1
|
Arndt P, Turkowski K, Cekay M, Eul B, Grimminger F, Savai R. Endothelin and the tumor microenvironment: a finger in every pie. Clin Sci (Lond) 2024; 138:617-634. [PMID: 38785410 PMCID: PMC11130555 DOI: 10.1042/cs20240426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The tumor microenvironment (TME) plays a central role in the development of cancer. Within this complex milieu, the endothelin (ET) system plays a key role by triggering epithelial-to-mesenchymal transition, causing degradation of the extracellular matrix and modulating hypoxia response, cell proliferation, composition, and activation. These multiple effects of the ET system on cancer progression have prompted numerous preclinical studies targeting the ET system with promising results, leading to considerable optimism for subsequent clinical trials. However, these clinical trials have not lived up to the high expectations; in fact, the clinical trials have failed to demonstrate any substantiated benefit of targeting the ET system in cancer patients. This review discusses the major and recent advances of the ET system with respect to TME and comments on past and ongoing clinical trials of the ET system.
Collapse
Affiliation(s)
- Philipp F. Arndt
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the DZL, Member of the CPI, Bad Nauheim, Germany
| | - Kati Turkowski
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the DZL, Member of the CPI, Bad Nauheim, Germany
| | - Michael J. Cekay
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Bastian Eul
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Friedrich Grimminger
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Rajkumar Savai
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the DZL, Member of the CPI, Bad Nauheim, Germany
| |
Collapse
|
2
|
Li F, Xu J, Zhu Y. MiR-6839-5p inhibits cell proliferation, migration and invasion; a possible correlation with the suppressing VEGFA expression in human chondrosarcoma cells. Discov Oncol 2024; 15:175. [PMID: 38762695 PMCID: PMC11102412 DOI: 10.1007/s12672-024-01038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/14/2024] [Indexed: 05/20/2024] Open
Abstract
MicroRNAs play an important role in the proliferation, invasion, and metastasis of malignancy. In previous studies (detailed in our previous paper), the expression of miR-6839-5p was significantly increased in SW1353 cells after 125I seed 6 Gy irradiation, which indicated miR-6839-5p may play a tumor suppression function in chondrosarcoma cells. This study aimed to identify the effects of miR-6839-5p on the human chondrosarcoma cells, and investigate the potential target genes of miR-6839-5p. Firstly, chondrosarcoma cells (SW1353 and CAL78) were transfected with hsa-miR-6839-5p specific mimic. Secondly, Cell viability assay (MTT assay), Colony formation assay, Wound healing assay, Transwell assay, TUNEL staining and Western blotting experiments were performed, and the results proved miR-6839-5p can inhibit chondrosarcoma cells proliferation, migration and invasion. Meanwhile, miR-6839-5p significantly down-regulated apoptosis facilitator Bcl-2 expression, and promoted apoptosis of chondrosarcoma cells. It is reasonable to speculate miR-6839-5p might downregulate Bcl-2 expression to induce apoptosis in SW1353 human chondrosarcoma cells. Lastly, RNA extraction and bioinformatic analysis was performed on SW1353 cells transfected with hsa-miR-6839-5p specific mimic to investigate the potential target genes of miR-6839-5p. A total of 253 differentially expressed mRNA genes (105 up-regulated genes and 148 down-regulated genes) were found, and 23 differentially expressed downregulated genes were identified. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to validate the results, which demonstrated the expression of BST2, VEGFA, FPR3 and PPARA was significantly downregulated by miR-6839-5p mimic. Furthermore, miR-6839-5p inhibitor can restore or partially restore the expression value of the above four genes. The analysis results of miRNA target gene prediction database indicated VEGFA was the most likely direct target gene of miR-6839-5p.
Collapse
Affiliation(s)
- Fusheng Li
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, 155 Nan Jing Bei Street, Shenyang, 110001, People's Republic of China
- Department of Orthopaedics Oncology, The People's Hospital of Liaoning Province, Shenyang, 110016, People's Republic of China
| | - Jia Xu
- Department of Medical Microbiology, Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Yue Zhu
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, 155 Nan Jing Bei Street, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
3
|
Yin J, Ren P. New advances in the treatment of chondrosarcoma under the PD-1/PD-L1 pathway. J Cancer Res Ther 2024; 20:522-530. [PMID: 38687921 DOI: 10.4103/jcrt.jcrt_2269_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/02/2024] [Indexed: 05/02/2024]
Abstract
ABSTRACT Bone sarcomas encompass a group of spontaneous mesenchymal malignancies, among which osteosarcoma, Ewing sarcoma, chondrosarcoma, and chordoma are the most common subtypes. Chondrosarcoma, a relatively prevalent malignant bone tumor that originates from chondrocytes, is characterized by endogenous cartilage ossification within the tumor tissue. Despite the use of aggressive treatment approaches involving extensive surgical resection, chemotherapy, and radiotherapy for patients with osteosarcoma, chondrosarcoma, and chordoma, limited improvements in patient outcomes have been observed. Furthermore, resistance to chemotherapy and radiation therapy has been observed in chondrosarcoma and chordoma cases. Consequently, novel therapeutic approaches for bone sarcomas, including chondrosarcoma, need to be uncovered. Recently, the emergence of immunotherapy and immune checkpoint inhibitors has garnered attention given their clinical success in various diverse types of cancer, thereby prompting investigations into their potential for managing chondrosarcoma. Considering that circumvention of immune surveillance is considered a key factor in the malignant progression of tumors and that immune checkpoints play an important role in modulating antitumor immune effects, blockers or inhibitors targeting these immune checkpoints have become effective therapeutic tools for patients with tumors. One such checkpoint receptor implicated in this process is programmed cell death protein-1 (PD-1). The association between PD-1 and programmed cell death ligand-1 (PD-L1) and cancer progression in humans has been extensively studied, highlighting their remarkable potential as biomarkers for cancer treatment. This review comprehensively examines available studies on current chondrosarcoma treatments and advancements in anti-PD-1/PD-L1 blockade therapy for chondrosarcoma.
Collapse
Affiliation(s)
- Jiawei Yin
- Trauma Department of Orthopedics, The Second Hospital of Shandong University, Jinan, China
| | | |
Collapse
|
4
|
An Overview of Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithelial Transition in Canine Tumors: How Far Have We Come? Vet Sci 2022; 10:vetsci10010019. [PMID: 36669020 PMCID: PMC9865109 DOI: 10.3390/vetsci10010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Historically, pre-clinical and clinical studies in human medicine have provided new insights, pushing forward the contemporary knowledge. The new results represented a motivation for investigators in specific fields of veterinary medicine, who addressed the same research topics from different perspectives in studies based on experimental and spontaneous animal disease models. The study of different pheno-genotypic contexts contributes to the confirmation of translational models of pathologic mechanisms. This review provides an overview of EMT and MET processes in both human and canine species. While human medicine rapidly advances, having a large amount of information available, veterinary medicine is not at the same level. This situation should provide motivation for the veterinary medicine research field, to apply the knowledge on humans to research in pets. By merging the knowledge of these two disciplines, better and faster results can be achieved, thus improving human and canine health.
Collapse
|
5
|
Aloy MT, Sidi Boumedine J, Deville A, Kryza D, Gauthier A, Brichart-Vernos D, Ollier G, La Padula V, Lux F, Tillement O, Rodriguez-Lafrasse C, Janier M. Proof of Concept of the Radiosensitizing Effect of Gadolinium Oxide Nanoparticles in Cell Spheroids and a Tumor-Implanted Murine Model of Chondrosarcoma. Int J Nanomedicine 2022; 17:6655-6673. [PMID: 36582458 PMCID: PMC9793741 DOI: 10.2147/ijn.s390056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Purpose Chondrosarcomas (CHSs), which represent 20% of primary bone tumors in adults, are mostly resistant to radio- and chemotherapy. It is therefore essential that new therapeutic approaches, targeted to the tumour, be developed to improve the prognosis of patients. The effectiveness, as a radiosensitizing agent, of gadolinium oxide nanoparticles (GdoNP, AGuIX®) nanoparticles in CHS was evaluated in vitro, in spheroid CHS models allowing to reproduce cell-cell extracellular matrix interactions, and, in vivo, in a nude mouse model with heterotopic tumour xenograft. Methods Spheroids from SW1353 and HEMC-SS cells were characterized by confocal microscopy with or without GdoNP treatment. Real-time microscopy enabled quantification of cell viability, cell migration and invasion. In vivo, the efficacy of the association of GdoNP combined with a single (4Gy) or fractionated (4x1Gy) irradiation was evaluated in HEMC-SS tumor-bearing mice by monitoring tumor growth, mouse survival and gene expression profile. Results The expression of proteoglycans in the extra-cellular matrix (ECM) of spheroids demonstrated the relevance of the 3-D model. The combination of GdoNP with single or fractionated irradiation increased the lethal effects of irradiation on 2-D- and 3-D-cultured cells. In vivo, a single or a fractionated dose of 4 Gy associated with IT or IV injection of GdoNP decreased tumor growth significantly. Only IT injection increased mice survival. Unexpectedly, the radiosensitizing effect of GdoNP was associated, in vitro, with a significant decrease in invasion-migration capacities and, in vivo, with the decreased expression of PTX3, a protein involved in the epithelial-to-mesenchymal transition process, suggesting a potential impact of GdoNP on metastasis formation. Conclusion These results provide the first proof of concept of the radiosensitizing effect of GdoNP in CHSs and opened the way for a multicentre, randomized Phase 2 trial evaluating the association of GdoNP with radiotherapy for the therapeutic management of patients with symptomatic inoperable musculoskeletal tumor lesions.
Collapse
Affiliation(s)
- Marie-Thérèse Aloy
- Laboratory of Cellular and Molecular Radiobiology, UMR CNRS5822/IP2I, Lyon-Sud Medical School, Univ Lyon, Lyon 1 University, Oullins, France
| | | | - Agathe Deville
- CNRS, LAGEPP, UMR5007, IMTHERNAT, Lyon 1 University, Hospital Edouard Herriot, Lyon, France,Department of Nuclear Medicine, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - David Kryza
- CNRS, LAGEPP, UMR5007, IMTHERNAT, Lyon 1 University, Hospital Edouard Herriot, Lyon, France
| | - Arnaud Gauthier
- Laboratory of Cellular and Molecular Radiobiology, UMR CNRS5822/IP2I, Lyon-Sud Medical School, Univ Lyon, Lyon 1 University, Oullins, France,Department of Biochemistry and Molecular Biology, Groupement Hospitalier Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Delphine Brichart-Vernos
- Laboratory of Cellular and Molecular Radiobiology, UMR CNRS5822/IP2I, Lyon-Sud Medical School, Univ Lyon, Lyon 1 University, Oullins, France,Light Matter Institut UMR CNRS 5306, Lyon 1 University, Villeurbanne, France
| | - Grégoire Ollier
- Laboratory of Cellular and Molecular Radiobiology, UMR CNRS5822/IP2I, Lyon-Sud Medical School, Univ Lyon, Lyon 1 University, Oullins, France
| | - Veronica La Padula
- Light Matter Institut UMR CNRS 5306, Lyon 1 University, Villeurbanne, France
| | - François Lux
- Light Matter Institut UMR CNRS 5306, Lyon 1 University, Villeurbanne, France
| | - Olivier Tillement
- Light Matter Institut UMR CNRS 5306, Lyon 1 University, Villeurbanne, France
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, UMR CNRS5822/IP2I, Lyon-Sud Medical School, Univ Lyon, Lyon 1 University, Oullins, France,Department of Biochemistry and Molecular Biology, Groupement Hospitalier Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Marc Janier
- CNRS, LAGEPP, UMR5007, IMTHERNAT, Lyon 1 University, Hospital Edouard Herriot, Lyon, France,Department of Nuclear Medicine, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France,Correspondence: Marc Janier, Department of Nuclear Medicine, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, 69634, France, Tel +33472356999, Fax +33472357345, Email
| |
Collapse
|
6
|
Tzeng HE, Tang CH, Tsai CH, Chiu CH, Wu MH, Yen Y. ET-1 Promotes Epithelial-Mesenchymal Transition in Oral Squamous Cell Carcinoma Cells via the microRNA-489-3p /TWIST Axis. Onco Targets Ther 2021; 14:5005-5018. [PMID: 34675545 PMCID: PMC8502871 DOI: 10.2147/ott.s294312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Oral squamous cell carcinoma (OSCC) constitutes almost 90% of head and neck malignancies and has a poor prognosis. To improve the efficacy of OSCC therapy, it is of great significance to explore other therapy for OSCC. Endothelin-1 (ET-1), a potent vasoconstrictor peptide, is implicated in cancer pathogenesis. Moreover, ET-1 promotes epithelial-mesenchymal transition (EMT) during the development of human cancers. We further to found that ET-1 exposure induced EMT in human squamous cell carcinoma cell lines SCC4 and SAS, by enhancing the expression of EMT biomarkers N-cadherin and vimentin and reducing E-cadherin expression via upregulation of the transcription factor TWIST. MATERIALS AND METHODS Cell motility was examined by migration, invasion and wound-healing assays. Quantitative real time polymerase chain reaction (q-PCR), and promoter assays confirmed the inhibitory effects of ET-1 on miRNAs expression in oral cancer cells. We demonstrate an intravenous injection model of lung metastasis followed by an advanced method for quantifying metastatic tumor using image analysis software. RESULTS In addition, ET-1/ETAR reduced levels of microRNA-489-3p (miR-489-3p), a transcriptional repressor of TWIST. We have identified a novel bypass mechanism through which ET-1/ETAR are involved in TWIST signaling and downregulate miR-489-3p expression, enabling OSCC cells to acquire the EMT phenotype. Notably, ET-1 knockdown dramatically decreased levels of EMT markers and cell migration potential. CONCLUSION The role of ET-1 in OSCC progression is supported by our findings from an in vivo murine model of OSCC. ET-1 may therefore represent a novel molecular therapeutic target in OSCC metastasis.
Collapse
Affiliation(s)
- Huey-En Tzeng
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- PhD Program & Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Division of Hematology/Oncology, Department of Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hui Chiu
- Graduate Program in Department of Exercise Health Science, National Taiwan University of Sport, Taichung, Taiwan
| | - Min-Huan Wu
- Sports Recreation and Health Management Continuing Studies, Tunghai University, Taichung, Taiwan
- Bachelor of Science in Senior Wellness and Sport Science, Tunghai University, Taichung, Taiwan
| | - Yun Yen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Informatics, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
7
|
WISP-3 Stimulates VEGF-C-Dependent Lymphangiogenesis in Human Chondrosarcoma Cells by Inhibiting miR-196a-3p Synthesis. Biomedicines 2021; 9:biomedicines9101330. [PMID: 34680447 PMCID: PMC8533311 DOI: 10.3390/biomedicines9101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/18/2021] [Indexed: 11/24/2022] Open
Abstract
Chondrosarcoma is a malignant bone tumor with high metastatic potential. Lymphangiogenesis is a critical biological step in cancer metastasis. WNT1-inducible signaling pathway protein 3 (WISP-3) regulates angiogenesis and facilitates chondrosarcoma metastasis, but the role of WISP-3 in chondrosarcoma lymphangiogenesis is unclear. In this study, incubation of chondrosarcoma cells with WISP-3 increased the production of VEGF-C, an important lymphangiogenic factor. Conditioned medium from WISP-3-treated chondrosarcoma cells significantly enhanced lymphatic endothelial cell tube formation. WISP-3-induced stimulation of VEGF-C-dependent lymphangiogenesis inhibited miR-196a-3p synthesis in the ERK, JNK, and p38 signaling pathways. This evidence suggests that the WISP-3/VEGF-C axis is worth targeting in the treatment of lymphangiogenesis in human chondrosarcoma.
Collapse
|
8
|
Differential expression of angiogenesis markers HSP70, HSP90, VEGF and pERK1/2 in both components of dedifferentiated chondrosarcomas. J Bone Oncol 2021; 29:100370. [PMID: 34094840 PMCID: PMC8167291 DOI: 10.1016/j.jbo.2021.100370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Dedifferentiated chondrosarcomas (DDCS) are highly malignant bimorphic mesenchymal tumors with poor outcome and limited treatment options. Genes and proteins involved in angiogenesis play an important role in the development of invasion and metastasis. Immunohistochemical stains targeting HSP70, pERK1/2 and VEGFA were applied to a TMA containing 29 DDCS cases representing both tumor components. Higher expression of HSP70 and pERK1/2 was noted in the dedifferentiated component. RNA sequencing performed in 8 paired cases of DDCS comparing well differentiated and dedifferentiated components, showed higher expression of several HSP70 family members and HSP90 in the dedifferentiated component. Furthermore, high mobility group AT-hook 2 (HMAG2) and SET nuclear proto-oncogene demonstrated higher expression in the dedifferentiated component. Thus, the well differentiated and dedifferentiated components of DDCS are different, histologically and transcriptomically. The dedifferentiated component of DDCS shows higher expression of markers that are associated with malignant behavior. Some of these may represent future treatment targets.
Collapse
|
9
|
Siao AC, Lin YY, Shih LJ, Tsuei YW, Chuu CP, Kuo YC, Kao YH. Endothelin-1 stimulates preadipocyte growth via the PKC, STAT3, AMPK, c-JUN, ERK, sphingosine kinase, and sphingomyelinase pathways. Am J Physiol Cell Physiol 2020; 319:C839-C857. [PMID: 32755450 DOI: 10.1152/ajpcell.00491.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Endothelin (ET)-1 regulates adipogenesis and the endocrine activity of fat cells. However, relatively little is known about the ET-1 signaling pathway in preadipocyte growth. We used 3T3-L1 preadipocytes to investigate the signaling pathways involved in ET-1 modulation of preadipocyte proliferation. As indicated by an increased number of cells and greater incorporation of bromodeoxyuridine (BrdU), the stimulation of preadipocyte growth by ET-1 depends on concentration and timing. The concentration of ET-1 that increased preadipocyte number by 51-67% was ~100 nM for ~24-48 h of treatment. ET-1 signaling time dependently stimulated phosphorylation of ERK, c-JUN, STAT3, AMPK, and PKCα/βII proteins but not AKT, JNK, or p38 MAPK. Treatment with an ETAR antagonist, such as BQ610, but not ETBR antagonist BQ788, blocked the ET-1-induced increase in cell proliferation and phosphorylated levels of ERK, c-JUN, STAT3, AMPK, and PKCα/βII proteins. In addition, pretreatment with specific inhibitors of ERK1/2 (U0126), JNK (SP600125), JAK2/STAT3 (AG490), AMPK (compound C), or PKC (Ro318220) prevented the ET-1-induced increase in cell proliferation and reduced the ET-1-stimulated phosphorylation of ERK1/2, c-JUN, STAT3, AMPK, and PKCα/β. Moreover, the SphK antagonist suppressed ET-1-induced cell proliferation and ERK, c-JUN, STAT3, AMPK, and PKC phosphorylation, and the SMase2 antagonist suppressed ET-1-induced cell proliferation. However, neither the p38 MAPK antagonist nor the CerS inhibitor altered the effect of ET-1. The results indicate that ETAR, JAK2/STAT3, ERK1/2, JNK/c-JUN, AMPK, PKC, SphK, and SMase2, but not ETBR, p38 MAPK, or CerS, are necessary for the ET-1 stimulation of preadipocyte proliferation.
Collapse
Affiliation(s)
- An-Ci Siao
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Yen-Yue Lin
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.,Department of Emergency, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan.,National Defense Medical Center, Taipei, Taiwan
| | - Li-Jane Shih
- National Defense Medical Center, Taipei, Taiwan.,Medical Laboratory, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Yi-Wei Tsuei
- Department of Emergency, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yow-Chii Kuo
- Division of Gastroenterology, Landseed Hospital, Taoyuan, Taiwan
| | - Yung-Hsi Kao
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| |
Collapse
|
10
|
Wang CQ, Lin CY, Huang YL, Wang SW, Wang Y, Huang BF, Lai YW, Weng SL, Fong YC, Tang CH, Lv Z. Sphingosine-1-phosphate promotes PDGF-dependent endothelial progenitor cell angiogenesis in human chondrosarcoma cells. Aging (Albany NY) 2019; 11:11040-11053. [PMID: 31809267 PMCID: PMC6932882 DOI: 10.18632/aging.102508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
Abstract
The malignant bone tumors that are categorized as chondrosarcomas display a high potential for metastasis in late-stage disease. Higher-grade chondrosarcomas contain higher levels of expression of platelet-derived growth factor (PDGF) and its receptor. The phosphorylation of sphingosine by sphingosine kinase enzymes SphK1 and SphK2 generates sphingosine-1-phosphate (S1P), which inhibits human chondrosarcoma cell migration, while SphK1 overexpression suppresses lung metastasis of chondrosarcoma. We sought to determine whether S1P mediates levels of PDGF-A expression and angiogenesis in chondrosarcoma. Surprisingly, our investigations found that treatment of chondrosarcoma cells with S1P and transfecting them with SphK1 cDNA increased PDGF-A expression and induced angiogenesis of endothelial progenitor cells (EPCs). Ras, Raf, MEK, ERK and AP-1 inhibitors and their small interfering RNAs (siRNAs) inhibited S1P-induced PDGF-A expression and EPC angiogenesis. Our results indicate that S1P promotes the expression of PDGF-A in chondrosarcoma via the Ras/Raf/MEK/ERK/AP-1 signaling cascade and stimulates EPC angiogenesis.
Collapse
Affiliation(s)
- Chao-Qun Wang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chih-Yang Lin
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yan Wang
- Department of Medical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Bi-Fei Huang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yu-Wei Lai
- Division of Urology, Taipei Hospital Renai Branch, Taipei, Taiwan.,Department of Urology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Shun-Long Weng
- Department of Obstetrics and Gynaecology, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Zhong Lv
- Department of General Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| |
Collapse
|
11
|
MacDonald IJ, Lin CY, Kuo SJ, Su CM, Tang CH. An update on current and future treatment options for chondrosarcoma. Expert Rev Anticancer Ther 2019; 19:773-786. [PMID: 31462102 DOI: 10.1080/14737140.2019.1659731] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Human chondrosarcomas (CS; a malignant cartilage-forming bone tumor) respond poorly to chemotherapy and radiation treatment, resulting in high morbidity and mortality rates. Expanded treatment options are urgently needed. Areas covered: This article updates our 2014 review, in which we evaluated the CS treatments available at that time and potential treatment options under investigation. Since then, advances in research findings, particularly from Chinese herbal medicines, may be bringing us closer to more effective therapies for CS. In particular, promising findings have been reported from research targeting platelet-derived growth factor receptor. Expert opinion: Few treatment options exist for CS; chemotherapy is not even an option for unresectable disease, in which 5-year survival rates are just 2%. New information about the multitude of genes and signaling pathways that encourage CS growth, invasion and metastasis are clarifying how certain signaling pathways and plant-derived active compounds, especially molecularly-targeted therapies that inhibit the PDGF receptor, interfering with these biological processes. This review summarizes discoveries from the last 5 years and discusses how these findings are fueling ongoing work into effectively dealing with the disease process and improving the treatment of CS.
Collapse
Affiliation(s)
- Iona J MacDonald
- Graduate Institute of Basic Medical Science, China Medical University , Taichung , Taiwan
| | - Chih-Yang Lin
- Department of Medicine, Mackay Medical College , New Taipei City , Taiwan
| | - Shu-Jui Kuo
- Graduate Institute of Clinical Medical Science, China Medical University , Taichung , Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital , Taichung , Taiwan
| | - Chen-Ming Su
- Department of Sports Medicine, College of Health Care, China Medical University , Taichung , Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University , Taichung , Taiwan.,Department of Pharmacology, School of Medicine, China Medical University , Taichung , Taiwan.,Chinese Medicine Research Center, China Medical University , Taichung , Taiwan.,Department of Biotechnology, College of Health Science, Asia University , Taichung , Taiwan
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW This review provides an update on the recent literature describing the role of microRNAs (miRNAs) in cancer formation and bone metastasis. We confined our focus on osteosarcoma, breast cancer, prostate cancer, and epithelial-mesenchymal transition. RECENT FINDINGS In all areas covered, major discoveries on the role of miRNAs in tumorigenesis and metastasis have been made. Novel signaling networks were identified with miRNAs having a central function. Potential improvements in the diagnosis of malignant diseases and the long-term follow-up might become possible by the use of miRNAs. Furthermore, miRNAs also have disease-modifying properties and might emerge as a new class of therapeutic molecules. MiRNAs are novel and important regulators of multiple cellular and molecular events. Due to their functions, miRNAs might become useful to improve the diagnosis, follow-up and treatment of cancer, and metastases. Thus, miRNAs are molecules of great interest in translational medicine.
Collapse
Affiliation(s)
- Eric Hesse
- Department of Trauma, Hand and Reconstructive Surgery, Molecular Skeletal Biology Laboratory, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Hanna Taipaleenmäki
- Department of Trauma, Hand and Reconstructive Surgery, Molecular Skeletal Biology Laboratory, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
13
|
Resistin facilitates VEGF-A-dependent angiogenesis by inhibiting miR-16-5p in human chondrosarcoma cells. Cell Death Dis 2019; 10:31. [PMID: 30631040 PMCID: PMC6328541 DOI: 10.1038/s41419-018-1241-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
Abstract
Resistin is an adipokine that is associated with obesity, inflammation, and various cancers. Chondrosarcomas are primary malignant bone tumors that have a poor prognosis. VEGF-A is a critical angiogenic factor that is known to promote angiogenesis and metastasis in chondrosarcoma. It is unknown as to whether resistin affects human chondrosarcoma angiogenesis. In this study, we show how resistin promotes VEGF-A expression and subsequently induces angiogenesis of endothelial progenitor cells (EPCs). Resistin treatment activated the phosphatidylinositol-3-kinase (PI3K) and Akt signaling pathways, while PI3K and Akt inhibitors or siRNA diminished resistin-induced VEGF-A expression. In vitro and in vivo studies revealed the downregulation of micro RNA (miR)-16-5p in resistin-induced VEGF-A expression and EPCs angiogenesis. We also found a positive correlation between resistin and VEGF-A expression, and a negative correlation between resistin and VEGF-A with miR-16-5p in chondrosarcoma patients. These findings reveal that resistin facilitates VEGF-A expression and angiogenesis through the inhibition of miR-16-5p expression via PI3K/Akt signaling cascades. Resistin may be a promising target in chondrosarcoma angiogenesis.
Collapse
|
14
|
Tzeng HE, Tang CH, Wu SH, Chen HT, Fong YC, Lu YC, Chen WC, Huang HD, Lin CY, Wang SW. CCN6-mediated MMP-9 activation enhances metastatic potential of human chondrosarcoma. Cell Death Dis 2018; 9:955. [PMID: 30237403 PMCID: PMC6147788 DOI: 10.1038/s41419-018-1008-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/31/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022]
Abstract
Chondrosarcomas are primary malignant bone tumors that have a poor prognosis. WNT1-inducible signaling pathway protein-3 (WISP-3, also termed CCN6) belongs to the CCN family of proteins and is implicated in the regulation of various cellular functions, such as cell proliferation, differentiation, and migration. It is unknown as to whether CCN6 affects human chondrosarcoma metastasis. We show how CCN6 promotes chondrosarcoma cell migration and invasion via matrix metallopeptidase-9 (MMP)-9 expression. These effects were abolished by pretreatment of chondrosarcoma cells with PI3K, Akt, mTOR, and NF-κB inhibitors or short interfering (si)RNAs. Our investigations indicate that CCN6 facilitates metastasis through the PI3K/Akt/mTOR/NF-κB signaling pathway. CCN6 and MMP-9 expression was markedly increased in the highly migratory JJ012(S10) cell line compared with the primordial cell line (JJ012) in both in vitro and in vivo experiments. CCN6 knockdown suppressed MMP-9 production in JJ012(S10) cells and attenuated cell migration and invasion ability. Importantly, CCN6 knockdown profoundly inhibited chondrosarcoma cell metastasis to lung. Our findings reveal an important mechanism underlying CCN6-induced metastasis and they highlight the clinical significance between CCN6 and MMP-9 in regard to human chondrosarcoma. CCN6 appears to be a promising therapeutic target in chondrosarcoma metastasis.
Collapse
Affiliation(s)
- Huey-En Tzeng
- Taipei Cancer Center, Taipei Medical University, Taipei, 110, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.,Division of Hematology/Oncology, Department of Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 235, Taiwan
| | - Chih-Hsin Tang
- Chinese Medicine Research Center, China Medical University, Taichung, 404, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, 404, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, 404, Taiwan
| | - Sz-Hua Wu
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Hsien-Te Chen
- School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, 404, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, 404, Taiwan.,Department of Orthopaedic Surgery, China Medical University Beigang Hospital, Yun-Lin County, 651, Taiwan
| | - Yung-Chang Lu
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan.,Department of Orthopaedics, MacKay Memorial Hospital, Taipei, 104, Taiwan
| | - Wei-Cheng Chen
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei, 104, Taiwan.,Degree Program of Biomedical Science and Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Hsien-Da Huang
- Degree Program of Biomedical Science and Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chih-Yang Lin
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan.
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan. .,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
15
|
Epigenetic silencing of SFRP5 promotes the metastasis and invasion of chondrosarcoma by expression inhibition and Wnt signaling pathway activation. Chem Biol Interact 2018; 296:1-8. [PMID: 30125549 DOI: 10.1016/j.cbi.2018.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/17/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUD/AIMS Abnormal activation of the Wnt/β-catenin signaling, which may be antagonized by the members of secreted frizzled-related proteins family (SFRPs), is implicated in tumor occurrence and development. However, the function of SFRP5 relating to Wnt/β-catenin pathway in chondrosarcoma is not clear yet. This study was undertaken to investigate the potential role of SFRP5 promoter methylation in chondrosarcoma metastasis and invasion through activating canonical Wnt signaling pathway. METHODS AND RESULTS The results demonstrated that SFRP5 promoter was hypermethylated and SFRP5 expression was significantly reduced in chondrosarcoma cell lines at the mRNA and protein levels. The canonical Wnt/β-catenin signaling was observably activated with β-catenin stabilization by dephosphorylation and translocation into the nuclear. 5-Aza-2'-deoxycytidine (5-Aza-dC), the DNA methyltransferase inhibitor, significantly inhibited the proliferation of chondrosarcoma cells by cell cycle arrest through repressing the methylation of SFRP5 and promoting its expression. Both 5-Aza-dC treatment and SFRP5 overexpression could significantly inhibited the metastasis and invasion of chondrosarcoma cells by inactivating Wnt/β-catenin signaling pathway and promoting chondrosarcoma cells mesenchymal-epithelial transition (MET). 5-Aza-dC also inhibited the xenograft growth and lung metastasis of chondrosarcoma cells in vivo via suppressing SFRP5 promotor methylation, inactivating Wnt/β-catenin pathway and inducing epithelial markers expression. CONCLUSION All of our results revealed the epigenetic silencing of SFRP5 by promoter methylation plays pivotal roles in chondrosarcoma development and metastasis through SFRP5/Wnt/β-catenin signaling axis. Modulation of their levels may serve as potential targets and diagnostic tools for novel therapeutic strategies of chondrosarcoma.
Collapse
|
16
|
Wang R, Yu Z, Chen F, Xu H, Shen S, Chen W, Chen L, Su Q, Zhang L, Bi J, Zeng W, Li W, Huang X, Wang Q. miR-300 regulates the epithelial-mesenchymal transition and invasion of hepatocellular carcinoma by targeting the FAK/PI3K/AKT signaling pathway. Biomed Pharmacother 2018; 103:1632-1642. [PMID: 29864952 DOI: 10.1016/j.biopha.2018.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/03/2018] [Accepted: 03/03/2018] [Indexed: 12/26/2022] Open
Abstract
Several microRNAs (miRNAs) have been closely correlated with the development of hepatocellular carcinoma (HCC). However, the involvement of miR-300 in the development of HCC remains unknown. This study elucidated the potential molecular mechanisms of miR-300 in the modulation of the epithelial-mesenchymal transition (EMT) and invasion of HCC. The expression levels of miR-300 in HCC cells and clinical samples were detected by quantitative real-time PCR and in situ hybridization. The in vitro function of miR-300 in HCC was evaluated using a migration/invasion assay. Quantitative real-time PCR, western blotting, immunofluorescence and immunohistochemistry were used to validate the roles of miR-300 and FAK/PI3K/AKT in EMT progression. A dual-luciferase reporter assay was performed to confirm the target gene. miR-300 was down-regulated in HCC and significantly correlated with a poor prognosis in HCC patients. The down-regulation of miR-300 increased the invasiveness of the HCC cells, and promoted the EMT in both HCC tissues and HCC cells. In contrast, up-regulation of miR-300 led to the opposite results. Ectopic overexpression of miR-300 reversed TGF-β1-induced EMT in SMMC-7721 cells, and according to a dual-luciferase reporter assay and rescue assay, miR-300 inhibits the EMT-mediated migration and invasion of HCC cells via the targeted modulation of FAK and the downstream PI3K/AKT signaling pathway. miR-300 targeting modulates FAK, and the PI3K/AKT signaling pathway inhibits the EMT and suppresses the migration and invasion of HCC cells. Thus, miR-300 represents a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Rongchang Wang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, PR China
| | - Zheng Yu
- General Surgical Laboratory, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, PR China
| | - Fan Chen
- General Surgical Laboratory, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, PR China
| | - Hongxu Xu
- Department of Laboratory, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, PR China
| | - Shunli Shen
- Department of Hepatic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, PR China
| | - Wei Chen
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, PR China
| | - Lianzhou Chen
- General Surgical Laboratory, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, PR China
| | - Qiao Su
- Animal Center, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, PR China
| | - Longjuan Zhang
- General Surgical Laboratory, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, PR China
| | - Jiong Bi
- General Surgical Laboratory, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, PR China
| | - Wentao Zeng
- General Surgical Laboratory, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, PR China
| | - Wen Li
- General Surgical Laboratory, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, PR China
| | - Xiaohui Huang
- General Surgical Laboratory, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, PR China.
| | - Qian Wang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, PR China.
| |
Collapse
|
17
|
Lin CY, Tzeng HE, Li TM, Chen HT, Lee Y, Yang YC, Wang SW, Yang WH, Tang CH. WISP-3 inhibition of miR-452 promotes VEGF-A expression in chondrosarcoma cells and induces endothelial progenitor cells angiogenesis. Oncotarget 2018; 8:39571-39581. [PMID: 28465477 PMCID: PMC5503633 DOI: 10.18632/oncotarget.17142] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/29/2017] [Indexed: 12/24/2022] Open
Abstract
Chondrosarcoma is the second most prevalent general primary tumor of bone following osteosarcoma. Chondrosarcoma development may be linked to angiogenesis, which is principally elicited by vascular endothelial growth factor-A (VEGF-A). VEGF-A level has been recognized as a prognostic marker in angiogenesis. WNT1-inducible signaling pathway protein-3 (WISP)-3/CCN6 belongs to the CCN family and is involved in regulating several cellular functions, including cell proliferation, differentiation, and migration. Nevertheless, the effect of WISP-3 on VEGF-A production and angiogenesis in human chondrosarcoma remains largely unknown. This current study shows that WISP-3 promoted VEGF-A production and induced angiogenesis of human endothelial progenitor cells. Moreover, WISP-3-enhanced VEGF-A expression and angiogenesis involved the c-Src and p38 signaling pathways, while miR-452 expression was negatively affected by WISP-3 via the c-Src and p38 pathways. Our results illustrate the clinical significance of WISP-3, VEGF-A and miR-452 in human chondrosarcoma patients. WISP-3 may illustrate a novel therapeutic target in the metastasis and angiogenesis of chondrosarcoma.
Collapse
Affiliation(s)
- Chih-Yang Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Huey-En Tzeng
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, Division of Hematology and Oncology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hsien-Te Chen
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yi Lee
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yi-Chen Yang
- Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Wei-Hung Yang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan.,Department of Orthopedic Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
18
|
Xie M, Dart DA, Guo T, Xing XF, Cheng XJ, Du H, Jiang WG, Wen XZ, Ji JF. MicroRNA-1 acts as a tumor suppressor microRNA by inhibiting angiogenesis-related growth factors in human gastric cancer. Gastric Cancer 2018; 21:41-54. [PMID: 28493075 PMCID: PMC5741792 DOI: 10.1007/s10120-017-0721-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/17/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND We recently reported that miR-1 was one of the most significantly downregulated microRNAs in gastric cancer (GC) patients from The Cancer Genome Atlas microRNA sequencing data. Here we aim to elucidate the role of miR-1 in gastric carcinogenesis. METHODS We measured miR-1 expression in human GC cell lines and 90 paired primary GC samples, and analyzed the association of its status with clinicopathological features. The effect of miR-1 on GC cells was evaluated by proliferation and migration assay. To identify the target genes of miR-1, bioinformatic analysis and protein array analysis were performed. Moreover, the regulation mechanism of miR-1 with regard to these predicted targets was investigated by quantitative PCR (qPCR), Western blot, ELISA, and endothelial cell tube formation. The putative binding site of miR-1 on target genes was assessed by a reporter assay. RESULTS Expression of miR-1 was obviously decreased in GC cell lines and primary tissues. Patients with low miR-1 expression had significantly shorter overall survival compared with those with high miR-1 expression (P = 0.0027). Overexpression of miR-1 in GC cells inhibited proliferation, migration, and tube formation of endothelial cells by suppressing expression of vascular endothelial growth factor A (VEGF-A) and endothelin 1 (EDN1). Conversely, inhibition of miR-1 with use of antago-miR-1 caused an increase in expression of VEGF-A and EDN1 in nonmalignant GC cells or low-malignancy GC cells. CONCLUSIONS MiR-1 acts as a tumor suppressor by inhibiting angiogenesis-related growth factors in human gastric cancer. Downregulated miR-1 not only promotes cellular proliferation and migration of GC cells, but may activates proangiogenesis signaling and stimulates the proliferation and migration of endothelial cells, indicating the possibility of new strategies for GC therapy.
Collapse
Affiliation(s)
- Meng Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Dafydd Alwyn Dart
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiao-Fang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiao-Jing Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hong Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK.
| | - Xian-Zi Wen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Jia-Fu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
19
|
Lin CY, Wang SW, Chen YL, Chou WY, Lin TY, Chen WC, Yang CY, Liu SC, Hsieh CC, Fong YC, Wang PC, Tang CH. Brain-derived neurotrophic factor promotes VEGF-C-dependent lymphangiogenesis by suppressing miR-624-3p in human chondrosarcoma cells. Cell Death Dis 2017; 8:e2964. [PMID: 28771226 PMCID: PMC5596545 DOI: 10.1038/cddis.2017.354] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/16/2022]
Abstract
Chondrosarcoma is the second most common primary malignancy of bone, and one of the most difficult bone tumors to diagnose and treat. It is well known that increased levels of vascular endothelial growth factor-C (VEGF-C) promote active tumor lymphangiogenesis and lymphatic tumor spread to regional lymph nodes. Brain-derived neurotrophic factor (BDNF) is known to promote metastasis in human chondrosarcoma cells. Knowing more about the mechanism of BDNF in VEGF-C expression and lymphangiogenesis in human chondrosarcoma would improve our understanding as how to prevent chondrosarcoma angiogenesis and metastasis, which currently lacks effective adjuvant treatment. Here, we found that BDNF expression was at least 2.5-fold higher in the highly migratory JJ012(S10) cell line as compared with the primordial cell line (JJ012). In addition, VEGF-C expression and secretion was markedly increased in JJ012(S10) cells. Conditioned medium from JJ012(S10) cells significantly promoted migration and tube formation of human lymphatic endothelial cells (LECs), whereas knockdown of BDNF attenuated LEC migration and tube formation by suppressing VEGF-C production in JJ012(S10) cells. Mechanistic investigations indicated that BDNF facilitated VEGF-C-dependent lymphangiogenesis through the MEK/ERK/mTOR signaling pathway. We also showed that microRNA (miR)-624-3p expression was negatively regulated by BDNF via the MEK/ERK/mTOR cascade. Importantly, BDNF knockdown profoundly inhibited tumor-associated lymphangiogenesis in vivo. Further analyses identified that BDNF promoted tumor lymphangiogenesis by downregulating miR-624-3p in human chondrosarcoma tissues. In conclusion, this study is the first to reveal the mechanism underlying BDNF-induced lymphangiogenesis. We suggest that BDNF may serve as a promising therapeutic target for the restriction of VEGF-C-mediated tumor lymphangiogenesis and lymphatic metastasis.
Collapse
Affiliation(s)
- Chih-Yang Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Yen-Ling Chen
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Yi Chou
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital Medical Center, Kaohsiung, Taiwan
| | - Ting-Yi Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Wei-Cheng Chen
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chen-Yu Yang
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Chia Liu
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chia-Chu Hsieh
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County, Taiwan
- Institute of Molecular Medicine, National Tsing-Hua University, Hsinchu, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopaedic Surgery, China Medical University Beigang Hospital, Yun-Lin County, Taiwan
| | - Po-Chuan Wang
- Department of Gastroenterology, Hsinchu MacKay Memorial Hospital, Hsinchu City, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|