1
|
Tang Z, Tian X. Astragalus membranaceus: A Traditional Chinese Medicine with Multifaceted Impacts on Breast Cancer Treatment. Biomolecules 2024; 14:1339. [PMID: 39456271 PMCID: PMC11506204 DOI: 10.3390/biom14101339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Breast cancer, the most prevalent malignant tumor among women globally, remains a critical area of focus for researchers striving to refine therapeutic approaches. As an important component of traditional Chinese medicine, Astragalus membranaceus (AM) has demonstrated potential for multifaceted impacts on breast cancer treatment through various mechanisms. To guide clinical practice and further explore the under-researched field of AM in breast cancer treatment, this paper mainly reviews the regulatory roles of AM-derived compounds and extracts on breast cancer cell proliferation, migration, invasion, and chemoresistance. Furthermore, this study delves into the synergistic effects observed when AM is co-administered with chemotherapeutic agents, including the enhancement of chemosensitivity, mitigation of toxic side effects, and reversal of drug resistance. This review indicates that AM holds promise not only as a therapy in breast cancer treatment but also paves the way for innovative integrated treatment approaches that combine the benefits of traditional medicine with modern pharmaceuticals. Nevertheless, future research endeavors are also urged to elucidate the in vivo pharmacological effects and underlying mechanisms of AM to inform more effective clinical treatment strategies.
Collapse
Affiliation(s)
- Zhong Tang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Xuefei Tian
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
- Key Laboratory of Oncology of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410012, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
2
|
Khazaei MR, Bozorgi M, Khazaei M, Aftabi M, Bozorgi A. Resveratrol Nanoformulation Inhibits Invasive Breast Cancer Cell Growth through Autophagy Induction: An In Vitro Study. CELL JOURNAL 2024; 26:112-120. [PMID: 38459728 PMCID: PMC10924839 DOI: 10.22074/cellj.2024.2016930.1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVE The aim of this study was to synthesize chitosan nanoparticles (Cs NPs) for resveratrol (RSV) delivery and assess their effectiveness in inducing autophagy in MDA-MB 231 cells. MATERIALS AND METHODS In this experimental study, Pure and RSV-loaded Cs NPs (RSV. Cs NPs) were prepared via the ionic gelation method, and their physicochemical properties were characterized using standard techniques, and RSV release was measured in vitro. MDA-MB 231 cells were incubated with RSV, Cs NPs, and RSV. Cs NPs and Half-maximal inhibitory concentration (IC50) values were calculated following the MTT test. Cell viability was assessed by lactate dehydrogenase (LDH) assay, and autophagy was evaluated using the real-time polymerase chain reaction (PCR). RESULTS NP formation was confirmed with the analysis of FTIR spectra. Pure and RSV. Cs NPs had 36.7 and 94.07 nm sizes with 18.3 and 27 mV zeta potentials, respectively. Above 60% of RSV entrapped within NPs was released in an initial burst manner followed by a gradual release till 72 hours. Cs and RSV. Cs NPs restrained cell proliferation at lower concentrations. RSV. Cs NPs showed the highest anticancer effect and stimulated autophagy, indicated by increased Beclin-1 ATG5, ATG7, LC3A, and P62 expression. CONCLUSION RSV. Cs NPs show promising effects in inhibiting invasive breast cancer (BC) cells in vitro by inducing autophagy.
Collapse
Affiliation(s)
- Mohammad Rasool Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Bozorgi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Aftabi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azam Bozorgi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Lee K, Choi YJ, Lim HI, Cho KJ, Kang N, Ko SG. Network pharmacology study to explore the multiple molecular mechanism of SH003 in the treatment of non-small cell lung cancer. BMC Complement Med Ther 2024; 24:70. [PMID: 38303001 PMCID: PMC10832243 DOI: 10.1186/s12906-024-04347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is one of the leading causes of human death worldwide. Herbal prescription SH003 has been developed to treat several cancers including NSCLC. Due to the multi-component nature of SH003 with multiple targets and pathways, a network pharmacology study was conducted to analyze its active compounds, potential targets, and pathways for the treatment of NSCLC. METHODS We systematically identified oral active compounds within SH003, employing ADME criteria-based screening from TM-MC, OASIS, and TCMSP databases. Concurrently, SH003-related and NSCLC-associated targets were amalgamated from various databases. Overlapping targets were deemed anti-NSCLC entities of SH003. Protein-protein interaction networks were constructed using the STRING database, allowing the identification of pivotal proteins through node centrality measures. Empirical validation was pursued through LC-MS analysis of active compounds. Additionally, in vitro experiments, such as MTT cell viability assays and western blot analyses, were conducted to corroborate network pharmacology findings. RESULTS We discerned 20 oral active compounds within SH003 and identified 239 core targets shared between SH003 and NSCLC-related genes. Network analyses spotlighted 79 hub genes, including TP53, JUN, AKT1, STAT3, and MAPK3, crucial in NSCLC treatment. GO and KEGG analyses underscored SH003's multifaceted anti-NSCLC effects from a genetic perspective. Experimental validations verified SH003's impact on NSCLC cell viability and the downregulation of hub genes. LC-MS analysis confirmed the presence of four active compounds, namely hispidulin, luteolin, baicalein, and chrysoeriol, among the eight compounds with a median of > 10 degrees in the herb-compounds-targets network in SH003. Previously unidentified targets like CASP9, MAPK9, and MCL1 were unveiled, supported by existing NSCLC literature, enhancing the pivotal role of empirical validation in network pharmacology. CONCLUSION Our study pioneers the harmonization of theoretical predictions with practical validations. Empirical validation illuminates specific SH003 compounds within NSCLC, simultaneously uncovering novel targets for NSCLC treatment. This integrated strategy, accentuating empirical validation, establishes a paradigm for in-depth herbal medicine exploration. Furthermore, our network pharmacology study unveils fresh insights into SH003's multifaceted molecular mechanisms combating NSCLC. Through this approach, we delineate active compounds of SH003 and target pathways, reshaping our understanding of its therapeutic mechanisms in NSCLC treatment.
Collapse
Affiliation(s)
- Kangwook Lee
- Department of Food and Biotechnology, Korea University, Sejong, 30019, South Korea
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Yu-Jeong Choi
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Hae-In Lim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Kwang Jin Cho
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Nuri Kang
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea.
| |
Collapse
|
4
|
Cheon C, Lee HW, Sym SJ, Ko SG. Safety of the Herbal Medicine SH003 in Patients With Solid Cancer: A Multi-Center, Single-Arm, Open-Label, Dose-Escalation Phase I Study. Integr Cancer Ther 2024; 23:15347354241293451. [PMID: 39469996 PMCID: PMC11528795 DOI: 10.1177/15347354241293451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/01/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND SH003, a novel herbal medicine comprising Huang-Qi, Dang-Gui, and Gua-Lou-Gen, has historical roots in traditional medicine with reported anticancer properties. The need to explore safe and effective treatments in oncology underlines the importance of this study. METHODS This phase I trial, conducted at Ajou University Hospital and Gachon University Gil Medical Center in Korea, adopted a single-arm, open-label, dose-escalation design. It aimed to evaluate the safety of escalated doses of SH003 in patients with various solid cancers, focusing on determining its maximum tolerated dose. Participants with confirmed solid cancers, unresponsive to standard treatments, were enrolled. The dosage of SH003 was escalated from 4800 to 9600 mg per day, using a 3 + 3 design. Safety was assessed based on the Common Terminology Criteria for Adverse Events ver. 5.0. RESULTS The study established that the maximum tolerated dose of SH003 is 9600 mg/day. Most adverse events were mild, primarily including dizziness and nausea, indicating the tolerability of SH003 at this dosage. CONCLUSIONS SH003 demonstrates safety and promises as an anticancer treatment at doses up to 9600 mg/day. This research supports further investigation into its efficacy for cancer therapy, emphasizing the significance of natural products in oncology, particularly concerning patient safety and tolerance.
Collapse
Affiliation(s)
- Chunhoo Cheon
- Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Hyun Woo Lee
- Ajou University Hospital, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Sun Jin Sym
- Gachon University Gil Medical Center, Namdong-gu, Incheon, Republic of Korea
| | - Seong-Gyu Ko
- Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
5
|
LEE SEOYEON, KIM TAEHOON, CHOI WONGEUN, CHUNG YOONHEY, KO SEONGGYU, CHEON CHUNHOO, CHO SUNGGOOK. SH003 Causes ER Stress-mediated Apoptosis of Breast Cancer Cells via Intracellular ROS Production. Cancer Genomics Proteomics 2023; 20:88-116. [PMID: 36581346 PMCID: PMC9806670 DOI: 10.21873/cgp.20367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/AIM Breast cancer is one of the most common cancers in women all over the world and new treatment options are urgent. ER stress in cancer cells results in apoptotic cell death, and it is being proposed as a new therapeutic target. SH003, a newly developed herbal medicine, has been reported to have anti-cancer effects. However, its molecular mechanism is not yet clearly defined. MATERIALS AND METHODS Microarray was performed to check the differential gene expression patterns in various breast cancer cell lines. Cell viability was measured by MTT assays to detect cytotoxic effects. Annexin V-FITC and 7AAD staining, TUNEL assay and DCF-DA staining were analyzed by flow cytometry to evaluate apoptosis and ROS levels, respectively. Protein expression was examined in SH003-breast cancer cells using immunoblotting assays. The expression of C/EBP Homologous Protein (CHOP) mRNA was measured by real-time PCR. The effects of CHOP by SH003 treatment were investigated using transfection method. RESULTS Herein, we investigated the molecular mechanisms through which SH003 causes apoptosis of human breast cancer cells. Both cell viability and apoptosis assays confirmed the SH003-induced apoptosis of breast cancer cells. Meanwhile, SH003 altered the expression patterns of several genes in a variety of breast cancer cell lines. More specifically, it upregulated gene sets including the response to unfolded proteins, independently of the breast cancer cell subtype. In addition, SH003-induced apoptosis was due to an increase in ROS production and an activation of the ER stress-signaling pathway. Moreover, CHOP gene silencing blocked SH003-induced apoptosis. CONCLUSION SH003 causes apoptosis of breast cancer cells by upregulating ROS production and activating the ER stress-mediated pathway. Thus, our findings suggest that SH003 can be a potential therapeutic agent for breast cancer.
Collapse
Affiliation(s)
- SEO YEON LEE
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - TAE HOON KIM
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - WON GEUN CHOI
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - YOON HEY CHUNG
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - SEONG-GYU KO
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea,Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - CHUNHOO CHEON
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - SUNG-GOOK CHO
- Department of Biotechnology, Korea National University of Transportation, Chungbuk, Republic of Korea
| |
Collapse
|
6
|
SH003 and Docetaxel Show Synergistic Anticancer Effects by Inhibiting EGFR Activation in Triple-Negative Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3647900. [PMID: 35572726 PMCID: PMC9098291 DOI: 10.1155/2022/3647900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/24/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022]
Abstract
Although many anticancer drugs have been developed for triple-negative breast cancer (TNBC) treatment, there are no obvious therapies. Moreover, the combination of epidermal growth factor receptor- (EGFR-) targeted therapeutics and classical chemotherapeutic drugs has been assessed in clinical trials for TNBC treatment, but those are not yet approved. Our serial studies for newly developed herbal medicine named SH003 provide evidence of its broad effectiveness in various cancers, especially on TNBC. The current study demonstrates a synergic effect of combinatorial treatment of SH003 and docetaxel (DTX) by targeting EGFR activation. The combinatorial treatment reduced the viability of both BT-20 and MDA-MB-231 TNBC cells, displaying the synergism. The combination of SH003 and DTX also caused the synergistic effect on apoptosis. Mechanistically, the cotreatment of SH003 and DTX inhibited phosphorylation of EGFR and AKT in both BT-20 and MDA-MB-231 cells. Moreover, our xenograft mouse tumor growth assays showed the inhibitory effect of the combinatorial treatment with no effect on body weight. Our immunohistochemistry confirmed its inhibition of EGFR phosphorylation in vivo. Collectively, combinatorial treatment of SH003 and DTX has a synergistic anticancer effect at a relatively low concentration by targeting EGFR in TNBC, indicating safety and efficacy of SH003 as adjuvant combination therapy with docetaxel. Thus, it is worth testing the combinatorial effect in clinics for treating TNBC.
Collapse
|
7
|
State of the Art and Future Implications of SH003: Acting as a Therapeutic Anticancer Agent. Cancers (Basel) 2022; 14:cancers14041089. [PMID: 35205836 PMCID: PMC8870567 DOI: 10.3390/cancers14041089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer ranks as the first leading cause of death globally. Despite the various types of cancer treatments, negative aspects of the treatments, such as side effects and drug resistance, have been a continuous dilemma for patients. Thus, natural compounds and herbal medicines have earned profound interest as chemopreventive agents for reducing burden for patients. SH003, a novel herbal medicine containing Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii, showed the potential to act as an anticancer agent in previous research studies. A narrative review was conducted to present the significant highlights of the total 15 SH003 studies from the past nine years. SH003 has shown positive results in both in vivo and vitro studies against various types of cancer cells; furthermore, the first clinical trial was performed to identify the maximum tolerated dose among solid cancer patients. So far, the potential of SH003 as a chemotherapeutic agent has been well-documented in research studies; continuous work on SH003's efficacy and safety is required to facilitate better cancer patient care but is part of the knowledge needed to understand whether SH003 has the potential to become a pharmaceutical.
Collapse
|
8
|
Lee JH, Kim B, Ko SG, Kim W. Analgesic Effect of SH003 and Trichosanthes kirilowii Maximowicz in Paclitaxel-Induced Neuropathic Pain in Mice. Curr Issues Mol Biol 2022; 44:718-730. [PMID: 35723335 PMCID: PMC8929024 DOI: 10.3390/cimb44020050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Pacliatxel is a taxol-based chemotherapeutic drug that is widely used to treat cancer. However, it can also induce peripheral neuropathy, which limits its use. Although several drugs are prescribed to attenuate neuropathies, no optimal treatment is available. Thus, in our study, we analyzed whether SH003 and its sub-components could alleviate paclitaxel-induced neuropathic pain. Multiple paclitaxel injections (cumulative dose 8 mg/kg, i.p.) induced cold and mechanical allodynia from day 10 to day 21 after the first injection in mice. Oral administration of SH003, an herbal mixture extract of Astragalus membranaceus, Angelica gigas, and Trichosantheskirilowii Maximowicz (Tk), dose-dependently attenuated both allodynia. However, when administered separately only Tk decreased both allodynia. The effect of Tk was shown to be mediated by the spinal noradrenergic system as intrathecal pretreatment with α1- and α2-adrenergic-receptor antagonists (prazosin and idazoxan), but not 5-HT1/2, and 5-HT3-receptor antagonists (methysergide and MDL-72222) blocked the effect of Tk. The spinal noradrenaline levels were also upregulated. Among the phytochemicals of Tk, cucurbitacin D was shown to play a major role, as 0.025 mg/kg (i.p.) of cucurbitacin D alleviated allodynia similar to 500 mg/kg of SH003. These results suggest that Tk should be considered when treating paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Ji Hwan Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (B.K.); (S.-G.K.)
| | - Bonglee Kim
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (B.K.); (S.-G.K.)
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (B.K.); (S.-G.K.)
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (B.K.); (S.-G.K.)
- Correspondence:
| |
Collapse
|
9
|
Herbal Prescription SH003 Alleviates Docetaxel-Induced Neuropathic Pain in C57BL/6 Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4120334. [PMID: 34422067 PMCID: PMC8373497 DOI: 10.1155/2021/4120334] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/04/2021] [Indexed: 12/18/2022]
Abstract
Docetaxel-based therapy has been applied to kill cancers including lung and breast cancers but frequently causes peripheral neuropathy such as mechanical allodynia. Lack of effective drugs for chemotherapy-induced peripheral neuropathy (CIPN) treatment leads us to find novel drugs. Here, we investigated whether and how novel anticancer herbal prescription SH003 alleviates mechanical allodynia in mouse model of docetaxel-induced neuropathic pain. Docetaxel-induced mechanical allodynia was evaluated using von Frey filaments. Nerve damage and degeneration in paw skin of mice were investigated by immunofluorescence staining. Neuroinflammation markers in bloodstream, lumbar (L4-L6) spinal cord, and sciatic nerves were examined by ELISA or western blot analysis. Docetaxel (15.277 mg/kg) was intravenously injected into the tail vein of C57BL/6 mice, and mechanical allodynia was followed up. SH003 (557.569 mg/kg) was orally administered at least 60 min before the mechanical allodynia test, and von Frey test was performed twice. Docetaxel injection induced mechanical allodynia, and SH003 administration restored withdrawal threshold. Meanwhile, degeneration of intraepidermal nerve fibers (IENF) was observed in docetaxel-treated mice, but SH003 treatment suppressed it. Moreover, docetaxel injection increased levels of TNF-α and IL-6 in plasma and expressions of phospho-NF-κB and phospho-STAT3 in both of lumbar spinal cord and sciatic nerves, while SH003 treatment inhibited those changes. Taken together, it is worth noting that TNF-α and IL-6 in plasma and phospho-NF-κB and phospho-STAT3 in spinal cord and sciatic nerves are putative biomarkers of docetaxel-induced peripheral neuropathy (DIPN) in mouse models. In addition, we suggest that SH003 would be beneficial for alleviation of docetaxel-induced neuropathic pain.
Collapse
|
10
|
Synergistic Antitumor Activity of SH003 and Docetaxel via EGFR Signaling Inhibition in Non-Small Cell Lung Cancer. Int J Mol Sci 2021; 22:ijms22168405. [PMID: 34445110 PMCID: PMC8395077 DOI: 10.3390/ijms22168405] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in lung cancer patients. Despite treatment with various EGFR tyrosine kinase inhibitors, recurrence and metastasis of lung cancer are inevitable. Docetaxel (DTX) is an effective conventional drug that is used to treat various cancers. Several researchers have studied the use of traditional herbal medicine in combination with docetaxel, to improve lung cancer treatment. SH003, a novel herbal mixture, exerts anticancer effects in different cancer cell types. Here, we aimed to investigate the apoptotic and anticancer effects of SH003 in combination with DTX, in human non-small-cell lung cancer (NSCLC). SH003, with DTX, induced apoptotic cell death, with increased expression of cleaved caspases and cleaved poly (ADP-ribose) polymerase in NSCLC cells. Moreover, SH003 and DTX induced the apoptosis of H460 cells via the suppression of the EGFR and signal transducer and activator of transcription 3 (STAT3) signaling pathways. In H460 tumor xenograft models, the administration of SH003 or docetaxel alone diminished tumor growth, and their combination effectively killed cancer cells, with increased expression of apoptotic markers and decreased expression of p-EGFR and p-STAT3. Collectively, the combination of SH003 and DTX may be a novel anticancer strategy to overcome the challenges that are associated with conventional lung cancer therapy.
Collapse
|
11
|
Singh V, Kumar K, Purohit D, Verma R, Pandey P, Bhatia S, Malik V, Mittal V, Rahman MH, Albadrani GM, Arafah MW, El-Demerdash FM, Akhtar MF, Saleem A, Kamel M, Najda A, Abdel-Daim MM, Kaushik D. Exploration of therapeutic applicability and different signaling mechanism of various phytopharmacological agents for treatment of breast cancer. Biomed Pharmacother 2021; 139:111584. [PMID: 34243623 DOI: 10.1016/j.biopha.2021.111584] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cancer is one of the most dreaded diseases characterized by uncontrolled proliferation of abnormal cells that occurs due to impairment of cell division and apoptosis process. Cancer is categorized into several types on the basis of affected organs and breast cancer (BC) is the most predominant cause of mortality among women. Although, several synthetic and semi-synthetic therapies have been developed for the treatment of BC but they exhibit numerous serious adverse effects therefore; pharmacological agents with fewer/no side effects need to be explored. Plants and phytoconstituents perhaps fulfill the aforementioned requirement and could serve as a potential and alternative therapy for BC treatment. The ongoing biomedical research, clinical trials and number of patents granted have further boosted the acceptance of the plants and plant-derived constituents in the effective treatment of BC. PURPOSE OF STUDY Various treatment strategies such as checkpoint inhibitors, targeting micro RNA, apoptotic pathway, BRCA-1 gene, P53 protein, P13K/Akt/mTOR pathway, notch signaling pathway, hedgehog/gli-1 signaling pathway, poly-ADP ribose polymerase inhibitors, mitogen-activated protein kinase inhibitors etc. are available for BC. In addition to these synthetic and semi-synthetic drug therapies, several natural constituents such as alkaloids, sesquiterpenes, polyphenols, flavonoids and diterpenoids from medicinal plants, vegetables and fruits are reported to possess promising anti-cancer activity. The purpose of the present review is to highlight the various signaling pathways through which plants/herbs show the anti-cancer potential especially against the BC. STUDY DESIGN The literature for the present study was collected from various databases such as Pubmed, Scopus, Chemical Abstracts, Medicinal and aromatic plant abstracts, Web of Science etc. The different patent databases were also reviewed for the anti-cancer (BC) potential of the particular herbs/plants and their formulations. RESULT AND CONCLUSION In this review, we have discussed the number of plants along with their patents of different herbal formulations which are being used for the treatment of BC and other types of cancers. We have also delineated the different signaling mechanisms through which they inhibit the growth of BC cells. In nutshell, we can conclude that large numbers of herbs or their extracts are reported for the treatment of BC. But still, there is further need for research in-depth to translate the use of natural products clinically BC treatment.
Collapse
Affiliation(s)
- Vandana Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India; University Institute of Pharmaceutical Sciences (UIPS), Chandigarh University, Mohali, Punjab, India
| | - Deepika Purohit
- Department of Pharmaceutical Sciences, Indira Gandhi University, Rewari 123401, Haryana, India
| | - Ravinder Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University Haryana, Manesar, Panchgaon, Haryana 122412, India; Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Vinay Malik
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohammed W Arafah
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Agnieszka Najda
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegtable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland.
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India.
| |
Collapse
|
12
|
Cheon C, Ko SG. A Phase I Study to Evaluate the Safety of the Herbal Medicine SH003 in Patients With Solid Cancer. Integr Cancer Ther 2021; 19:1534735420911442. [PMID: 32186413 PMCID: PMC7081467 DOI: 10.1177/1534735420911442] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Cancer is a major health problem worldwide and the
leading cause of death in many countries. Preclinical studies have shown the
therapeutic anticancer effects of SH003, a novel herbal medicine containing
Astragalus membranaceus, Angelica gigas, and
Trichosanthes kirilowii. The present study investigated the
maximum tolerated dose of SH003 in patients with solid cancers.
Methods: This open-label, dose-escalation trial used the
traditional 3 + 3 dose-escalation design. Patients with solid cancers were
recruited and administered 1 to 4 tablets of SH003 thrice daily for 3 weeks
according to the dose level. Adverse events were evaluated according to the
Common Terminology Criteria for Adverse Events (CTCAE). Dose-limiting toxicities
(DLTs) were defined as Grade 3 or higher adverse events based on CTCAE. The
maximum tolerated dose was defined as the highest dose at which no more than 1
of 6 patients experienced DLT. Results: The present study enrolled
11 patients. A total of 31 adverse events occurred. According to the CTCAE, all
the observed adverse events were grade 2 or less and no adverse events of grade
3 or more corresponding to DLT occurred. Conclusion: The study
results indicated that the maximum tolerated dose of SH003 was 4800 mg/day. A
Phase 2 study is required to determine the efficacy of SH003 in patients with
cancer at a dose of 4800 mg/day or less.
Collapse
Affiliation(s)
- Chunhoo Cheon
- Department of Korean Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong-Gyu Ko
- Department of Korean Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Wang Y, Yue W, Lang H, Ding X, Chen X, Chen H. Resuming Sensitivity of Tamoxifen-Resistant Breast Cancer Cells to Tamoxifen by Tetrandrine. Integr Cancer Ther 2021; 20:1534735421996822. [PMID: 33660534 PMCID: PMC8164553 DOI: 10.1177/1534735421996822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background: Tamoxifen is one of the medicines for adjuvant endocrine therapy of
hormone-dependent breast cancer. However, development of resistance to
tamoxifen occurs inevitably during treatment. This study aimed to determine
whether sensitivity of tamoxifen-resistant breast cancer cells (TAM-R) could
be reinstated by tetrandrine (Tet). Methods: All experiments were conducted in TAM-R cells derived from the MCF-7 breast
cancer cell line by long-term tamoxifen exposure. Cell growth, apoptosis,
and autophagy were end-points that evaluated the effect of Tet (0.9 μg/ml,
1.8 μg/ml, and 3.75 μg/ml) alone or in combination with TAM (1 μM). Cell
apoptosis was determined by an ELISA assay and autophagy was determined by
fluorescent staining using the Enzo autophagy detection kit. Immunoblotting
was used to evaluate markers for apoptosis, autophagy, and related signal
pathway molecules. Results: Growth of TAM-R cells was significantly inhibited by Tet. Combination of Tet
with tamoxifen induced a greater inhibition on cell growth than tamoxifen
alone, which was predominantly due to enhancement of pro-apoptotic effect of
TAM by Tet. Autophagy was significantly inhibited in TAM-R cells treated
with Tet plus TAM as shown by increased autophagosomes and the levels of
LC3-II and p62. At 0.9 μg/ml, Tet increased the levels of both apoptosis and
autophagy markers. Among them increase in p53 levels was more dramatic. Conclusions: Tet as a monotherapy inhibits TAM-R cells. Tet potentiates the pro-apoptotic
effect of TAM via inhibition of autophagy.
Collapse
Affiliation(s)
- Yuntao Wang
- Beijing Yuyuan Dian of Xingzhitang TCM Clinic, Beijing, China
| | - Wei Yue
- University of Virginia Health System, Charlottesville, VA, USA
| | - Haiyan Lang
- Dongfang Hospital affiliated to Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xiaoqing Ding
- Dongfang Hospital affiliated to Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xinyi Chen
- Dongzhimen Hospital affiliated to Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Haiyan Chen
- Dongfang Hospital affiliated to Beijing University of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
STAT3 and p53: Dual Target for Cancer Therapy. Biomedicines 2020; 8:biomedicines8120637. [PMID: 33371351 PMCID: PMC7767392 DOI: 10.3390/biomedicines8120637] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor p53 is considered the "guardian of the genome" that can protect cells against cancer by inducing cell cycle arrest followed by cell death. However, STAT3 is constitutively activated in several human cancers and plays crucial roles in promoting cancer cell proliferation and survival. Hence, STAT3 and p53 have opposing roles in cellular pathway regulation, as activation of STAT3 upregulates the survival pathway, whereas p53 triggers the apoptotic pathway. Constitutive activation of STAT3 and gain or loss of p53 function due to mutations are the most frequent events in numerous cancer types. Several studies have reported the association of STAT3 and/or p53 mutations with drug resistance in cancer treatment. This review discusses the relationship between STAT3 and p53 status in cancer, the molecular mechanism underlying the negative regulation of p53 by STAT3, and vice versa. Moreover, it underlines prospective therapies targeting both STAT3 and p53 to enhance chemotherapeutic outcomes.
Collapse
|
15
|
Cheon C, Ko SG. Phase I study to evaluate the maximum tolerated dose of the combination of SH003 and docetaxel in patients with solid cancer: A study protocol. Medicine (Baltimore) 2020; 99:e22228. [PMID: 32957363 PMCID: PMC7505292 DOI: 10.1097/md.0000000000022228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Cancer is the second leading cause of death, and the burden of cancer continues to grow globally. Research on the efficacy of combined administration of herbal medicine and anticancer drugs is also increasing. SH003 is a new herbal medicine composed of Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii. SH003 alone up to 4800 mg daily was found to be safe. Preclinical studies have shown SH003 to have a synergistic effect with coadministration of anticancer drugs. This study aimed to determine the maximum tolerated dose of SH003 combined with docetaxel in patients with lung or breast cancer. METHODS This is an open-label, dose-escalation study to evaluate the safety of SH003 combined with docetaxel. Patients with lung or breast cancer will be recruited. The participants will be divided into 3 groups based on SH003 daily dose (2400, 3600, and 4800 mg); the medication will be taken orally for 21 days. The traditional 3 + 3 design will be adopted for the dose escalation. Dose-limiting toxicities are defined as grade 3 or 4 adverse events according to the Common Terminology Criteria for Adverse Events. The highest dose at which no more than 1 of the 6 patients experience dose-limiting toxicity will be determined as the maximum tolerated dose of SH003 combined with docetaxel. DISCUSSION This study investigates the safety of SH003 when combined with docetaxel. The results of this study will provide a safe dose range for conducting therapeutic exploratory trials. TRIAL REGISTRATIONS ClinicalTrials.gov NCT04360317.
Collapse
|
16
|
Kim TW, Cheon C, Ko SG. SH003 activates autophagic cell death by activating ATF4 and inhibiting G9a under hypoxia in gastric cancer cells. Cell Death Dis 2020; 11:717. [PMID: 32879309 PMCID: PMC7468158 DOI: 10.1038/s41419-020-02924-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
In gastric cancer (GC), hypoxia is one of the greatest obstacles to cancer therapy. In this present study, we report that SH003, an herbal formulation, induces ER stress via PERK-ATF4-CHOP signaling in GC. SH003-mediated ER stress inhibits G9a, a histone methyltransferase, by reducing STAT3 phosphorylation and activates autophagy, indicating to the dissociation of Beclin-1 and autophagy initiation from Bcl-2/Beclin-1 complex. However, the inhibition of PERK and CHOP inhibited SH003-induced cell death and autophagy activation. Moreover, targeting autophagy using specific siRNAs of LC3B or p62 or the autophagy inhibitor 3-MA also inhibited SH003-induced cell death in GC. Interestingly, SH003 induces BNIP3-mediated autophagic cell death under hypoxia than normoxia in GC. These findings reveal that SH003-induced ER stress regulates BNIP3-induced autophagic cell death via inhibition of STAT3-G9a axis under hypoxia in GC. Therefore, SH003 may an important tumor therapeutic strategy under hypoxia-mediated chemo-resistance.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Chunhoo Cheon
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
17
|
Choi YK, Kang JI, Han S, Kim YR, Jo J, Kang YW, Choo DR, Hyun JW, Koh YS, Yoo ES, Kang HK. L-Ascorbic Acid Inhibits Breast Cancer Growth by Inducing IRE/JNK/CHOP-Related Endoplasmic Reticulum Stress-Mediated p62/SQSTM1 Accumulation in the Nucleus. Nutrients 2020; 12:nu12051351. [PMID: 32397306 PMCID: PMC7284633 DOI: 10.3390/nu12051351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/24/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022] Open
Abstract
Anticancer effects of L-ascorbic acid (Vitamin C, L-AA) have been reported in various types of cancers. L-AA intake reduces breast cancer recurrence and mortality; however, the role of L-AA in the treatment of breast cancer remains poorly understood. In this study, we investigated the effect and mechanism action of L-AA on breast cancer growth. L-AA inhibited the growth of breast cancer cells by inducing apoptotic cell death at the evaluated treatment concentrations without affecting normal cells. Moreover, L-AA induces autophagosome formation via regulation of mammalian target of rapamycin (mTOR), Beclin1, and autophagy-related genes (ATGs) and increased autophagic flux. Notably, we observed that L-AA increased p62/SQSTM1 (sequestosome 1) protein levels. Accumulation of p62 protein in cancer cells in response to stress has been reported, but its role in cancer regulation remains controversial. Here, we demonstrated that L-AA-induced p62 accumulation is related to L-AA-induced breast cancer growth inhibition. Furthermore, L-AA induced endoplasmic reticulum (ER) stress via the IRE–JNK–CHOP (inositol-requiring endonuclease–c-Jun N-terminal kinase–C/EBP homologous protein) signaling pathways, which increased the nuclear levels of p62/SQSTM1. These findings provide evidence that L-AA-induced ER stress could be crucial for p62 accumulation-dependent cell death, and L-AA can be useful in breast cancer treatment.
Collapse
Affiliation(s)
- Youn Kyung Choi
- Department of Medicine, School of Medicine, Jeju National University 102 Jejudaehakno, Jeju 63243, Korea; (Y.K.C.); (J.-I.K.); (S.H.); (Y.R.K.); (J.J.); (Y.W.K.); (D.R.C.); (J.W.H.); (Y.S.K.); (E.-S.Y.)
| | - Jung-Il Kang
- Department of Medicine, School of Medicine, Jeju National University 102 Jejudaehakno, Jeju 63243, Korea; (Y.K.C.); (J.-I.K.); (S.H.); (Y.R.K.); (J.J.); (Y.W.K.); (D.R.C.); (J.W.H.); (Y.S.K.); (E.-S.Y.)
| | - Sanghoon Han
- Department of Medicine, School of Medicine, Jeju National University 102 Jejudaehakno, Jeju 63243, Korea; (Y.K.C.); (J.-I.K.); (S.H.); (Y.R.K.); (J.J.); (Y.W.K.); (D.R.C.); (J.W.H.); (Y.S.K.); (E.-S.Y.)
| | - Young Ree Kim
- Department of Medicine, School of Medicine, Jeju National University 102 Jejudaehakno, Jeju 63243, Korea; (Y.K.C.); (J.-I.K.); (S.H.); (Y.R.K.); (J.J.); (Y.W.K.); (D.R.C.); (J.W.H.); (Y.S.K.); (E.-S.Y.)
| | - Jaemin Jo
- Department of Medicine, School of Medicine, Jeju National University 102 Jejudaehakno, Jeju 63243, Korea; (Y.K.C.); (J.-I.K.); (S.H.); (Y.R.K.); (J.J.); (Y.W.K.); (D.R.C.); (J.W.H.); (Y.S.K.); (E.-S.Y.)
| | - Yong Woo Kang
- Department of Medicine, School of Medicine, Jeju National University 102 Jejudaehakno, Jeju 63243, Korea; (Y.K.C.); (J.-I.K.); (S.H.); (Y.R.K.); (J.J.); (Y.W.K.); (D.R.C.); (J.W.H.); (Y.S.K.); (E.-S.Y.)
| | - Do Ryeon Choo
- Department of Medicine, School of Medicine, Jeju National University 102 Jejudaehakno, Jeju 63243, Korea; (Y.K.C.); (J.-I.K.); (S.H.); (Y.R.K.); (J.J.); (Y.W.K.); (D.R.C.); (J.W.H.); (Y.S.K.); (E.-S.Y.)
| | - Jin Won Hyun
- Department of Medicine, School of Medicine, Jeju National University 102 Jejudaehakno, Jeju 63243, Korea; (Y.K.C.); (J.-I.K.); (S.H.); (Y.R.K.); (J.J.); (Y.W.K.); (D.R.C.); (J.W.H.); (Y.S.K.); (E.-S.Y.)
- Jeju Research Center for Natural Medicine, Jeju National University; 102 Jejudaehakno, Jeju 63243, Korea
| | - Young Sang Koh
- Department of Medicine, School of Medicine, Jeju National University 102 Jejudaehakno, Jeju 63243, Korea; (Y.K.C.); (J.-I.K.); (S.H.); (Y.R.K.); (J.J.); (Y.W.K.); (D.R.C.); (J.W.H.); (Y.S.K.); (E.-S.Y.)
- Jeju Research Center for Natural Medicine, Jeju National University; 102 Jejudaehakno, Jeju 63243, Korea
| | - Eun-Sook Yoo
- Department of Medicine, School of Medicine, Jeju National University 102 Jejudaehakno, Jeju 63243, Korea; (Y.K.C.); (J.-I.K.); (S.H.); (Y.R.K.); (J.J.); (Y.W.K.); (D.R.C.); (J.W.H.); (Y.S.K.); (E.-S.Y.)
- Jeju Research Center for Natural Medicine, Jeju National University; 102 Jejudaehakno, Jeju 63243, Korea
| | - Hee-Kyoung Kang
- Department of Medicine, School of Medicine, Jeju National University 102 Jejudaehakno, Jeju 63243, Korea; (Y.K.C.); (J.-I.K.); (S.H.); (Y.R.K.); (J.J.); (Y.W.K.); (D.R.C.); (J.W.H.); (Y.S.K.); (E.-S.Y.)
- Jeju Research Center for Natural Medicine, Jeju National University; 102 Jejudaehakno, Jeju 63243, Korea
- Correspondence: ; Tel.:+82-10-6214-5464
| |
Collapse
|
18
|
Lin PH, Chiang YF, Shieh TM, Chen HY, Shih CK, Wang TH, Wang KL, Huang TC, Hong YH, Li SC, Hsia SM. Dietary Compound Isoliquiritigenin, an Antioxidant from Licorice, Suppresses Triple-Negative Breast Tumor Growth via Apoptotic Death Program Activation in Cell and Xenograft Animal Models. Antioxidants (Basel) 2020; 9:antiox9030228. [PMID: 32164337 PMCID: PMC7139602 DOI: 10.3390/antiox9030228] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/16/2020] [Accepted: 03/07/2020] [Indexed: 02/07/2023] Open
Abstract
Patients with triple-negative breast cancer have few therapeutic strategy options. In this study, we investigated the effect of isoliquiritigenin (ISL) on the proliferation of triple-negative breast cancer cells. We found that treatment with ISL inhibited triple-negative breast cancer cell line (MDA-MB-231) cell growth and increased cytotoxicity. ISL reduced cell cycle progression through the reduction of cyclin D1 protein expression and increased the sub-G1 phase population. The ISL-induced apoptotic cell population was observed by flow cytometry analysis. The expression of Bcl-2 protein was reduced by ISL treatment, whereas the Bax protein level increased; subsequently, the downstream signaling molecules caspase-3 and poly ADP-ribose polymerase (PARP) were activated. Moreover, ISL reduced the expression of total and phosphorylated mammalian target of rapamycin (mTOR), ULK1, and cathepsin B, whereas the expression of autophagic-associated proteins p62, Beclin1, and LC3 was increased. The decreased cathepsin B cause the p62 accumulation to induce caspase-8 mediated apoptosis. In vivo studies further showed that preventive treatment with ISL could inhibit breast cancer growth and induce apoptotic and autophagic-mediated apoptosis cell death. Taken together, ISL exerts an effect on the inhibition of triple-negative MDA-MB-231 breast cancer cell growth through autophagy-mediated apoptosis. Therefore, future studies of ISL as a supplement or alternative therapeutic agent for clinical trials against breast cancer are warranted.
Collapse
Affiliation(s)
- Po-Han Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (P.-H.L.); (Y.-F.C.); (H.-Y.C.); (C.-K.S.); (S.-C.L.)
| | - Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (P.-H.L.); (Y.-F.C.); (H.-Y.C.); (C.-K.S.); (S.-C.L.)
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan;
- Department of Dental Hygiene, College of Health Care, China Medical University, Taichung 40402, Taiwan
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (P.-H.L.); (Y.-F.C.); (H.-Y.C.); (C.-K.S.); (S.-C.L.)
| | - Chun-Kuang Shih
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (P.-H.L.); (Y.-F.C.); (H.-Y.C.); (C.-K.S.); (S.-C.L.)
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan;
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan 33305, Taiwan
| | - Kai-Lee Wang
- Department of Nursing, Ching Kuo Institute of Management and Health, Keelung City 20301, Taiwan;
| | - Tsui-Chin Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yong-Han Hong
- Department of Nutrition, I-Shou University, Kaohsiung City 82445, Taiwan;
| | - Sing-Chung Li
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (P.-H.L.); (Y.-F.C.); (H.-Y.C.); (C.-K.S.); (S.-C.L.)
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (P.-H.L.); (Y.-F.C.); (H.-Y.C.); (C.-K.S.); (S.-C.L.)
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 6558)
| |
Collapse
|
19
|
Shan H, Zheng X, Li M. The effects of Astragalus Membranaceus Active Extracts on Autophagy-related Diseases. Int J Mol Sci 2019; 20:E1904. [PMID: 30999666 PMCID: PMC6514605 DOI: 10.3390/ijms20081904] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Autophagy is an evolutionarily conserved 'self-eating' process that maintains cellular, tissue, and organismal homeostasis. New studies on autophagy, mediated by subsets of autophagy proteins, are emerging in many physiological and pathological processes. Astragalus membranaceus (AM), also named Huangqi, is one of the fundamental herbs in traditional Chinese medicine and its extracts have been proved to possess many biological activities related to autophagy, including anti-oxidation, anti-inflammation, anticancer, anti-photoaging, and improvement of cardiomyocyte function. Evidence suggests that AM extracts can have therapeutic potential in autophagy dysregulation-associated diseases because of their biological positive effects. Here we will review the literature concerning the effects of AM extracts on autophagy dysregulation-associated diseases.
Collapse
Affiliation(s)
- Hao Shan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, Guangdong 510006, China.
| | - Xueping Zheng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, Guangdong 510006, China.
| | - Min Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
20
|
Cheon C, Kang S, Ko Y, Kim M, Jang BH, Shin YC, Ko SG. Single-arm, open-label, dose-escalation phase I study to evaluate the safety of a herbal medicine SH003 in patients with solid cancer: a study protocol. BMJ Open 2018; 8:e019502. [PMID: 30082340 PMCID: PMC6078237 DOI: 10.1136/bmjopen-2017-019502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Cancer is a major health problem worldwide and the leading cause of death in many countries. The number of patients with cancer and socioeconomic costs of cancer continues to increase. SH003 is a novel herbal medicine consisting of Astragalus membranaceus, Angelica gigas and Trichosanthes Kirilowii Maximowicz. Preclinical studies have shown that SH003 has therapeutic anticancer effects. The aim of this study is to determine the maximum tolerated dose of SH003 in patients with solid cancers. METHODS AND ANALYSIS This study is an open-label, dose-escalation trial evaluating the safety and tolerability of SH003. The traditional 3+3 dose-escalation design will be implemented. Patients with solid cancers will be recruited. According to dose level, the patients will receive one to four tablets of SH003, three times a day for 3 weeks. Toxicity will be evaluated using common terminology criteria for adverse events (CTCAE). Dose-limiting toxicities are defined as grade 3 or higher adverse events based on CTCAE. The maximum tolerated dose will be determined by the highest dose at which no more than one of six patients experiences dose-limiting toxicity. ETHICS AND DISSEMINATION This study has been approved by the institutional review board of the Ajou University Hospital (reference AJIRB-MED-CT1-16-311). The results of this study will be disseminated through a scientific journal and a conference. TRIAL REGISTRATION NUMBER NCT03081819; Pre-results.
Collapse
Affiliation(s)
- Chunhoo Cheon
- Department of Korean Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sohyeon Kang
- Department of Korean Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Youme Ko
- Department of Korean Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Mia Kim
- Department of Cardiovascular and Neurologic Disease (Stroke Center), College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bo-Hyoung Jang
- Department of Korean Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yong-Cheol Shin
- Department of Korean Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong-Gyu Ko
- Department of Korean Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Isoaaptamine Induces T-47D Cells Apoptosis and Autophagy via Oxidative Stress. Mar Drugs 2018; 16:md16010018. [PMID: 29315210 PMCID: PMC5793066 DOI: 10.3390/md16010018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/22/2017] [Accepted: 01/04/2018] [Indexed: 12/31/2022] Open
Abstract
Aaptos is a genus of marine sponge which belongs to Suberitidae and is distributed in tropical and subtropical oceans. Bioactivity-guided fractionation of Aaptos sp. methanolic extract resulted in the isolation of aaptamine, demethyloxyaaptamine, and isoaaptamine. The cytotoxic activity of the isolated compounds was evaluated revealing that isoaaptamine exhibited potent cytotoxic activity against breast cancer T-47D cells. In a concentration-dependent manner, isoaaptamine inhibited the growth of T-47D cells as indicated by short-(MTT) and long-term (colony formation) anti-proliferative assays. The cytotoxic effect of isoaaptamine was mediated through apoptosis as indicated by DNA ladder formation, caspase-7 activation, XIAP inhibition and PARP cleavage. Transmission electron microscopy and flow cytometric analysis using acridine orange dye indicated that isoaaptamine treatment could induce T-47D cells autophagy. Immunoblot assays demonstrated that isoaaptamine treatment significantly activated autophagy marker proteins such as type II LC-3. In addition, isoaaptamine treatment enhanced the activation of DNA damage (γH2AX) and ER stress-related proteins (IRE1 α and BiP). Moreover, the use of isoaaptamine resulted in a significant increase in the generation of reactive oxygen species (ROS) as well as in the disruption of mitochondrial membrane potential (MMP). The pretreatment of T-47D cells with an ROS scavenger, N-acetyl-l-cysteine (NAC), attenuated the apoptosis and MMP disruption induced by isoaaptamine up to 90%, and these effects were mediated by the disruption of nuclear factor erythroid 2-related factor 2 (Nrf 2)/p62 pathway. Taken together, these findings suggested that the cytotoxic effect of isoaaptamine is associated with the induction of apoptosis and autophagy through oxidative stress. Our data indicated that isoaaptamine represents an interesting drug lead in the war against breast cancer.
Collapse
|
22
|
Choi YJ, Choi YK, Lee KM, Cho SG, Kang SY, Ko SG. SH003 induces apoptosis of DU145 prostate cancer cells by inhibiting ERK-involved pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:507. [PMID: 27927199 PMCID: PMC5142381 DOI: 10.1186/s12906-016-1490-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/17/2016] [Indexed: 01/22/2023]
Abstract
Background Herbal medicines have been used in cancer treatment, with many exhibiting favorable side effect and toxicity profiles compared with conventional chemotherapeutic agents. SH003 is a novel extract from Astragalus membranaceus, Angelica gigas, and Trichosanthes Kirilowii Maximowicz combined at a 1:1:1 ratio that impairs the growth of breast cancer cells. This study investigates anti-cancer effects of SH003 in prostate cancer cells. Methods SH003 extract in 30% ethanol was used to treat the prostate cancer cell lines DU145, LNCaP, and PC-3. Cell viability was determined by MTT and BrdU incorporation assays. Next, apoptotic cell death was determined by Annexin V and 7-AAD double staining methods. Western blotting was conducted to measure protein expression levels of components of cell death and signaling pathways. Intracellular reactive oxygen species (ROS) levels were measured using H2DCF-DA. Plasmid-mediated ERK2 overexpression in DU145 cells was used to examine the effect of rescuing ERK2 function. Results were analyzed using the Student’s t-test and P-values < 0.05 were considered to indicate statistically-significant differences. Results Our data demonstrate that SH003 induced apoptosis in DU145 prostate cancer cells by inhibiting ERK signaling. SH003 induced apoptosis of prostate cancer cells in dose-dependent manner, which was independent of androgen dependency. SH003 also increased intracellular ROS levels but this is not associated with its pro-apoptotic effects. SH003 inhibited phosphorylation of Ras/Raf1/MEK/ERK/p90RSK in androgen-independent DU145 cells, but not androgen-dependent LNCaP and PC-3 cells. Moreover, ERK2 overexpression rescued SH003-induced apoptosis in DU145 cells. Conclusions SH003 induces apoptotic cell death of DU145 prostate cancer cells by inhibiting ERK2-mediated signaling. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1490-5) contains supplementary material, which is available to authorized users.
Collapse
|