1
|
Cao Z, Quazi S, Arora S, Osellame LD, Burvenich IJ, Janes PW, Scott AM. Cancer-associated fibroblasts as therapeutic targets for cancer: advances, challenges, and future prospects. J Biomed Sci 2025; 32:7. [PMID: 39780187 PMCID: PMC11715488 DOI: 10.1186/s12929-024-01099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/09/2024] [Indexed: 01/11/2025] Open
Abstract
Research into cancer treatment has been mainly focused on developing therapies to directly target cancer cells. Over the past decade, extensive studies have revealed critical roles of the tumour microenvironment (TME) in cancer initiation, progression, and drug resistance. Notably, cancer-associated fibroblasts (CAFs) have emerged as one of the primary contributors in shaping TME, creating a favourable environment for cancer development. Many preclinical studies have identified promising targets on CAFs, demonstrating remarkable efficacy of some CAF-targeted treatments in preclinical models. Encouraged by these compelling findings, therapeutic strategies have now advanced into clinical evaluation. We aim to provide a comprehensive review of relevant subjects on CAFs, including CAF-related markers and targets, their multifaceted roles, and current landscape of ongoing clinical trials. This knowledge can guide future research on CAFs and advocate for clinical investigations targeting CAFs.
Collapse
Affiliation(s)
- Zhipeng Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
| | - Sadia Quazi
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Sakshi Arora
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Laura D Osellame
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ingrid J Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Peter W Janes
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
- Department of Medicine, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
2
|
Tsunetoshi Y, Sanada F, Kanemoto Y, Shibata K, Masamune A, Taniyama Y, Yamamoto K, Morishita R. A Role for Periostin Pathological Variants and Their Interaction with HSP70-1a in Promoting Pancreatic Cancer Progression and Chemoresistance. Int J Mol Sci 2024; 25:13205. [PMID: 39684914 DOI: 10.3390/ijms252313205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) characterized by an abundant cancer stroma is an aggressive malignancy with a poor prognosis. Periostin (Pn) is a key extracellular matrix (ECM) protein in various tumor progression. Previously, we described the role of Pn alternative splicing variants (ASVs) with specific functional features in breast cancer. Pn is known to associate with a chemoresistance of PDAC, but the functions of the Pn-ASVs remain largely unknown. In this study, we focused on physiological and pathological Pn-ASVs, and examined the characteristics of Pn-expressing cells and the difference in function of each ASV. We found that cancer-associated fibroblasts (CAFs) are a main source of Pn synthesis, which selectively secrete pathological Pn-ASVs with exon 21 both in mouse and human samples. RNA sequencing identified a gene signature of Pn-positive CAFs associated with ECM-related genes and chemokines, factors that shape the chemoresistance tumor microenvironment (TME). Additionally, only pathological Pn-ASVs interacted with heat shock protein 70-1a (HSP70-1a), leading to significant rescue of gemcitabine-induced PDAC apoptosis. In silico analysis revealed that the presence or absence of exon 21 changes the tertiary structure of Pn and the binding sites for HSP70-1a. Altogether, Pn-ASVs with exon 21 secreted from CAFs play a key role in supporting tumor growth by interacting with cancer cell-derived HSP70-1a, indicating that Pn-ASVs with exon 21 might be a potential therapeutic and diagnostic target in PDAC patients with rich stroma.
Collapse
Affiliation(s)
- Yasuo Tsunetoshi
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Fumihiro Sanada
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Yuko Kanemoto
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Kana Shibata
- Department of Advanced Molecular Therapy, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Yoshiaki Taniyama
- Department of Advanced Molecular Therapy, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
3
|
Eyuboglu S, Alpsoy S, Uversky VN, Coskuner-Weber O. Key genes and pathways in the molecular landscape of pancreatic ductal adenocarcinoma: A bioinformatics and machine learning study. Comput Biol Chem 2024; 113:108268. [PMID: 39467488 DOI: 10.1016/j.compbiolchem.2024.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is recognized for its aggressive nature, dismal prognosis, and a notably low five-year survival rate, underscoring the critical need for early detection methods and more effective therapeutic approaches. This research rigorously investigates the molecular mechanisms underlying PDAC, with a focus on the identification of pivotal genes and pathways that may hold therapeutic relevance and prognostic value. Through the construction of a protein-protein interaction (PPI) network and the examination of differentially expressed genes (DEGs), the study uncovers key hub genes such as CDK1, KIF11, and BUB1, demonstrating their substantial role in the pathogenesis of PDAC. Notably, the dysregulation of these genes is consistent across a spectrum of cancers, positing them as potential targets for wide-ranging cancer therapeutics. This study also brings to the fore significant genes encoding intrinsically disordered proteins, in particular GPRC5A and KRT7, unveiling promising new pathways for therapeutic intervention. Advanced machine learning techniques were harnessed to classify PDAC patients with high accuracy, utilizing the key genetic markers as a dataset. The Support Vector Machine (SVM) model leveraged the hub genes to achieve a sensitivity of 91 % and a specificity of 85 %, while the RandomForest model notched a sensitivity of 91 % and specificity of 92.5 %. Crucially, when the identified genes were cross-referenced with TCGA-PAAD clinical datasets, a tangible correlation with patient survival rates was discovered, reinforcing the potential of these genes as prognostic biomarkers and their viability as targets for therapeutic intervention. This study's findings serve as a potent testament to the value of molecular analysis in enhancing the understanding of PDAC and in advancing the pursuit for more effective diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Sinan Eyuboglu
- Turkish-German University, Molecular Biotechnology, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey
| | - Semih Alpsoy
- Turkish-German University, Molecular Biotechnology, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey
| | - Vladimir N Uversky
- USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Orkid Coskuner-Weber
- Turkish-German University, Molecular Biotechnology, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey.
| |
Collapse
|
4
|
Affὸ S, Sererols-Viñas L, Garcia-Vicién G, Cadamuro M, Chakraborty S, Sirica AE. Cancer-Associated Fibroblasts in Intrahepatic Cholangiocarcinoma: Insights into Origins, Heterogeneity, Lymphangiogenesis, and Peritoneal Metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00279-7. [PMID: 39117110 DOI: 10.1016/j.ajpath.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) denotes a rare, highly malignant, and heterogeneous class of primary liver adenocarcinomas exhibiting phenotypic characteristics of cholangiocyte differentiation. Among the distinctive pathological features of iCCA, one that differentiates the most common macroscopic subtype (eg, mass-forming type) of this hepatic tumor from conventional hepatocellular carcinoma, is a prominent desmoplastic reaction manifested as a dense fibro-collagenous-enriched tumor stroma. Cancer-associated fibroblasts (CAFs) represent the most abundant mesenchymal cell type in the desmoplastic reaction. Although the protumor effects of CAFs in iCCA have been increasingly recognized, more recent cell lineage tracing studies, advanced single-cell RNA sequencing, and expanded biomarker analyses have provided new awareness into their ontogeny, as well as underscored their biological complexity as reflected by the presence of multiple subtypes. In addition, evidence has been described to support CAFs' potential to display cancer-restrictive roles, including immunosuppression. However, CAFs also play important roles in facilitating metastasis, as exemplified by lymph node metastasis and peritoneal carcinomatosis, which are common in iCCA. Herein, the authors provide a timely appraisal of the origins and phenotypic and functional complexity of CAFs in iCCA, together with providing mechanistic insights into lymphangiogenesis and peritoneal metastasis relevant to this lethal human cancer.
Collapse
Affiliation(s)
- Silvia Affὸ
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Laura Sererols-Viñas
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gemma Garcia-Vicién
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Sanjukta Chakraborty
- Department of Medical Physiology, School of Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Alphonse E Sirica
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, Virginia.
| |
Collapse
|
5
|
Chen Y, Zhang F, Zhang B, Trojanowicz B, Hämmerle M, Kleeff J, Sunami Y. Periostin is associated with prognosis and immune cell infiltration in pancreatic adenocarcinoma based on integrated bioinformatics analysis. Cancer Rep (Hoboken) 2024; 7:e1990. [PMID: 38389400 PMCID: PMC10884618 DOI: 10.1002/cnr2.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/13/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most aggressive human malignancies. Previous research has shown that periostin (POSTN) promotes pancreatic cancer cell proliferation, migration, and invasion. Further, POSTN is involved in tumor microenvironment remodeling during tumor progression. However, the relationship between POSTN expression, immune cell infiltration, and the efficacy of immunotherapy in pancreatic cancer is unclear. METHODS We conducted a comprehensive evaluation of POSTN differential expression, examining mRNA and protein levels. To gather data, we utilized various databases including gene expression profiling interactive analysis 2 (GEPIA2), gene expression omnibus (GEO), and the human protein atlas (HPA). To investigate the correlation between POSTN expression and clinical characteristics, we analyzed data from the Kaplan-Meier plotter database and clinical data sourced from the cancer genome atlas (TCGA). Furthermore, we performed gene ontology (GO) analysis, Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, and gene set enrichment analysis (GSEA). Additionally, we explored the relationship between POSTN expression and immune cell infiltration, as well as the immunophenoscore (IPS), by leveraging the cancer immunome atlas (TCIA) database. Lastly, we examined the tumor mutational burden (TMB) in pancreatic cancer in relation to POSTN expression. RESULTS When compared with healthy pancreatic tissues, pancreatic cancer tissues displayed significantly higher levels of POSTN, which was indicative of a worse prognosis. POSTN expression was closely associated with extracellular matrix (ECM) organization, ECM-receptor interaction, and focal adhesion by GO, KEGG pathway, and GSEA analyses. Higher expression of POSTN was associated with increased infiltration of M2 macrophages. Additionally, increased IPS was linked to lower POSTN expression. IPS scores for CTLA4, PD-1/PDL1, and CTLA4/PD-1/PDL1 immune checkpoint inhibitors were also higher in the POSTN-low expression group, suggesting that lower expression of POSTN is associated with a better outcome with checkpoint inhibitor treatment. CONCLUSION POSTN is related to pancreatic cancer prognosis, and may influence immune cell infiltration. High expression of POSTN is predicted to correlate with lower sensitivity to immunotherapy with checkpoint inhibitors in pancreatic cancer.
Collapse
Affiliation(s)
- Yijun Chen
- Department of Visceral, Vascular and Endocrine SurgeryMartin‐Luther‐University Halle‐Wittenberg, University Medical Center HalleHalle (Saale)Germany
| | - Fengyu Zhang
- School of Biomedical Engineering and TechnologyTianjin Medical UniversityTianjinChina
| | - Bolin Zhang
- Department of Visceral, Vascular and Endocrine SurgeryMartin‐Luther‐University Halle‐Wittenberg, University Medical Center HalleHalle (Saale)Germany
| | - Bogusz Trojanowicz
- Department of Visceral, Vascular and Endocrine SurgeryMartin‐Luther‐University Halle‐Wittenberg, University Medical Center HalleHalle (Saale)Germany
| | - Monika Hämmerle
- Institute of Pathology, Martin‐Luther‐University Halle‐WittenbergUniversity Medical Center HalleHalle (Saale)Germany
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine SurgeryMartin‐Luther‐University Halle‐Wittenberg, University Medical Center HalleHalle (Saale)Germany
| | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine SurgeryMartin‐Luther‐University Halle‐Wittenberg, University Medical Center HalleHalle (Saale)Germany
| |
Collapse
|
6
|
Bahadorimonfared A, Farahani M, Rezaei Tavirani M, Razzaghi Z, Arjmand B, Rezaei M, Nikzamir A, Ehsani Ardakani MJ, Mansouri V. Stage analysis of pancreatic ductal adenocarcinoma via network analysis. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2024; 17:297-3030. [PMID: 39308540 PMCID: PMC11413388 DOI: 10.22037/ghfbb.v17i3.2887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/02/2024] [Indexed: 09/25/2024]
Abstract
Aim This study aimed to introduce a biomarker panel to detect pancreatic ductal adenocarcinoma (PDAC) in the early stage, and also differentiate of stages from each other. Background PDAC is a lethal cancer with poor prognosis and overall survival. Methods Gene expression profiles of PDAC patients were extracted from the Gene Expression Omnibus (GEO) database. The genes that were significantly differentially expressed (DEGs) for Stages I, II, and III in comparison to the healthy controls were identified. The determined DEGs were assessed via protein-protein interaction (PPI) network analysis, and the hub-bottleneck nodes of analyzed networks were introduced. Results A number of 140, 874, and 1519 significant DEGs were evaluated via PPI network analysis. A biomarker panel including ALB, CTNNB1, COL1A1, POSTN, LUM, and ANXA2 is presented as a biomarker panel to detect PDAC in the early stage. Two biomarker panels are suggested to recognize other stages of illness. Conclusion It can be concluded that ALB, CTNNB1, COL1A1, POSTN, LUM, and ANXA2 and also FN1, HSP90AA1, LOX, ANXA5, SERPINE1, and WWP2 beside GAPDH, AKT1, EGF, CASP3 are suitable sets of gene to separate stages of PDAC.
Collapse
Affiliation(s)
- Ayad Bahadorimonfared
- Department of Health & Community Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farahani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Iranian Cancer Control Center (MACSA), Tehran, Iran
| | - Mitra Rezaei
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolrahim Nikzamir
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Disease, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Ehsani Ardakani
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Lyu SI, Krey T, Damanakis AI, Zhao Y, Bruns CJ, Schmidt T, Popp FC, Quaas A, Knipper K. Cytokeratin 6 identifies basal-like subtypes of pancreatic ductal adenocarcinoma with decreased survival. J Cancer Res Clin Oncol 2023; 149:7539-7546. [PMID: 36971797 PMCID: PMC10374670 DOI: 10.1007/s00432-023-04702-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023]
Abstract
PURPOSE Rising incidence of pancreatic ductal adenocarcinoma (PDAC) bind with insufficient therapy options showcases a great medical challenge. Further biomarkers are required to identify patients, who will benefit from more aggressive therapy. METHODS 320 patients were included by the PANCALYZE study group. Cytokeratin 6 (CK6) immunohistochemical staining as a putative marker for the basal-like subtype of PDAC was performed. The correlation between CK6 expression patterns and survival data, as well as various markers of the (inflammatory) tumor microenvironment, were analyzed. RESULTS We divided the study population based on the expression pattern of CK6. Patients with a high CK6 tumor expression had a significantly shorter survival (p = 0.013), confirmed in a multivariate cox regression model. CK6-expression is an independent marker for a decreased overall survival (HR = 1.655, 95% CI 1.158-2.365, p = 0.006). In addition, the CK6-positive tumors showed significantly less plasma cell infiltration and more cancer-associated fibroblasts (CAFs) expressing Periostin and SMA. CONCLUSIONS CK6 could be considered as an independent biomarker for a shorter overall survival. CK6 is a clinically easily accessible biomarker for the identification of the basal-like subtype of PDAC. Therefore, it could be taken into consideration in deciding for the more aggressive therapy regimes. Prospectively, studies addressing the chemosensitive characteristics of this subtype are required.
Collapse
Affiliation(s)
- Su Ir Lyu
- Institute of Pathology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Thaddaeus Krey
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Alexander I Damanakis
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Christiane J Bruns
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Felix C Popp
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Karl Knipper
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
8
|
Knipper K, Damanakis AI, Zhao Y, Bruns CJ, Schmidt T, Popp FC, Quaas A, Lyu SI. Specific Subtypes of Carcinoma-Associated Fibroblasts Are Correlated with Worse Survival in Resectable Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:cancers15072049. [PMID: 37046710 PMCID: PMC10093167 DOI: 10.3390/cancers15072049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
PURPOSE The pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancer entities. Effective therapy options are still lacking. The tumor microenvironment possibly bears further treatment possibilities. This study aimed to describe the expression patterns of four established carcinoma-associated fibroblast (CAFs) markers and their correlation in PDAC tissue samples. METHODS This project included 321 patients with PDAC who underwent surgery with a curative intent in one of the PANCALYZE study centers. Immunohistochemical stainings for FAP, PDGFR, periostin, and SMA were performed. The expression patterns of each marker were divided into low- and high-expressing CAFs and correlated with patients' survival. RESULTS Tumors showing SMAhigh-, PeriostinhighSMAhigh-, or PeriostinhighSMAlowPDGFRlowFAPhigh-positive CAFs demonstrated significantly worse survival. Additionally, a high expression of SMA in PDAC tissue samples was shown to be an independent risk factor for worse survival. CONCLUSION This project identified three subgroups of PDAC with different expression patterns of CAF markers which showed significantly worse survival. This could be the base for the further characterization of the fibroblast subgroups in PDAC and contribute to the development of new targeted therapy options against CAFs.
Collapse
Affiliation(s)
- Karl Knipper
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Alexander I Damanakis
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Christiane J Bruns
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Felix C Popp
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Su Ir Lyu
- Institute of Pathology, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
9
|
Ishibashi Y, Mochizuki S, Horiuchi K, Tsujimoto H, Kouzu K, Kishi Y, Okada Y, Ueno H. Periostin derived from cancer-associated fibroblasts promotes esophageal squamous cell carcinoma progression via ADAM17 activation. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166669. [PMID: 36813090 DOI: 10.1016/j.bbadis.2023.166669] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Periostin (POSTN) is a matricellular protein that was originally identified in osteoblasts. Past studies have shown that POSTN is also preferentially expressed in cancer-associated fibroblasts (CAFs) in various types of cancer. We previously demonstrated that the increased expression of POSTN in stromal tissues is associated with an unfavorable clinical outcome in esophageal squamous cell carcinoma (ESCC) patients. In this study, we aimed to elucidate the role of POSNT in ESCC progression and its underlying molecular mechanism. We found that POSTN is predominantly produced by CAFs in ESCC tissues, and that CAFs-cultured media significantly promoted the migration, invasion, proliferation, and colony formation of ESCC cell lines in a POSTN-dependent manner. In ESCC cells, POSTN increased the phosphorylation of ERK1/2 and stimulated the expression and activity of a disintegrin and metalloproteinase 17 (ADAM17), which is critically involved in tumorigenesis and tumor progression. The effects of POSTN on ESCC cells were suppressed by interfering with the binding of POSTN to integrin αvβ3 or αvβ5 using neutralizing antibody against POSTN. Taken together, our data show that CAFs-derived POSTN stimulates ADAM17 activity through activation of the integrin αvβ3 or αvβ5-ERK1/2 pathway and thereby contributes to the progression of ESCC.
Collapse
Affiliation(s)
- Yusuke Ishibashi
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Satsuki Mochizuki
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hironori Tsujimoto
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Keita Kouzu
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yoji Kishi
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideki Ueno
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
10
|
Opitz FV, Haeberle L, Daum A, Esposito I. Tumor Microenvironment in Pancreatic Intraepithelial Neoplasia. Cancers (Basel) 2021; 13:cancers13246188. [PMID: 34944807 PMCID: PMC8699458 DOI: 10.3390/cancers13246188] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive neoplasm with a poor survival rate. This is mainly due to late detection, which substantially limits therapy options. A better understanding of the early phases of pancreatic carcinogenesis is fundamental for improving patient prognosis in the future. In this article, we focused on the tumor microenvironment (TME), which provides the biological niche for the development of PDAC from its most common precursor lesions, PanIN (pancreatic intraepithelial neoplasias). Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors with a poor prognosis. A characteristic of PDAC is the formation of an immunosuppressive tumor microenvironment (TME) that facilitates bypassing of the immune surveillance. The TME consists of a desmoplastic stroma, largely composed of cancer-associated fibroblasts (CAFs), immunosuppressive immune cells, immunoregulatory soluble factors, neural network cells, and endothelial cells with complex interactions. PDAC develops from various precursor lesions such as pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasms (IPMN), mucinous cystic neoplasms (MCN), and possibly, atypical flat lesions (AFL). In this review, we focus on the composition of the TME in PanINs to reveal detailed insights into the complex restructuring of the TME at early time points in PDAC progression and to explore ways of modifying the TME to slow or even halt tumor progression.
Collapse
|
11
|
Liu Y, Tang T, Yang X, Qin P, Wang P, Zhang H, Bai M, Wu R, Li F. Tumor-derived exosomal long noncoding RNA LINC01133, regulated by Periostin, contributes to pancreatic ductal adenocarcinoma epithelial-mesenchymal transition through the Wnt/β-catenin pathway by silencing AXIN2. Oncogene 2021; 40:3164-3179. [PMID: 33824474 PMCID: PMC8084735 DOI: 10.1038/s41388-021-01762-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/24/2021] [Accepted: 03/17/2021] [Indexed: 02/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignancies and rapidly progressive diseases. Exosomes and long noncoding RNAs (lncRNAs) are emerging as vital mediators in tumor cells and their microenvironment. However, the detailed roles and mechanisms of exosomal lncRNAs in PDAC progression remain unknown. Here, we aimed to clarify the clinical significance and mechanisms of exosomal lncRNA 01133 (LINC01133) in PDAC. We analyzed the expression of LINC01133 in PDAC and found that exosomal LINC01133 expression was high and positively correlated with higher TNM stage and poor overall survival rate of PDAC patients. Further research demonstrated that Periostin could increase exosome secretion and then enhance LINC01133 expression. In addition, Periostin increased p-EGFR, p-Erk, and c-myc expression, and c-myc could bind to the LINC01133 promoter region. These findings suggested that LINC01133 can be regulated by Periostin via EGFR pathway activity. We also observed that LINC01133 promoted the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. We subsequently evaluated the effect of LINC01133 on the Wnt/β-catenin pathway and confirmed that LINC01133 can interact with Enhancer Of Zeste Homolog 2 (EZH2) and then promote H3K27 trimethylation. This can further silence AXIN2 and suppress GSK3 activity, ultimately activating β-catenin. Collectively, these data indicate that exosomal LINC01133 plays an important role in pancreatic tumor progression, and targeting LINC01133 may provide a potential treatment strategy for PDAC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tianchi Tang
- Department of Neurosurgery, Affiliated Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaosheng Yang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Qin
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Pusen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiping Zhang
- Department of Ultrasound, Shanghai Changning Maternity and Infant Health Hospital/Maternity and Infant Health Hospital affiliated East China Normal University, Shanghai, China
| | - Min Bai
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rong Wu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Fan Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Stellate Cells Aid Growth-Permissive Metabolic Reprogramming and Promote Gemcitabine Chemoresistance in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13040601. [PMID: 33546284 PMCID: PMC7913350 DOI: 10.3390/cancers13040601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The great majority, more than 90%, of patients with pancreatic ductal adenocarcinoma (PDAC) die within less than five years after detection of the disease, despite recent treatment advances. The poor prognosis is related to late diagnosis, aggressive disease progression, and tumor resistance to conventional chemotherapy. PDAC tumor tissue is characterized by dense fibrosis and poor nutrient availability. A large portion of the tumor is made up of stromal fibroblasts, the pancreatic stellate cells (PSCs), which are known to contribute to tumor progression in several ways. PSCs have been shown to act as an alternate energy source, induce drug resistance, and inhibit drug availability in tumor cells, however, the underlying exact molecular mechanisms remain unknown. In this literature review, we discuss recent available knowledge about the contributions of PSCs to the overall progression of PDAC via changes in tumor metabolism and how this is linked to therapy resistance. Abstract Pancreatic ductal adenocarcinoma (PDAC), also known as pancreatic cancer (PC), is characterized by an overall poor prognosis and a five-year survival that is less than 10%. Characteristic features of the tumor are the presence of a prominent desmoplastic stromal response, an altered metabolism, and profound resistance to cancer drugs including gemcitabine, the backbone of PDAC chemotherapy. The pancreatic stellate cells (PSCs) constitute the major cellular component of PDAC stroma. PSCs are essential for extracellular matrix assembly and form a supportive niche for tumor growth. Various cytokines and growth factors induce activation of PSCs through autocrine and paracrine mechanisms, which in turn promote overall tumor growth and metastasis and induce chemoresistance. To maintain growth and survival in the nutrient-poor, hypoxic environment of PDAC, tumor cells fulfill their high energy demands via several unconventional ways, a process generally referred to as metabolic reprogramming. Accumulating evidence indicates that activated PSCs not only contribute to the therapy-resistant phenotype of PDAC but also act as a nutrient supplier for the tumor cells. However, the precise molecular links between metabolic reprogramming and an acquired therapy resistance in PDAC remain elusive. This review highlights recent findings indicating the importance of PSCs in aiding growth-permissive metabolic reprogramming and gemcitabine chemoresistance in PDAC.
Collapse
|
13
|
Stromal Protein-Mediated Immune Regulation in Digestive Cancers. Cancers (Basel) 2021; 13:cancers13010146. [PMID: 33466303 PMCID: PMC7795083 DOI: 10.3390/cancers13010146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Solid cancers are surrounded by a network of non-cancerous cells comprising different cell types, including fibroblasts, and acellular protein structures. This entire network is called the tumor microenvironment (TME) and it provides a physical barrier to the tumor shielding it from infiltrating immune cells, such as lymphocytes, or therapeutic agents. In addition, the TME has been shown to dampen efficient immune responses of infiltrated immune cells, which are key in eliminating cancer cells from the organism. In this review, we will discuss how TME proteins in particular are involved in this dampening effect, known as immunosuppression. We will focus on three different types of digestive cancers: pancreatic cancer, colorectal cancer, and gastric cancer. Moreover, we will discuss current therapeutic approaches using TME proteins as targets to reverse their immunosuppressive effects. Abstract The stromal tumor microenvironment (TME) consists of immune cells, vascular and neural structures, cancer-associated fibroblasts (CAFs), as well as extracellular matrix (ECM), and favors immune escape mechanisms promoting the initiation and progression of digestive cancers. Numerous ECM proteins released by stromal and tumor cells are crucial in providing physical rigidity to the TME, though they are also key regulators of the immune response against cancer cells by interacting directly with immune cells or engaging with immune regulatory molecules. Here, we discuss current knowledge of stromal proteins in digestive cancers including pancreatic cancer, colorectal cancer, and gastric cancer, focusing on their functions in inhibiting tumor immunity and enabling drug resistance. Moreover, we will discuss the implication of stromal proteins as therapeutic targets to unleash efficient immunotherapy-based treatments.
Collapse
|
14
|
Boucher J, Balandre AC, Debant M, Vix J, Harnois T, Bourmeyster N, Péraudeau E, Chépied A, Clarhaut J, Debiais F, Monvoisin A, Cronier L. Cx43 Present at the Leading Edge Membrane Governs Promigratory Effects of Osteoblast-Conditioned Medium on Human Prostate Cancer Cells in the Context of Bone Metastasis. Cancers (Basel) 2020; 12:cancers12103013. [PMID: 33081404 PMCID: PMC7602984 DOI: 10.3390/cancers12103013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In its late stages, prostate cancer (PCa) is characterized by a high propensity to form osteoblastic bone metastases, mainly treated by palliative approaches. In a previous work, we demonstrated that a gap junctional protein, connexin43 (Cx43) is implicated both in the increase of aggressiveness of PCa cells and in their impact on bone. To analyze the reciprocal part of the dialogue, the current study addresses the role of Cx43 in the impact of bone microenvironment on PCa cells abilities. Using Cx43-overexpressing PCa cell lines, we determined that Cx43 is necessary for promigratory effect induced by osteoblastic conditioned media (ObCM) on individual cells. Next, we demonstrated the requirement of Cx43 membrane localization at the leading edge and the involvement of the cytoplasmic part in this ObCM-induced migration. Overall, our findings precise the role of Cx43 during PCa progression and its putative use as aggressiveness marker and as potential therapeutic targets. Abstract Among the different interacting molecules implicated in bone metastases, connexin43 (Cx43) may increase sensitivity of prostate cancer (PCa) cells to bone microenvironment, as suggested by our in silico and human tissue samples analyses that revealed increased level of Cx43 expression with PCa progression and a Cx43 specific expression in bone secondary sites. The goal of the present study was to understand how Cx43 influences PCa cells sensitivity and aggressiveness to bone microenvironment. By means of Cx43-overexpressing PCa cell lines, we revealed a Cx43-dependent promigratory effect of osteoblastic conditioned media (ObCM). This effect on directional migration relied on the presence of Cx43 at the plasma membrane and not on gap junctional intercellular communication and hemichannel functions. ObCM stimulation induced Rac1 activation and Cx43 interaction with cortactin in protrusions of migrating PCa cells. Finally, by transfecting two different truncated forms of Cx43 in LNCaP cells, we determined that the carboxy terminal (CT) part of Cx43 is crucial for the responsiveness of PCa cells to ObCM. Our study demonstrates that Cx43 level and its membrane localization modulate the phenotypic response of PCa cells to osteoblastic microenvironment and that its CT domain plays a pivotal role.
Collapse
Affiliation(s)
- Jonathan Boucher
- CNRS ERL7003, Laboratory Signalisation et Transports Ioniques Membranaires (STIM), University of Poitiers, 1 rue Georges Bonnet, TSA 51106, CEDEX 09, 86073 Poitiers, France; (J.B.); (A.-C.B.); (M.D.); (J.V.); (T.H.); (N.B.); (F.D.); (A.M.)
| | - Annie-Claire Balandre
- CNRS ERL7003, Laboratory Signalisation et Transports Ioniques Membranaires (STIM), University of Poitiers, 1 rue Georges Bonnet, TSA 51106, CEDEX 09, 86073 Poitiers, France; (J.B.); (A.-C.B.); (M.D.); (J.V.); (T.H.); (N.B.); (F.D.); (A.M.)
| | - Marjolaine Debant
- CNRS ERL7003, Laboratory Signalisation et Transports Ioniques Membranaires (STIM), University of Poitiers, 1 rue Georges Bonnet, TSA 51106, CEDEX 09, 86073 Poitiers, France; (J.B.); (A.-C.B.); (M.D.); (J.V.); (T.H.); (N.B.); (F.D.); (A.M.)
| | - Justine Vix
- CNRS ERL7003, Laboratory Signalisation et Transports Ioniques Membranaires (STIM), University of Poitiers, 1 rue Georges Bonnet, TSA 51106, CEDEX 09, 86073 Poitiers, France; (J.B.); (A.-C.B.); (M.D.); (J.V.); (T.H.); (N.B.); (F.D.); (A.M.)
- Department of Rheumatology, University Hospital Center of Poitiers, 2 Rue de la Milétrie, 86021 Poitiers, France
| | - Thomas Harnois
- CNRS ERL7003, Laboratory Signalisation et Transports Ioniques Membranaires (STIM), University of Poitiers, 1 rue Georges Bonnet, TSA 51106, CEDEX 09, 86073 Poitiers, France; (J.B.); (A.-C.B.); (M.D.); (J.V.); (T.H.); (N.B.); (F.D.); (A.M.)
| | - Nicolas Bourmeyster
- CNRS ERL7003, Laboratory Signalisation et Transports Ioniques Membranaires (STIM), University of Poitiers, 1 rue Georges Bonnet, TSA 51106, CEDEX 09, 86073 Poitiers, France; (J.B.); (A.-C.B.); (M.D.); (J.V.); (T.H.); (N.B.); (F.D.); (A.M.)
| | - Elodie Péraudeau
- University Hospital Center of Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France; (E.P.); (J.C.)
- CNRS UMR 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), University of Poitiers, 4 Rue Michel Brunet, TSA 51106, CEDEX 09, 86073 Poitiers, France
| | - Amandine Chépied
- Laboratory of Experimental and Clinical Neurosciences, LNEC-INSERM U1084, UBM-Laboratoire de Cancérologie Biologique, CHU de Poitiers, 2 Rue de la Milétrie, 86000 Poitiers, France;
| | - Jonathan Clarhaut
- University Hospital Center of Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France; (E.P.); (J.C.)
- CNRS UMR 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), University of Poitiers, 4 Rue Michel Brunet, TSA 51106, CEDEX 09, 86073 Poitiers, France
| | - Françoise Debiais
- CNRS ERL7003, Laboratory Signalisation et Transports Ioniques Membranaires (STIM), University of Poitiers, 1 rue Georges Bonnet, TSA 51106, CEDEX 09, 86073 Poitiers, France; (J.B.); (A.-C.B.); (M.D.); (J.V.); (T.H.); (N.B.); (F.D.); (A.M.)
- Department of Rheumatology, University Hospital Center of Poitiers, 2 Rue de la Milétrie, 86021 Poitiers, France
| | - Arnaud Monvoisin
- CNRS ERL7003, Laboratory Signalisation et Transports Ioniques Membranaires (STIM), University of Poitiers, 1 rue Georges Bonnet, TSA 51106, CEDEX 09, 86073 Poitiers, France; (J.B.); (A.-C.B.); (M.D.); (J.V.); (T.H.); (N.B.); (F.D.); (A.M.)
| | - Laurent Cronier
- CNRS ERL7003, Laboratory Signalisation et Transports Ioniques Membranaires (STIM), University of Poitiers, 1 rue Georges Bonnet, TSA 51106, CEDEX 09, 86073 Poitiers, France; (J.B.); (A.-C.B.); (M.D.); (J.V.); (T.H.); (N.B.); (F.D.); (A.M.)
- Correspondence: ; Tel.: +33-5-49-45-37-52
| |
Collapse
|
15
|
Ko J, Stuart CE, Modesto AE, Cho J, Bharmal SH, Petrov MS. Chronic Pancreatitis Is Characterized by Elevated Circulating Periostin Levels Related to Intra-Pancreatic Fat Deposition. J Clin Med Res 2020; 12:568-578. [PMID: 32849945 PMCID: PMC7430919 DOI: 10.14740/jocmr4279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Background Periostin is a matricellular protein that induces fibrillogenesis and activates cell migration. It is overexpressed in common fibrotic diseases and is also associated with abdominal adiposity/ectopic fat phenotypes. The study aimed to investigate circulating levels of periostin in health and after an attack of pancreatitis, as well as their associations with abdominal adiposity/ectopic fat phenotypes. Methods Blood samples were obtained from healthy controls, as well as definite chronic pancreatitis (CP) and acute pancreatitis (AP) individuals during follow-up visits. Fat depositions in the pancreas, liver, skeletal muscle, as well as visceral and subcutaneous fat volumes, were quantified with the use of magnetic resonance imaging. A series of multivariable analyses were conducted, accounting for possible confounders. Results A total of 121 individuals were included. Periostin levels were significantly higher in the CP group compared with the other groups in both unadjusted (F = 3.211, P = 0.044) and all adjusted models (F = 4.165, P = 0.019 in the most adjusted model). Intra-pancreatic fat deposition (but not the other fat phenotypes) was significantly associated with periostin concentration in the CP group (β = 49.63, P = 0.034) and explained most of its variance (32.0%). Conclusions Individuals with CP, but not healthy individuals or those after clinical resolution of AP, are characterized by elevated circulating levels of periostin that are positively associated with intra-pancreatic fat deposition.
Collapse
Affiliation(s)
- Juyeon Ko
- School of Medicine, University of Auckland, Auckland, New Zealand
| | | | - Andre E Modesto
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Jaelim Cho
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Sakina H Bharmal
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand.,Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
16
|
Hadden M, Mittal A, Samra J, Zreiqat H, Sahni S, Ramaswamy Y. Mechanically stressed cancer microenvironment: Role in pancreatic cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1874:188418. [PMID: 32827581 DOI: 10.1016/j.bbcan.2020.188418] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/21/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies in the world due to its insensitivity to current therapies and its propensity to metastases from the primary tumor mass. This is largely attributed to its complex microenvironment composed of unique stromal cell populations and extracellular matrix (ECM). The recruitment and activation of these cell populations cause an increase in deposition of ECM components, which highly influences the behavior of malignant cells through disrupted forms of signaling. As PDAC progresses from premalignant lesion to invasive carcinoma, this dynamic landscape shields the mass from immune defenses and cytotoxic intervention. This microenvironment influences an invasive cell phenotype through altered forms of mechanical signaling, capable of enacting biochemical changes within cells through activated mechanotransduction pathways. The effects of altered mechanical cues on malignant cell mechanotransduction have long remained enigmatic, particularly in PDAC, whose microenvironment significantly changes over time. A more complete and thorough understanding of PDAC's physical surroundings (microenvironment), mechanosensing proteins, and mechanical properties may help in identifying novel mechanisms that influence disease progression, and thus, provide new potential therapeutic targets.
Collapse
Affiliation(s)
- Matthew Hadden
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia
| | - Anubhav Mittal
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; Australian Pancreatic Centre, St Leonards, Sydney, Australia
| | - Jaswinder Samra
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; Australian Pancreatic Centre, St Leonards, Sydney, Australia
| | - Hala Zreiqat
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia; ARC Training Centre for Innovative Bioengineering, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sumit Sahni
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; Australian Pancreatic Centre, St Leonards, Sydney, Australia.
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
17
|
Sahni S, Nahm C, Krisp C, Molloy MP, Mehta S, Maloney S, Itchins M, Pavlakis N, Clarke S, Chan D, Gill AJ, Howell VM, Samra J, Mittal A. Identification of Novel Biomarkers in Pancreatic Tumor Tissue to Predict Response to Neoadjuvant Chemotherapy. Front Oncol 2020; 10:237. [PMID: 32195182 PMCID: PMC7064619 DOI: 10.3389/fonc.2020.00237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/12/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Neoadjuvant chemotherapy (NAC) has been of recent interest as an alternative to upfront surgery followed by adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma (PDAC). However, a subset of patients does not respond to NAC and may have been better managed by upfront surgery. Hence, there is an unmet need for accurate biomarkers for predicting NAC response in PDAC. We aimed to identify upregulated proteins in tumor tissue from poor- and good-NAC responders. Methods: Tumor and adjacent pancreas tissue samples were obtained following surgical resection from NAC-treated PDAC patients. SWATH-MS proteomic analysis was performed to identify and quantify proteins in tissue samples. Statistical analysis was performed to identify biomarkers for NAC response. Pathway analysis was performed to characterize affected canonical pathways in good- and poor-NAC responders. Results: A total of 3,156 proteins were identified, with 19 being were significantly upregulated in poor-responders compared to good-responders (log2 ratio > 2, p < 0.05). Those with the greatest ability to predict poor-NAC response were GRP78, CADM1, PGES2, and RUXF. Notably, canonical pathways that were significantly upregulated in good-responders included acute phase signaling and macrophage activation, indicating a heightened immune response in these patients. Conclusion: A novel biomarker signature for poor-NAC response in PDAC was identified.
Collapse
Affiliation(s)
- Sumit Sahni
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Camperdown, NSW, Australia.,Australian Pancreatic Centre, Sydney, NSW, Australia
| | - Christopher Nahm
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Camperdown, NSW, Australia.,Australian Pancreatic Centre, Sydney, NSW, Australia
| | - Christoph Krisp
- Center for Diagnostics, Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg - Eppendorf, Hamburg, Germany
| | - Mark P Molloy
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Bowel Cancer and Biomarker Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, NSW, Australia
| | - Shreya Mehta
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Camperdown, NSW, Australia.,Australian Pancreatic Centre, Sydney, NSW, Australia
| | - Sarah Maloney
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Camperdown, NSW, Australia
| | - Malinda Itchins
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Camperdown, NSW, Australia.,Northern Sydney Cancer Center, Royal North Shore Hospital, St Leonards, NSW, Australia.,Northern Cancer Institute, St Leonards and Frenchs Forest, St Leonards, NSW, Australia
| | - Nick Pavlakis
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Camperdown, NSW, Australia.,Northern Sydney Cancer Center, Royal North Shore Hospital, St Leonards, NSW, Australia.,Northern Cancer Institute, St Leonards and Frenchs Forest, St Leonards, NSW, Australia
| | - Stephen Clarke
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Camperdown, NSW, Australia.,Northern Sydney Cancer Center, Royal North Shore Hospital, St Leonards, NSW, Australia.,Northern Cancer Institute, St Leonards and Frenchs Forest, St Leonards, NSW, Australia
| | - David Chan
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Camperdown, NSW, Australia.,Northern Sydney Cancer Center, Royal North Shore Hospital, St Leonards, NSW, Australia.,Northern Cancer Institute, St Leonards and Frenchs Forest, St Leonards, NSW, Australia
| | - Anthony J Gill
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Viive M Howell
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Camperdown, NSW, Australia
| | - Jaswinder Samra
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Australian Pancreatic Centre, Sydney, NSW, Australia.,Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, Sydney, NSW, Australia
| | - Anubhav Mittal
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Australian Pancreatic Centre, Sydney, NSW, Australia.,Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, Sydney, NSW, Australia
| |
Collapse
|
18
|
Shakib H, Rajabi S, Dehghan MH, Mashayekhi FJ, Safari-Alighiarloo N, Hedayati M. Epithelial-to-mesenchymal transition in thyroid cancer: a comprehensive review. Endocrine 2019; 66:435-455. [PMID: 31378850 DOI: 10.1007/s12020-019-02030-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
The Metastatic progression of solid tumors, such as thyroid cancer is a complex process which involves various factors. Current understanding on the role of epithelial-mesenchymal transition (EMT) in thyroid carcinomas suggests that EMT is implicated in the progression from follicular thyroid cancer (FTC) and papillary thyroid cancer (PTC) to poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid cancer (ATC). According to the literature, the initiation of the EMT program in thyroid epithelial cells elevates the number of stem cells, which contribute to recurrent and metastatic diseases. The EMT process is orchestrated by a complex network of transcription factors, growth factors, signaling cascades, epigenetic modulations, and the tumor milieu. These factors have been shown to be dysregulated in thyroid carcinomas. Therefore, molecular interferences restoring the expression of tumor suppressors, or thwarting overexpressed oncogenes is a hopeful therapeutic method to improve the treatment of progressive diseases. In this review, we summarize the recent findings on EMT in thyroid cancer focusing on the main role-players and regulators of this process in thyroid tumors.
Collapse
Affiliation(s)
- Heewa Shakib
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Yang T, Deng Z, Pan Z, Qian Y, Yao W, Wang J. Prognostic value of periostin in multiple solid cancers: A systematic review with meta-analysis. J Cell Physiol 2019; 235:2800-2808. [PMID: 31517399 DOI: 10.1002/jcp.29184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 08/26/2019] [Indexed: 12/15/2022]
Abstract
Previous studies have shown that the expression of periostin (POSTN) is significantly correlated with prognosis in multiple solid cancers. However, the function of POSTN in tumorigenesis and its relationship with clinical outcomes have not been systematically summarized and analyzed. Thus, a meta-analysis was performed to evaluate the prognostic pertinence of POSTN in solid cancer. We conducted a systematic search in the PubMed, EMBASE, Web of Science, and Cochrane library databases, and a total of 10 studies were used to assess the association of POSTN expression and patients' overall survival (OS) and disease-free survival (DFS). The hazard ratio (HR) or odds ratio (OR) and their corresponding 95% confidence intervals (95% CIs) were further calculated to estimate the association between POSTN and relevant clinical parameters of solid cancer patients. The pooled results indicated that POSTN overexpression was associated with poor OS (HR = 2.35, 95% CI = 1.88-2.93, p < .00001) and DFS (HR = 2.70, 95% CI = 2.00-3.65, p < .00001) in a cohort of 993 patients with cancer. Subsequent analyses showed that the positive expression ratio of POSTN was evidently higher in cancer tissues than in normal tissues (OR = 7.44, 95% CI = 3.66-13.95, p < .00001). In addition, subgroup analysis showed that POSTN was related to microvascular invasion (OR = 5.09, 95% CI = 3.07-8.44, p < .00001), tumor differentiation (OR = 2.03, 95% CI = 1.41-2.91, p = .0001), and lymph node metastasis (OR = 3.05, 95% CI = 2.01-4.64, p < .00001). These data showed that POSTN could be a credible prognostic biomarker and a potential therapeutic target in human solid cancer.
Collapse
Affiliation(s)
- Tao Yang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengdong Deng
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongya Pan
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yawei Qian
- Department of Hepato-Biliary-Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Yao
- Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Affiliated Tianyou Hospital, Wuhan University of Science & Technology, Wuhan, China
| |
Collapse
|
20
|
Thomas D, Radhakrishnan P. Tumor-stromal crosstalk in pancreatic cancer and tissue fibrosis. Mol Cancer 2019; 18:14. [PMID: 30665410 PMCID: PMC6341551 DOI: 10.1186/s12943-018-0927-5] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with high morbidity and mortality worldwide. To date, limited therapeutic achievements targeting cell proliferation and related mechanisms has led researchers to focus on the microenvironment where pancreatic cancers develop. The anomalous proliferation of stromal cells, such as pancreatic stellate cells, and an increased deposition of altered matrix proteins create an environment that facilitates tumor growth, metastasis and drug resistance. Here, we summarize our understanding of recent advances in research about the role of fibrosis in pancreatic cancer progression, with particular emphasize on the involvement of fibrotic machineries such as wound healing, extra cellular matrix degradation, and epithelial-to-mesenchymal transition. The precise influence of these mechanisms on the biological behaviors and growth of cancer cells has great impact on clinical therapy and therefore deserves more attention. We also discuss the role of various stromal components in conferring drug resistance to PDAC which further worsening the pessimistic disease prognosis. A more in depth understanding of cancer-stroma crosstalk within the tumor microenvironment and stroma based clinical and translational therapies may provide new therapeutic strategies for the prevention of pancreatic cancer progression.
Collapse
Affiliation(s)
- Divya Thomas
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE, 68198-6805, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
21
|
Abstract
Accumulating evidence suggests that periostin is frequently upregulated in tissue injury, inflammation, fibrosis and tumor progression. Periostin expression in cancer cells can promote metastatic potential of colorectal cancer (CRC) via activating PI3K/Akt signaling pathway. Moreover, periostin is observed mainly in tumor stroma and cytoplasm of cancer cells, which may facilitate aggressiveness of CRC. In this review, we summarize information regarding periostin to emphasize its role as a prognostic marker of CRC.
Collapse
Affiliation(s)
- Xingming Deng
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Sheng Ao
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jianing Hou
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhuofei Li
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yunpeng Lei
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Guoqing Lyu
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
22
|
Kang Y, Liu J, Zhang Y, Sun Y, Wang J, Huang B, Zhong M. Upregulation of Periostin expression in the pathogenesis of ameloblastoma. Pathol Res Pract 2018; 214:1959-1965. [PMID: 30196986 DOI: 10.1016/j.prp.2018.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/16/2018] [Accepted: 08/26/2018] [Indexed: 01/01/2023]
Abstract
Ameloblastoma(AB) is an aggressive and slow-growing tumor with high recurrence rate, which arises from odontogenic epithelium. AB mostly shows osteolytic growth, but the specific pathogenesis is not yet clear. Periostin is a considered a prominent oncogene, which was mainly produced by osteoblasts and their precursors cells, it have been proved that Periostin play an important role in bone lysis. However, the precise role of Periostin in AB progression remains unknown. In this article, the surgical specimens from cases of AB were collected, and the Periostin expression was tested and the results were analyzed for possible correlations with clinical characteristics. In addition, the proliferation、cell cycle and migration of AM-1 cells were evaluated after transfection of siPeriostin. The results showed that Periostin levels were significantly higher in patients with AB than in controls. Moreover, Periostin levels in patients with AB were significantly associated with the number of disease. Furthermore, the results suggested that Periostin expression significantly promoted the proliferation and migration, in addition to cell cycle progression of AM-1 cells. The present study demonstrated that Periostin may be important in the pathogenesis and progression of AB and indicated its potential therapeutic value.
Collapse
Affiliation(s)
- Yuanyuan Kang
- Department of Emergency and Oral Medicine, School of Stomatology, China Medical University, China
| | - Jie Liu
- Department of Central Laboratory, China Medical University, China
| | - Ying Zhang
- Department of Emergency and Oral Medicine, School of Stomatology, China Medical University, China
| | - Yan Sun
- Department of Emergency and Oral Medicine, School of Stomatology, China Medical University, China
| | - Junting Wang
- Department of Oral Histopathology, School of Stomatology, China Medical University, China
| | - Biying Huang
- Department of Oral Histopathology, School of Stomatology, China Medical University, China
| | - Ming Zhong
- Department of Oral Histopathology, School of Stomatology, China Medical University, China.
| |
Collapse
|
23
|
Pancreatic cancer stem cells: A state or an entity? Semin Cancer Biol 2018; 53:223-231. [PMID: 30130664 DOI: 10.1016/j.semcancer.2018.08.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, has a median overall survival of 6-12 months and a 5-year survival of less than 7%. While PDAC currently represents the 4th most frequent cause of death due to cancer worldwide, it is expected to become the second leading cause of cancer-related death by 2030. These alarming statistics are primarily due to both the inherent chemoresistant and metastatic nature of this tumor, and the existence of a subpopulation of highly plastic "stem"-like cells within the tumor, known as cancer stem cells (CSCs). Since their discovery in PDAC in 2007, we have come to realize that pancreatic CSCs have unique metabolic, autophagic, invasive, and chemoresistance properties that allow them to continuously self-renew and escape chemo-therapeutic elimination. More importantly, the concept of the CSC as a fixed entity within the tumor has also evolved, and current data suggest that CSCs are states rather than defined entities. Consequently, current treatments for the majority of PDAC patients are not effective, and do not significantly impact overall patient survival, as they do not adequately target the plastic CSC sub-population nor the transient/hybrid cells that can replenish the CSC pool. Thus, it is necessary that we improve our understanding of the characteristics and signals that maintain and drive the pancreatic CSC population in order to develop new therapies to target these cells. Herein, we will provide the latest updates and knowledge on the inherent characteristics of pancreatic CSCs and the CSC niche, specifically the cross-talk that exists between CSCs and niche resident cells. Lastly, we will address the question of whether a CSC is a state or an entity and discuss how the answer to this question can impact treatment approaches.
Collapse
|
24
|
Ren B, Cui M, Yang G, Wang H, Feng M, You L, Zhao Y. Tumor microenvironment participates in metastasis of pancreatic cancer. Mol Cancer 2018; 17:108. [PMID: 30060755 PMCID: PMC6065152 DOI: 10.1186/s12943-018-0858-1] [Citation(s) in RCA: 384] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a deadly disease with high mortality due to difficulties in its early diagnosis and metastasis. The tumor microenvironment induced by interactions between pancreatic epithelial/cancer cells and stromal cells is critical for pancreatic cancer progression and has been implicated in the failure of chemotherapy, radiation therapy and immunotherapy. Microenvironment formation requires interactions between pancreatic cancer cells and stromal cells. Components of the pancreatic cancer microenvironment that contribute to desmoplasia and immunosuppression are associated with poor patient prognosis. These components can facilitate desmoplasia and immunosuppression in primary and metastatic sites or can promote metastasis by stimulating angiogenesis/lymphangiogenesis, epithelial-mesenchymal transition, invasion/migration, and pre-metastatic niche formation. Some molecules participate in both microenvironment formation and metastasis. In this review, we focus on the mechanisms of pancreatic cancer microenvironment formation and discuss how the pancreatic cancer microenvironment participates in metastasis, representing a potential target for combination therapy to enhance overall survival.
Collapse
Affiliation(s)
- Bo Ren
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Ming Cui
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Gang Yang
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Huanyu Wang
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Mengyu Feng
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Lei You
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China.
| | - Yupei Zhao
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China.
| |
Collapse
|
25
|
Okazaki T, Tamai K, Shibuya R, Nakamura M, Mochizuki M, Yamaguchi K, Abe J, Takahashi S, Sato I, Kudo A, Okada Y, Satoh K. Periostin is a negative prognostic factor and promotes cancer cell proliferation in non-small cell lung cancer. Oncotarget 2018; 9:31187-31199. [PMID: 30131847 PMCID: PMC6101292 DOI: 10.18632/oncotarget.25435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/28/2018] [Indexed: 12/11/2022] Open
Abstract
Periostin is a matricellular protein that is secreted by fibroblasts and interacts with various cell-surface integrin molecules. Although periostin is known to support tumor development in human malignancies, little is known about its effect on lung-cancer progression. We here demonstrate that periostin is a negative prognostic factor that increases tumor proliferation through ERK signaling in non-small cell lung carcinoma. We classified 189 clinical specimens from patients with non-small cell lung-cancer according to high or low periostin expression, and found a better prognosis for patients with low rather than high periostin, even in cases of advanced-stage cancer. In a syngenic implantation model, murine Ex3LL lung-cancer cells formed smaller tumor nodules in periostin−/− mice than in periostin+/+ mice, both at the primary site and at metastatic lung sites. An in vitro proliferation assay showed that stimulation with recombinant periostin increased Ex3LL-cell proliferation. We also found that periostin promotes ERK phosphorylation, but not Akt or FAK activation. These findings suggest that periostin represents a potential target in lung-cancer tumor progression.
Collapse
Affiliation(s)
- Toshimasa Okazaki
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan.,Department of Thoracic Surgery, Miyagi Cancer Center, Natori, Japan.,Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Keiichi Tamai
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Rie Shibuya
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Mao Nakamura
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Mai Mochizuki
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Kazunori Yamaguchi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Jiro Abe
- Department of Thoracic Surgery, Miyagi Cancer Center, Natori, Japan
| | - Satomi Takahashi
- Department of Thoracic Surgery, Miyagi Cancer Center, Natori, Japan
| | - Ikuro Sato
- Department of Pathology, Miyagi Cancer Center, Natori, Japan
| | - Akira Kudo
- Department of Biological Information, Tokyo Institute of Technology, Yokohama, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kennichi Satoh
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan
| |
Collapse
|
26
|
Klett H, Fuellgraf H, Levit-Zerdoun E, Hussung S, Kowar S, Küsters S, Bronsert P, Werner M, Wittel U, Fritsch R, Busch H, Boerries M. Identification and Validation of a Diagnostic and Prognostic Multi-Gene Biomarker Panel for Pancreatic Ductal Adenocarcinoma. Front Genet 2018; 9:108. [PMID: 29675033 PMCID: PMC5895731 DOI: 10.3389/fgene.2018.00108] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
Late diagnosis and systemic dissemination essentially contribute to the invariably poor prognosis of pancreatic ductal adenocarcinoma (PDAC). Therefore, the development of diagnostic biomarkers for PDAC are urgently needed to improve patient stratification and outcome in the clinic. By studying the transcriptomes of independent PDAC patient cohorts of tumor and non-tumor tissues, we identified 81 robustly regulated genes, through a novel, generally applicable meta-analysis. Using consensus clustering on co-expression values revealed four distinct clusters with genes originating from exocrine/endocrine pancreas, stromal and tumor cells. Three clusters were strongly associated with survival of PDAC patients based on TCGA database underlining the prognostic potential of the identified genes. With the added information of impact of survival and the robustness within the meta-analysis, we extracted a 17-gene subset for further validation. We show that it did not only discriminate PDAC from non-tumor tissue and stroma in fresh-frozen as well as formalin-fixed paraffin embedded samples, but also detected pancreatic precursor lesions and singled out pancreatitis samples. Moreover, the classifier discriminated PDAC from other cancers in the TCGA database. In addition, we experimentally validated the classifier in PDAC patients on transcript level using qPCR and exemplify the usage on protein level for three proteins (AHNAK2, LAMC2, TFF1) using immunohistochemistry and for two secreted proteins (TFF1, SERPINB5) using ELISA-based protein detection in blood-plasma. In conclusion, we present a novel robust diagnostic and prognostic gene signature for PDAC with future potential applicability in the clinic.
Collapse
Affiliation(s)
- Hagen Klett
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany.,German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Freiburg, Germany
| | - Hannah Fuellgraf
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ella Levit-Zerdoun
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany.,German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Freiburg, Germany
| | - Saskia Hussung
- Comprehensive Cancer Center Freiburg, Freiburg, Germany.,Department of Medicine I, Hematology, Oncology and Stem Cell Transplantation, Freiburg, Germany
| | - Silke Kowar
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Simon Küsters
- Department of Surgery, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Peter Bronsert
- German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Freiburg, Germany.,Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Werner
- German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Freiburg, Germany.,Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Uwe Wittel
- Department of Surgery, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Ralph Fritsch
- German Cancer Consortium, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, Freiburg, Germany.,Department of Medicine I, Hematology, Oncology and Stem Cell Transplantation, Freiburg, Germany
| | - Hauke Busch
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany.,Lübeck Institute of Experimental Dermatology - Institute for Cardiogenetics, Lübeck, Germany
| | - Melanie Boerries
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany.,German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, Freiburg, Germany
| |
Collapse
|
27
|
Parente P, Parcesepe P, Covelli C, Olivieri N, Remo A, Pancione M, Latiano TP, Graziano P, Maiello E, Giordano G. Crosstalk between the Tumor Microenvironment and Immune System in Pancreatic Ductal Adenocarcinoma: Potential Targets for New Therapeutic Approaches. Gastroenterol Res Pract 2018; 2018:7530619. [PMID: 30662458 PMCID: PMC6312626 DOI: 10.1155/2018/7530619] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/04/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is a lethal disease for which radical surgery and chemotherapy represent the only curative options for a small proportion of patients. Recently, FOLFIRINOX and nab-paclitaxel plus gemcitabine have improved the survival of metastatic patients but prognosis remains poor. A pancreatic tumor microenvironment is a dynamic milieu of cellular and acellular elements, and it represents one of the major limitations to chemotherapy efficacy. The continued crosstalk between cancer cells and the surrounding microenvironment causes immunosuppression within pancreatic immune infiltrate increasing tumor aggressiveness. Several potential targets have been identified among tumor microenvironment components, and different therapeutic approaches are under investigation. In this article, we provide a qualitative literature review about the crosstalk between the tumor microenvironment components and immune system in pancreatic cancer. Finally, we discuss potential therapeutic strategies targeting the tumor microenvironment and we show the ongoing trials.
Collapse
Affiliation(s)
- Paola Parente
- 1Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Anatomia Patologica, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Pietro Parcesepe
- 2Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, P.le L.A. Scuro 10, 37134 Verona, Italy
| | - Claudia Covelli
- 1Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Anatomia Patologica, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Nunzio Olivieri
- 3Biology Department, University of Naples Federico II, Via Mezzocannone 8, 80134 Naples, Italy
| | - Andrea Remo
- 4“Mater Salutis” Hospital, ULSS 9, Via C. Gianella 1, 37045 Legnago, Verona, Italy
| | - Massimo Pancione
- 5Department of Sciences and Technologies, University of Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Tiziana Pia Latiano
- 6Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Oncologia Medica, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Paolo Graziano
- 1Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Anatomia Patologica, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Evaristo Maiello
- 6Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Oncologia Medica, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Guido Giordano
- 6Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Oncologia Medica, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| |
Collapse
|