 cells with the BRD4 inhibitor, JQ1, for 24 hrs, mRNA and protein levels of SE-associated hub genes were evaluated using real-time PCR and Western blotting, respectively. H3K27ac, H3K4me1 and BRD4 ChIP-seq signal peaks were used to predict and identify SEs visualized by the Integrative Genomics Viewer. Results The yellow module was significantly related to the status and pathological phase of CML. SE-associated hub candidate genes were mainly enriched in the cell cycle pathway. Based on the PPI networks of hub genes and the top rank of degree, five SE-associated genes were identified: specifically, BUB1, CENPO, KIF2C, ORC1, and RRM2. Elevated expression of these five genes was not only related to CML status and phase but also positively regulated by SE and suppressed by the BRD4 inhibitor, JQ1, in K562 cells. Strong signal peaks of H3K27ac, H3K4me1 and BRD4 ChIP-seq of the five genes were additionally observed close to the predicted SE regions. Conclusion This is the first study to characterize SE-associated genes linked to clinical characteristics of CML via weighted gene co-expression network analysis. Our results support a novel mechanism involving aberrant expression of hub SE-associated genes in CML patients and K562 cells, and these genes will be potential new therapeutic targets for human leukemia.
Collapse
Affiliation(s)
- Hongying Ma
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410078, Hunan, People's Republic of China
| | - Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Tingting Qi
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410078, Hunan, People's Republic of China
| | - Huanmiao Tan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, People's Republic of China
| | - Zhaohui Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Haiwen Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| |
Collapse
|
12
|
Wu F, Liu Y, Wu Q, Li D, Zhang L, Wu X, Wang R, Zhang D, Gao S, Li W. Long non-coding RNAs potentially function synergistically in the cellular reprogramming of SCNT embryos. BMC Genomics 2018; 19:631. [PMID: 30139326 PMCID: PMC6107955 DOI: 10.1186/s12864-018-5021-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/15/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs), a type of epigenetic regulator, are thought to play important roles in embryonic development in mice, and several developmental defects are associated with epigenetic modification disorders. The most dramatic epigenetic reprogramming event occurs during somatic cell nuclear transfer (SCNT) when the expression profile of a differentiated cell is abolished, and a newly embryo-specific expression profile is established. However, the molecular mechanism underlying somatic reprogramming remains unclear, and the dynamics and functions of lncRNAs in this process have not yet been illustrated, resulting in inefficient reprogramming. RESULTS In this study, 63 single-cell RNA-seq libraries were first generated and sequenced. A total of 7009 mouse polyadenylation lncRNAs (including 5204 novel lncRNAs) were obtained, and a comprehensive analysis of in vivo and SCNT mouse pre-implantation embryo lncRNAs was further performed based on our single-cell RNA sequencing data. Expression profile analysis revealed that lncRNAs were expressed in a developmental stage-specific manner during mouse early-stage embryonic development, whereas a more temporal and spatially specific expression pattern was identified in mouse SCNT embryos with changes in the state of chromatin during somatic cell reprogramming, leading to incomplete zygotic genome activation, oocyte to embryo transition and 2-cell to 4-cell transition. No obvious differences between other stages and mouse NTC or NTM embryos at the same stage were observed. Gene oncology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and weighted gene co-expression network analysis (WGCNA) of lncRNAs and their association with known protein-coding genes suggested that several lncRNAs and their associated with known protein-coding genes might be involved in mouse embryonic development and cell reprogramming. CONCLUSIONS This is a novel report on the expression landscapes of lncRNAs of mouse NT embryos by scRNA-seq analysis. This study will provide insight into the molecular mechanism underlying the involvement of lncRNAs in mouse pre-implantation embryonic development and epigenetic reprogramming in mammalian species after SCNT-based cloning.
Collapse
Affiliation(s)
- Fengrui Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Yong Liu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Qingqing Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Dengkun Li
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Ling Zhang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Xiaoqing Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Rong Wang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Di Zhang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Shaorong Gao
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenyong Li
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| |
Collapse
|
13
|
Yuan G, Quan J, Dong D, Wang Q. Long Noncoding RNA CAT104 Promotes Cell Viability, Migration, and Invasion in Gastric Carcinoma Cells Through Activation of MicroRNA-381-Inhibiting Zinc Finger E-box-Binding Homeobox 1 (ZEB1) Expression. Oncol Res 2018; 26:1037-1046. [PMID: 29295724 PMCID: PMC7844839 DOI: 10.3727/096504017x15144748428127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gastric carcinoma (GC) remains the second leading cause of cancer-related deaths worldwide. Good biomarkers are of paramount importance for GC therapy. This study aimed to assess the role of long noncoding RNA (lncRNA) CAT104 in GC. We found that CAT104 was highly expressed in human GC NCI-N87, SGC7901, BGC823, BGC803, and AGS cells. Suppression of CAT104 decreased NCI-N87 cell viability, migration, and invasion, but promoted apoptosis. CAT104 knockdown enhanced the expression of microRNA-381 (miR-381) expression in NCI-N87 cells. miR-381 participated in the regulatory effects of CAT104 on NCI-N87 cell viability, migration, invasion, and apoptosis. Zinc finger E-box-binding homeobox 1 (ZEB1) was identified as a direct target of miR-381. Overexpression of ZEB1 reversed the miR-381 mimic-induced cell viability, migration, and invasion inhibition. Suppression of ZEB1 reversed the miR-381 inhibitor-induced activation of the c-Jun N-terminal kinase (JNK) pathway and Wnt/β-catenin signaling pathways in NCI-N87 cells. In conclusion, CAT104 might function as an oncogenic factor in GC cells via regulating the expression of miR-381 and ZEB1.
Collapse
Affiliation(s)
- Gang Yuan
- Department of Gastroenterology, 401 Hospital of People’s Liberation Army, Qingdao, P.R. China
| | - Jingzi Quan
- Department of Gastroenterology, 401 Hospital of People’s Liberation Army, Qingdao, P.R. China
| | - Dongfang Dong
- Department of Gastroenterology, 401 Hospital of People’s Liberation Army, Qingdao, P.R. China
| | - Qunying Wang
- Department of Gastroenterology, 401 Hospital of People’s Liberation Army, Qingdao, P.R. China
| |
Collapse
|
14
|
Bush SJ, Muriuki C, McCulloch MEB, Farquhar IL, Clark EL, Hume DA. Cross-species inference of long non-coding RNAs greatly expands the ruminant transcriptome. Genet Sel Evol 2018; 50:20. [PMID: 29690875 PMCID: PMC5926538 DOI: 10.1186/s12711-018-0391-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
Background mRNA-like long non-coding RNAs (lncRNAs) are a significant component of mammalian transcriptomes, although most are expressed only at low levels, with high tissue-specificity and/or at specific developmental stages. Thus, in many cases lncRNA detection by RNA-sequencing (RNA-seq) is compromised by stochastic sampling. To account for this and create a catalogue of ruminant lncRNAs, we compared de novo assembled lncRNAs derived from large RNA-seq datasets in transcriptional atlas projects for sheep and goats with previous lncRNAs assembled in cattle and human. We then combined the novel lncRNAs with the sheep transcriptional atlas to identify co-regulated sets of protein-coding and non-coding loci. Results Few lncRNAs could be reproducibly assembled from a single dataset, even with deep sequencing of the same tissues from multiple animals. Furthermore, there was little sequence overlap between lncRNAs that were assembled from pooled RNA-seq data. We combined positional conservation (synteny) with cross-species mapping of candidate lncRNAs to identify a consensus set of ruminant lncRNAs and then used the RNA-seq data to demonstrate detectable and reproducible expression in each species. In sheep, 20 to 30% of lncRNAs were located close to protein-coding genes with which they are strongly co-expressed, which is consistent with the evolutionary origin of some ncRNAs in enhancer sequences. Nevertheless, most of the lncRNAs are not co-expressed with neighbouring protein-coding genes. Conclusions Alongside substantially expanding the ruminant lncRNA repertoire, the outcomes of our analysis demonstrate that stochastic sampling can be partly overcome by combining RNA-seq datasets from related species. This has practical implications for the future discovery of lncRNAs in other species. Electronic supplementary material The online version of this article (10.1186/s12711-018-0391-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephen J Bush
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK. .,Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX3 9DU, UK.
| | - Charity Muriuki
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - Mary E B McCulloch
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - Iseabail L Farquhar
- Centre for Synthetic and Systems Biology, CH Waddington Building, Max Borne Crescent, King's Buildings, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Emily L Clark
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - David A Hume
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK. .,Translational Research Institute, Mater Research-University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
15
|
Eckersley-Maslin MA, Alda-Catalinas C, Reik W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat Rev Mol Cell Biol 2018; 19:436-450. [DOI: 10.1038/s41580-018-0008-z] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Barragán M, Pons J, Ferrer-Vaquer A, Cornet-Bartolomé D, Schweitzer A, Hubbard J, Auer H, Rodolosse A, Vassena R. The transcriptome of human oocytes is related to age and ovarian reserve. Mol Hum Reprod 2018; 23:535-548. [PMID: 28586423 DOI: 10.1093/molehr/gax033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 06/03/2017] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION How does the human oocyte transcriptome change with age and ovarian reserve? SUMMARY ANSWER Specific sets of human oocyte messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs) are affected independently by age and ovarian reserve. WHAT IS KNOWN ALREADY Although it is well established that the ovarian reserve diminishes with increasing age, and that a woman's age is correlated with lower oocyte quality, the interplay of a diminished reserve and age on oocyte developmental competence is not clear. After maturation, oocytes are mostly transcriptionally quiescent, and developmental competence prior to embryonic genome activationrelies on maternal RNA and proteins. STUDY DESIGN, SIZE, DURATION A total of 36 vitrified/warmed MII oocytes from 30 women undergoing oocyte donation were included in this study, processed and analyzed individually. PARTICIPANTS/MATERIALS, SETTING, METHODS Total RNA from each oocyte was independently isolated, amplified, labeled, and hybridized on HTA 2.0 arrays (Affymetrix). Data were analyzed using TAC software, in four groups, each including nine oocytes, according to the woman's age and antral follicular count (AFC) (mean ± SD): Young with High AFC (YH; age 21 ± 1 years and 24 ± 3 follicles); Old with High AFC (OH; age 32 ± 2 years and 29 ± 7 follicles); Young with Low AFC (YL; age 24 ± 2 years and 8 ± 2 follicles); Old with Low AFC (OL; age 34 ± 1 years and 7 ± 1 follicles). qPCR was performed to validate arrays. MAIN RESULTS AND THE ROLE OF CHANCE We identified a set of 30 differentially expressed mRNAs when comparing oocytes from women with different ages and AFC. In addition, 168 non-coding RNAs (ncRNAs) were differentially expressed in relation to age and/or AFC. Few mRNAs have been identified as differentially expressed transcripts, and among ncRNAs, a set of Piwi-interacting RNAs clusters (piRNAs-c) and precursor microRNAs (pre-miRNAs) were identified as increased in high AFC and old groups, respectively. Our results indicate that age and ovarian reserve are associated with specific ncRNA profiles, suggesting that oocyte quality might be mediated by ncRNA pathways. LARGE SCALE DATA Data can be found via GEO accession number GSE87201. LIMITATIONS, REASONS FOR CAUTION The oldest woman included in the study was 35 years old, thus our results cannot readily be extrapolated to women older than 35 or infertile women. WIDER IMPLICATIONS OF THE FINDINGS We show, for the first time, that several non-coding RNAs, usually regulating DNA transcription, are differentially expressed in relation to age and/or ovarian reserve. Interestingly, the mRNA transcriptome of in vivo matured oocytes remains remarkably stable across ages and ovarian reserve, suggesting the possibility that changes in the non-coding transcriptome might regulate some post-transcriptional/translational mechanisms which might, in turn, affect oocyte developmental competence. STUDY FUNDING AND COMPETING INTEREST(S) This work was supported by intramural funding of Clinica EUGIN and by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia. J.H. and A.S. are employees of Affymetrix, otherwise there are no competing interests.
Collapse
Affiliation(s)
- M Barragán
- Clínica EUGIN, Travessera de les Corts 322, 08029 Barcelona, Spain
| | - J Pons
- Functional Genomics Core, Institute for Research in Biomedicine (IRB) Barcelona, Parc Científic de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - A Ferrer-Vaquer
- Clínica EUGIN, Travessera de les Corts 322, 08029 Barcelona, Spain
| | | | - A Schweitzer
- Thermo Fisher Scientific, 3450 Central Expressway, Santa Clara, CA 95051, USA
| | - J Hubbard
- Thermo Fisher Scientific, 3450 Central Expressway, Santa Clara, CA 95051, USA
| | - H Auer
- Functional GenOmics Consulting, Bellavista 53, 08753 Pallejà, Spain
| | - A Rodolosse
- Functional Genomics Core, Institute for Research in Biomedicine (IRB) Barcelona, Parc Científic de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - R Vassena
- Clínica EUGIN, Travessera de les Corts 322, 08029 Barcelona, Spain
| |
Collapse
|
17
|
Liu KS, Li TP, Ton H, Mao XD, Chen YJ. Advances of Long Noncoding RNAs-mediated Regulation in Reproduction. Chin Med J (Engl) 2018; 131:226-234. [PMID: 29336373 PMCID: PMC5776855 DOI: 10.4103/0366-6999.222337] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE Advances in genomics and molecular biology have led to the discovery of a large group of uncharacterized long noncoding RNAs (lncRNAs). Emerging evidence indicated that many lncRNAs function in multiple biological processes and its dysregulation often causes diseases. Recent studies suggested that almost all regulatory lncRNAs interact with biological macromolecules such as DNA, RNA, and protein. LncRNAs regulate gene expression mainly on three levels, including epigenetic modification, transcription, and posttranscription, through DNA methylation, histone modification, and chromatin remodeling. LncRNAs can also affect the development of diseases and therefore be used to diagnose and treat diseases. With new sequencing and microarray techniques, hundreds of lncRNAs involved in reproductive disorders have been identified, but their functions in these disorders are undefined. DATA SOURCES This review was based on articles published in PubMed databases up to July 10, 2017, with the following keywords: "long noncoding RNAs", "LncRNA", "placentation", and "reproductive diseases". STUDY SELECTION Original articles and reviews on the topics were selected. RESULTS LncRNAs widely participate in various physiological and pathological processes as a new class of important regulatory factors. In spermatogenesis, spermatocytes divide and differentiate into mature spermatozoa. The whole process is elaborately regulated by the expression of phase-specific genes that involve many strains of lncRNAs. Literature showed that lncRNA in reproductive cumulus cells may contribute to the regulation of oocyte maturation, fertilization, and embryo development. CONCLUSIONS LncRNA has been found to play a role in the development of reproduction. Meanwhile, we reviewed the studies on how lncRNAs participate in reproductive disorders, which provides a basis for the study of lncRNA in reproduction regulation.
Collapse
Affiliation(s)
- Kang-Sheng Liu
- Department of Clinical Laboratory, State Key Laboratory of Reproductive Medicine, Nanjing Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tai-Ping Li
- Department of Pharmacy, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hua Ton
- Department of Obstetrics and Gynecology, State Key Laboratory of Reproductive Medicine, Nanjing Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiao-Dong Mao
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Ya-Jun Chen
- Department of Clinical Laboratory, State Key Laboratory of Reproductive Medicine, Nanjing Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
18
|
Liu K, Mao X, Chen Y, Li T, Ton H. Regulatory role of long non-coding RNAs during reproductive disease. Am J Transl Res 2018; 10:1-12. [PMID: 29422989 PMCID: PMC5801342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/25/2017] [Indexed: 06/08/2023]
Abstract
Long non-coding RNA (lncRNA) is a group of RNAs with broad biogenesis, which are longer than 200 nt and highly conserved in their secondary and tertiary structures. lncRNA that broadly participates in varied physiological processes in organisms has abundant biological function and can regulate expression of target genes at transcriptional, post-transcriptional and epigenetic levels. LncRNAs can also affect the development of diseases, and therefore be used to diagnose and treat diseases. With new sequencing and microarray techniques, hundreds of lncRNAs involved in reproductive disorders have been identified, but their functions in these disorders are undefined. In this paper, we reviewed the studies on how lncRNAs participate in the development of reproductive disorders, hoping our outcome can instruct the future study and provide new biomarkers and therapies for reproductive disorders.
Collapse
Affiliation(s)
- Kangsheng Liu
- Department of Clinical Laboratory, State Key Laboratory of Reproductive Medicine, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjing 210029, Jiangsu, China
| | - Xiaodong Mao
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing 210028, Jiangsu, China
| | - Yajun Chen
- Department of Clinical Laboratory, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjing 210029, Jiangsu, China
| | - Taiping Li
- Department of Pharmacy, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Hua Ton
- Department of Obstetrics and Gynecology, State Key Laboratory of Reproductive Medicine, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjing 210029, Jiangsu, China
| |
Collapse
|
19
|
Fu Q, Liu CJ, Zhai ZS, Zhang X, Qin T, Zhang HW. Single-Cell Non-coding RNA in Embryonic Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:19-32. [DOI: 10.1007/978-981-13-0502-3_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Qiu JJ, Liu YN, Ren ZR, Yan JB. Dysfunctions of mitochondria in close association with strong perturbation of long noncoding RNAs expression in down syndrome. Int J Biochem Cell Biol 2017; 92:115-120. [DOI: 10.1016/j.biocel.2017.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 08/23/2017] [Accepted: 09/23/2017] [Indexed: 01/07/2023]
|
21
|
Gawronski KAB, Kim J. Single cell transcriptomics of noncoding RNAs and their cell-specificity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28762653 DOI: 10.1002/wrna.1433] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 12/26/2022]
Abstract
Recent developments of single cell transcriptome profiling methods have led to the realization that many seemingly homogeneous cells have surprising levels of expression variability. The biological implications of the high degree of variability is unclear but one possibility is that many genes are restricted in expression to small lineages of cells, suggesting the existence of many more cell types than previously estimated. Noncoding RNA (ncRNA) are thought to be key parts of gene regulatory processes and their single cell expression patterns may help to dissect the biological function of single cell variability. Technology for measuring ncRNA in single cell is still in development and most of the current single cell datasets have reliable measurements for only long noncoding RNA (lncRNA). Most works report that lncRNAs show lineage-specific restricted expression patterns, which suggest that they might determine, at least in part, lineage fates and cell subtypes. However, evidence is still inconclusive as to whether lncRNAs and other ncRNAs are more lineage-specific than protein-coding genes. Nevertheless, measurement of ncRNAs in single cells will be important for studies of cell types and single cell function. WIREs RNA 2017, 8:e1433. doi: 10.1002/wrna.1433 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
| | - Junhyong Kim
- Department of Biology, Penn Program in Single Cell Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
22
|
Chen WJ, Tang RX, He RQ, Li DY, Liang L, Zeng JH, Hu XH, Ma J, Li SK, Chen G. Clinical roles of the aberrantly expressed lncRNAs in lung squamous cell carcinoma: a study based on RNA-sequencing and microarray data mining. Oncotarget 2017; 8:61282-61304. [PMID: 28977863 PMCID: PMC5617423 DOI: 10.18632/oncotarget.18058] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/19/2017] [Indexed: 12/19/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC) accounts for a significant proportion of lung cancer and there have been few therapeutic alternatives for recurrent LUSC due to the lack of specific driver molecules. To investigate the prospective role of lncRNAs in the tumorigenesis and progression of LUSC, the aberrantly expressed lncRNAs were calculated based on The Cancer Genome Atlas RNA-seq data. Of 7589 lncRNAs with 504 LUSC cases, 884 lncRNAs were identified as being aberrantly expressed (|log2 fold change| >2 and adjusted P<0.05) by DESeq R. The top 10 lncRNAs with the highest diagnostic value were SFTA1P,LINC00968, LINC00961, LINC01572,RP1-78O14.1, FENDRR, LINC01314,LINC01272, GATA6-AS1, and MIR3945HG. In addition to the significant roles in the carcinogenesis of LUSC, several lncRNAs also played vital parts in the survival and progression of LUSC. SFTA1P, LINC01272, GATA6-AS1 and MIR3945HG were closely related to the survival time of LUSC. Furthermore, LINC01572 and LINC01314 could distinguish the LUSC at early stage from that at advanced stage. The prospective molecular assessment of key lncRNAs showed that a certain series of genes could be involved in the regulation network. Furthermore, the OncoPrint from cBioPortal indicated that 14% (69/501) LUSC cases with genetic alterations could be obtained, including amplification, deep deletion and mRNA upregulation. More interestingly, the cases with genetic alterations had a poorer survival as compared to those without alterations. Overall, the study propounds a potentiality for interpreting the pathogenesis and development of LUSC with lncRNAs, and provides a novel platform for searching for more capable diagnostic biomarkers for LUSC.
Collapse
Affiliation(s)
- Wen-Jie Chen
- Department of Thoracic and Cardiovascular Diseases, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Rui-Xue Tang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Dong-Yao Li
- Department of Thoracic and Cardiovascular Diseases, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Liang Liang
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University (West Branch), Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Jiang-Hui Zeng
- Department of Thoracic and Cardiovascular Diseases, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Xiao-Hua Hu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Shi-Kang Li
- Department of Thoracic and Cardiovascular Diseases, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| |
Collapse
|
23
|
Abstract
Recent discoveries on the delivery of small- and large-size molecules and organelles to the oocytes/eggs from external sources, such as surrounding somatic cells, body fluids, and sperm, change our understanding of female germ cells' (oocytes and eggs) self-containment and individuality. In this chapter, we will summarize present-day knowledge on sources and presumptive functions of different types of exogenous molecules and organelles delivered to the animal oocytes and eggs.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA. .,Department of Surgery, The Houston Methodist Hospital, 6550 Fannin St., Houston, TX, 77030, USA.
| | - Jacek Z Kubiak
- CNRS UMR 6290, Cell Cycle Group, Institute of Genetics and Development of Rennes, Rennes, France.,University of Rennes 1, Faculty of Medicine, Rennes, France.,Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
| |
Collapse
|
24
|
Plassais J, Lagoutte L, Correard S, Paradis M, Guaguère E, Hédan B, Pommier A, Botherel N, Cadiergues MC, Pilorge P, Silversides D, Bizot M, Samuels M, Arnan C, Johnson R, Hitte C, Salbert G, Méreau A, Quignon P, Derrien T, André C. A Point Mutation in a lincRNA Upstream of GDNF Is Associated to a Canine Insensitivity to Pain: A Spontaneous Model for Human Sensory Neuropathies. PLoS Genet 2016; 12:e1006482. [PMID: 28033318 PMCID: PMC5198995 DOI: 10.1371/journal.pgen.1006482] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/15/2016] [Indexed: 01/06/2023] Open
Abstract
Human Hereditary Sensory Autonomic Neuropathies (HSANs) are characterized by insensitivity to pain, sometimes combined with self-mutilation. Strikingly, several sporting dog breeds are particularly affected by such neuropathies. Clinical signs appear in young puppies and consist of acral analgesia, with or without sudden intense licking, biting and severe self-mutilation of the feet, whereas proprioception, motor abilities and spinal reflexes remain intact. Through a Genome Wide Association Study (GWAS) with 24 affected and 30 unaffected sporting dogs using the Canine HD 170K SNP array (Illumina), we identified a 1.8 Mb homozygous locus on canine chromosome 4 (adj. p-val = 2.5x10-6). Targeted high-throughput sequencing of this locus in 4 affected and 4 unaffected dogs identified 478 variants. Only one variant perfectly segregated with the expected recessive inheritance in 300 sporting dogs of known clinical status, while it was never present in 900 unaffected dogs from 130 other breeds. This variant, located 90 kb upstream of the GDNF gene, a highly relevant neurotrophic factor candidate gene, lies in a long intergenic non-coding RNAs (lincRNA), GDNF-AS. Using human comparative genomic analysis, we observed that the canine variant maps onto an enhancer element. Quantitative RT-PCR of dorsal root ganglia RNAs of affected dogs showed a significant decrease of both GDNF mRNA and GDNF-AS expression levels (respectively 60% and 80%), as compared to unaffected dogs. We thus performed gel shift assays (EMSA) that reveal that the canine variant significantly alters the binding of regulatory elements. Altogether, these results allowed the identification in dogs of GDNF as a relevant candidate for human HSAN and insensitivity to pain, but also shed light on the regulation of GDNF transcription. Finally, such results allow proposing these sporting dog breeds as natural models for clinical trials with a double benefit for human and veterinary medicine. In this study, we present a canine neuropathy characterized by insensitivity to pain in the feet, sometimes combined with self-mutilation described in four sporting breeds. This particular phenotype has the clinical hallmarks of human Hereditary Sensory Autonomic Neuropathies (HSAN). As we hypothesized that a monogenic recessive disorder was shared between these breeds, we performed a Genome Wide Association Study (GWAS) to search for the genetic causes and found one homozygous chromosomal region in affected dogs. High-throughput sequencing of this region allowed the identification of a point mutation upstream to the GDNF gene and located in the last exon of a long non-coding RNA, GDNF-AS. We confirmed the perfect association of this variant with the disease using more than 900 unaffected dogs that do not present with this mutation. Functional analyses (qRT-PCR, EMSA) confirmed that the mutation alters the binding of regulatory complex, leading to a significant decrease of both GDNF and GDNF-AS mRNA expression levels. This work in canine spontaneous forms of human neuropathies allowed the identification of a novel gene GDNF and its regulation mechanism, not yet described in human HSAN, opening the field of clinical trials to benefit both canine and human medicine.
Collapse
Affiliation(s)
- Jocelyn Plassais
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes, Rennes, France
- Université Rennes 1, UEB, Biosit, Faculté de Médecine, Rennes, France
- * E-mail: (CA); (JP)
| | - Laetitia Lagoutte
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes, Rennes, France
- Université Rennes 1, UEB, Biosit, Faculté de Médecine, Rennes, France
| | - Solenne Correard
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes, Rennes, France
- Université Rennes 1, UEB, Biosit, Faculté de Médecine, Rennes, France
| | - Manon Paradis
- Department of Clinical Sciences, Faculté de Médecine Vétérinaire, University of Montreal, Montreal, Québec, Canada
| | | | - Benoit Hédan
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes, Rennes, France
- Université Rennes 1, UEB, Biosit, Faculté de Médecine, Rennes, France
| | - Alix Pommier
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes, Rennes, France
- Université Rennes 1, UEB, Biosit, Faculté de Médecine, Rennes, France
| | - Nadine Botherel
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes, Rennes, France
- Université Rennes 1, UEB, Biosit, Faculté de Médecine, Rennes, France
| | | | | | - David Silversides
- Department of Clinical Sciences, Faculté de Médecine Vétérinaire, University of Montreal, Montreal, Québec, Canada
| | - Maud Bizot
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes, Rennes, France
- Université Rennes 1, UEB, Biosit, Faculté de Médecine, Rennes, France
| | - Mark Samuels
- Department of Biochemistry and Molecular Medicine, CHU Sainte-Justine, University of Montreal, Montreal, Québec, Canada
| | - Carme Arnan
- Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institut Hospital del Mar d’Investigations Mèdiques (IMIM), Barcelona, Spain
| | - Rory Johnson
- Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institut Hospital del Mar d’Investigations Mèdiques (IMIM), Barcelona, Spain
| | - Christophe Hitte
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes, Rennes, France
- Université Rennes 1, UEB, Biosit, Faculté de Médecine, Rennes, France
| | - Gilles Salbert
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes, Rennes, France
- Université Rennes 1, UEB, Biosit, Faculté de Médecine, Rennes, France
| | - Agnès Méreau
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes, Rennes, France
- Université Rennes 1, UEB, Biosit, Faculté de Médecine, Rennes, France
| | - Pascale Quignon
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes, Rennes, France
- Université Rennes 1, UEB, Biosit, Faculté de Médecine, Rennes, France
| | - Thomas Derrien
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes, Rennes, France
- Université Rennes 1, UEB, Biosit, Faculté de Médecine, Rennes, France
| | - Catherine André
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes, Rennes, France
- Université Rennes 1, UEB, Biosit, Faculté de Médecine, Rennes, France
- * E-mail: (CA); (JP)
| |
Collapse
|