1
|
Gao Y, Lin H, Guo D, Cheng S, Zhou Y, Zhang L, Yao J, Farooq MA, Ajmal I, Duan Y, He C, Tao L, Wu S, Liu M, Jiang W. Suppression of 4.1R enhances the potency of NKG2D-CAR T cells against pancreatic carcinoma via activating ERK signaling pathway. Oncogenesis 2021; 10:62. [PMID: 34548478 PMCID: PMC8455638 DOI: 10.1038/s41389-021-00353-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/12/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic carcinoma (PC) is one of the most common malignancies. Chimeric antigen receptor (CAR)-modified T cells has achieved remarkable efficacy in the treatment of hematological malignancies. However, lack of tumor-specific targets and the existence of inhibitory factors limit the function of CAR T cells when treating solid tumors. 4.1R has been reported to suppress the anti-tumor activity of T cell responses. In this study, we investigated the anti-tumor activity of 4.1R deletion in natural killer group 2D (NKG2D)-CAR T cells against PC. The CAR T cells were obtained by transfecting T cells with lentiviral vector carrying NKG2D-CAR, NC-NKG2D-CAR, or KD2-NKG2D-CAR. In vitro, NKG2D-CAR T cells showed higher cytotoxicity than Mock T cells. However, compared to NKG2D-CAR T cells, furtherly higher cytotoxicity against PC cells in a dose-dependent manner was found in KD2-NKG2D-CAR T cells. In addition, the proliferation rate and cytotoxic activity of KD2-NKG2D-CAR T cells were significantly higher than those of NKG2D-CAR T cells. Besides, the inhibitory receptors PD-1 and TIM-3 were expressed in lower level on KD2-NKG2D-CAR T cells. In vivo, KD2-NKG2D-CAR T cells suppressed tumor growth more effectively in a xenograft model compared to NKG2D-CAR T cells. Mechanistically, 4.1R regulated CAR T cell function via activating ERK signaling pathway. Therefore, the study provides a new idea to enhance the anti-tumor efficiency of CAR T therapy.
Collapse
Affiliation(s)
- Yaoxin Gao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Haizhen Lin
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Dandan Guo
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Sijia Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Ying Zhou
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Li Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Jie Yao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Muhammad Asad Farooq
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Iqra Ajmal
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Yixin Duan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Cong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Lei Tao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Shijia Wu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 200241, Shanghai, China.
| |
Collapse
|
2
|
Metzen M, Bruns M, Deppert W, Schumacher U. Infiltration of Immune Competent Cells into Primary Tumors and Their Surrounding Connective Tissues in Xenograft and Syngeneic Mouse Models. Int J Mol Sci 2021; 22:ijms22084213. [PMID: 33921688 PMCID: PMC8073739 DOI: 10.3390/ijms22084213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 01/17/2023] Open
Abstract
To fight cancer more efficiently with cell-based immunotherapy, more information about the cells of the immune system and their interaction with cancer cells in vivo is needed. Therefore paraffin wax embedded primary breast cancers from the syngeneic mouse WAP-T model and from xenografted tumors of breast, colon, melanoma, ovarian, neuroblastoma, pancreatic, prostate, and small cell lung cancer were investigated for the infiltration of immunocompetent cells by immunohistochemistry using antibodies against leukocyte markers. The following markers were used: CD45 as a pan-leukocyte marker, BSA-I as a dendritic cell marker, CD11b as an NK cell marker, and CD68 as a marker for macrophages. The labeled immune cells were attributed to the following locations: adjacent adipose tissue, tumor capsule, intra-tumoral septae, and cancer cells directly. In xenograft tumors, the highest score of CD45 and CD11b positive, NK, and dendritic cells were found in the adjacent adipose tissue, followed by lesser infiltration directly located at the cancer cells themselves. The detected numbers of CD45 positive cells differed between the tumor entities: few infiltrating cells in breast cancer, small cell lung cancer, neuroblastoma, a moderate infiltration in colon cancer, melanoma and ovarian cancer, strongest infiltration in prostate and pancreatic cancer. In the syngeneic tumors, the highest score of CD45 and CD11b positive, NK and dendritic cells were observed in the tumor capsule, followed by a lesser infiltration of the cancer tissue. Our findings argue for paying more attention to investigate how immune-competent cells can reach the tumor cells directly.
Collapse
Affiliation(s)
- Marlon Metzen
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Correspondence: ; Tel.: +49-(0)40-7410-52586; Fax: +49-(0)40-7410-55427
| | - Michael Bruns
- Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| | - Wolfgang Deppert
- Heinrich-Pette-Institute, Department of Tumorvirology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| |
Collapse
|
3
|
Bastaki S, Irandoust M, Ahmadi A, Hojjat-Farsangi M, Ambrose P, Hallaj S, Edalati M, Ghalamfarsa G, Azizi G, Yousefi M, Chalajour H, Jadidi-Niaragh F. PD-L1/PD-1 axis as a potent therapeutic target in breast cancer. Life Sci 2020; 247:117437. [PMID: 32070710 DOI: 10.1016/j.lfs.2020.117437] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
Abstract
Although both the incidence and the mortality rate of breast cancer is rising, there is no potent and practical option for the treatment of these patients, particularly in advanced stages. One of the most critical challenges for treatment is the presence of complicated and extensive tumor escape mechanisms in the tumor microenvironment. Immune checkpoint molecules are of the main immunosuppressive mechanisms used by cancerous cells to block anti-cancer immune responses. Among these molecules, PD-1 (Programmed cell death) and PD-L1 (programmed cell death-ligand 1) have been considered as worthy therapeutic targets for breast cancer therapy. In this review, we intend to discuss the immunobiology and signaling of the PD-1/PD-L1 axis and highlight its importance as a worthy therapeutic target in breast cancer. We believe that the prognostic value of PD-L1 depends on the breast cancer subtype. Moreover, the combination of PD-1/PD-L1 targeting with immune-stimulating vaccines can be considered as an effective therapeutic strategy in breast cancer.
Collapse
Affiliation(s)
- Shima Bastaki
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, East Azarbaijan, Iran
| | - Mahzad Irandoust
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin Ahmadi
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Alabama 35899, USA
| | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden; The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Shahin Hallaj
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Edalati
- Department of Laboratory Sciences, Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj. Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hengameh Chalajour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Crossland DL, Denning WL, Ang S, Olivares S, Mi T, Switzer K, Singh H, Huls H, Gold KS, Glisson BS, Cooper LJ, Heymach JV. Antitumor activity of CD56-chimeric antigen receptor T cells in neuroblastoma and SCLC models. Oncogene 2018; 37:3686-3697. [PMID: 29622795 DOI: 10.1038/s41388-018-0187-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/05/2017] [Accepted: 02/05/2018] [Indexed: 01/05/2023]
Abstract
The CD56 antigen (NCAM-1) is highly expressed on several malignancies with neuronal or neuroendocrine differentiation, including small-cell lung cancer and neuroblastoma, tumor types for which new therapeutic options are needed. We hypothesized that CD56-specific chimeric antigen receptor (CAR) T cells could target and eliminate CD56-positive malignancies. Sleeping Beauty transposon-generated CD56R-CAR T cells exhibited αβT-cell receptors, released antitumor cytokines upon co-culture with CD56+ tumor targets, demonstrated a lack of fratricide, and expression of cytolytic function in the presence of CD56+ stimulation. The CD56R-CAR+ T cells are capable of killing CD56+ neuroblastoma, glioma, and SCLC tumor cells in in vitro co-cultures and when tested against CD56+ human xenograft neuroblastoma models and SCLC models, CD56R-CAR+ T cells were able to inhibit tumor growth in vivo. These results indicate that CD56-CARs merit further investigation as a potential treatment for CD56+ malignancies.
Collapse
Affiliation(s)
| | - Warren L Denning
- Thoracic Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Sonny Ang
- Stem Cell Transplantation, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Simon Olivares
- Division of Pediatrics, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Tiejuan Mi
- Division of Pediatrics, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Kirsten Switzer
- Division of Pediatrics, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Harjeet Singh
- Division of Pediatrics, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Helen Huls
- Division of Pediatrics, UT MD Anderson Cancer Center, Houston, TX, USA.,Intrexon, Germantown, MD, USA
| | - Kate S Gold
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Bonnie S Glisson
- Thoracic Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Laurence J Cooper
- Division of Pediatrics, UT MD Anderson Cancer Center, Houston, TX, USA.,ZIOPHARM Oncology, Inc, Boston, MA, USA
| | - John V Heymach
- Thoracic Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Bruns M, Deppert W. Immunotherapy of WAP-T NP mice with early stage mammary gland tumors. Oncotarget 2017; 8:67790-67804. [PMID: 28978072 PMCID: PMC5620212 DOI: 10.18632/oncotarget.18850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/05/2017] [Indexed: 12/27/2022] Open
Abstract
The SV40 transgenic BALB/c mouse based WAP-T/WAP-TNP model for triple-negative breast cancer allows the analysis of parameters influencing immunotherapeutic approaches. Except for WAP-TNP tumors expressing the immune-dominant LCMV NP-epitope within SV40 T-antigen (T-AgNP) which is not expressed by T-Ag of WAP-T tumors, the tumors are extremely similar. Comparative anti-PD1/PD-L1 immunotherapy of WAP-T and WAP-TNP mice supported the hypothesis that the immunogenicity of tumor antigen T-cell epitopes strongly influences the success of immune checkpoint blockade therapy, with highly immunogenic T-cell epitopes favoring rapid CTL exhaustion. Here we analyzed the immune response in NP8 mice during early times of tumor development. LCMV infection of lactating NP8 mice induced lifelong tumor protection by memory CTLs. Immunization with LCMV after involution and appearance of T-AgNP expressing parity-induced tumor progenitor cells could not cure the mice, as memory CTLs became exhausted. However, immunization significantly prolonged the time of tumor outgrowth. Elimination of exhausted CTLs and of immunosuppressive cells by sub-lethal γ-irradiation, followed by adoptive transfer of NP-epitope specific CTLs into NP8 tumor mice with early lesions, completely prevented tumor outgrowth, when lymphocytes obtained after injection of weakly immunogenic NP8 tumor-derived cells into BALB/c mice were transferred. Transfer of lymphocytes obtained after infection of BALB/c mice with highly immunogenic LCMV into such mice delayed tumor outgrowth for a significant period, but could not prevent it. We conclude that eliminating exhausted CTLs and immune-suppressive cells followed by transfer or generation of low-avidity tumor antigen-specific CTLs might be a promising approach for curative tumor immunotherapy.
Collapse
Affiliation(s)
- Michael Bruns
- Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Wolfgang Deppert
- Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, 20251 Hamburg, Germany.,Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf (UKE), University of Hamburg, 20246 Hamburg, Germany
| |
Collapse
|
6
|
Deppert W, Bruns M. Cancer immunotherapy: weak beats strong. Aging (Albany NY) 2016; 8:2607-2608. [PMID: 27920406 PMCID: PMC5191857 DOI: 10.18632/aging.101134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Wolfgang Deppert
- Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, 20251 Hamburg, Germany
- Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf (UKE), University of Hamburg, 20246 Hamburg, Germany
| | - Michael Bruns
- Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, 20251 Hamburg, Germany
| |
Collapse
|