1
|
Huang M, Tabib T, Khanna D, Assassi S, Domsic R, Lafyatis R. Single-cell transcriptomes and chromatin accessibility of endothelial cells unravel transcription factors associated with dysregulated angiogenesis in systemic sclerosis. Ann Rheum Dis 2024; 83:1335-1344. [PMID: 38754983 PMCID: PMC11442142 DOI: 10.1136/ard-2023-225415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVES Vasculopathy emerges early in systemic sclerosis (SSc) and links to endothelial cell (EC) injury and angiogenesis. Understanding EC transcriptomes and epigenomes is crucial for unravelling the mechanisms involved. METHODS Transcriptomes and chromatin accessibility were assessed by single-cell RNA sequencing and single-nucleus transposase-accessible chromatin sequencing. Immunofluorescent staining of skin and proteomics assay were employed to confirm the altered SSc EC phenotypes. Gain-of-function assay was used to evaluate the effects of ETS transcription factors on human dermal ECs (hDECs). RESULTS Both control and SSc ECs shared transcriptomic signatures of vascular linages (arterial, capillary and venous ECs) and lymphatic ECs. Arterial ECs in SSc showed reduced number and increased expression of genes associated with apoptosis. Two distinct EC subpopulations, tip and proliferating ECs, were markedly upregulated in SSc, indicating enhanced proangiogenic and proliferative activities. Molecular features of aberrant SSc-ECs were associated with disease pathogenesis and clinical traits of SSc, such as skin fibrosis and digital ulcers. Ligand-receptor analysis demonstrated altered intercellular networks of SSc EC subpopulations with perivascular and immune cells. Furthermore, the integration of open chromatin profiles with transcriptomic analysis suggested an increased accessibility of regulatory elements for ETS family transcription factors in SSc ECs. Overexpression of ETS genes in hDECs suggested ELK4, ERF and ETS1 may orchestrate arterial apoptosis and dysregulated angiogenesis in SSc. CONCLUSIONS This study unveils transcriptional and chromatin alterations in driving endovascular dysregulation in SSc, proposing ELK4, ERF and ETS1 as novel targets in ECs for addressing vascular complications in the condition.
Collapse
Affiliation(s)
- Mengqi Huang
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Shervin Assassi
- Division of Rheumatology, The University of Texas Health Science Center, Houston, Texas, USA
| | - Robyn Domsic
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
He Y, Jiang S, Cui Y, Liang J, Zhong Y, Sun Y, Moran MF, Huang Z, He G, Mao X. Induction of IFIT1/IFIT3 and inhibition of Bcl-2 orchestrate the treatment of myeloma and leukemia via pyroptosis. Cancer Lett 2024; 588:216797. [PMID: 38462032 DOI: 10.1016/j.canlet.2024.216797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/27/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Induction of pyroptosis is proposed as a promising strategy for the treatment of hematological malignancies, but little is known. In the present study, we find clioquinol (CLQ), an anti-parasitic drug, induces striking myeloma and leukemia cell pyroptosis on a drug screen. RNA sequencing reveals that the interferon-inducible genes IFIT1 and IFIT3 are markedly upregulated and are essential for CLQ-induced GSDME activation and cell pyroptosis. Specifically, IFIT1 and IFIT3 form a complex with BAX and N-GSDME therefore directing N-GSDME translocalization to mitochondria and increasing mitochondrial membrane permeabilization and triggering pyroptosis. Furthermore, venetoclax, an activator of BAX and an inhibitor of Bcl-2, displays strikingly synergistic effects with CLQ against leukemia and myeloma via pyroptosis. This study thus reveals a novel mechanism for mitochondrial GSDME in pyroptosis and it also illustrates that induction of IFIT1/T3 and inhibition of Bcl-2 orchestrate the treatment of leukemia and myeloma via pyroptosis.
Collapse
Affiliation(s)
- Yuanming He
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Shuoyi Jiang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Yaoli Cui
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Jingpei Liang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Yueya Zhong
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Yuening Sun
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Michael F Moran
- The Department of Molecular Genetics, The University of Toronto, Toronto, ON, M5G 0A4, Canada; Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Zhenqian Huang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Guisong He
- Department of Orthopedics, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Xinliang Mao
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| |
Collapse
|
3
|
Song X, Wang M, Liu S, Liu H, Jiang A, Zou Y, Deng Y, Qin Q, Song Y, Zheng Y. A sequential scheme including PTT and 2'3'-cGAMP/CQ-LP reveals the antitumor immune function of PTT through the type I interferon pathway. Pharmacol Res 2023; 196:106939. [PMID: 37758101 DOI: 10.1016/j.phrs.2023.106939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
Photothermal therapy (PTT) is a promising antitumor treatment that is easy to implement, minimally invasive, and precisely controllable, and evokes strong antitumor immunity. We believe that a thorough elucidation of its underlying antitumor immune mechanisms would contribute to the rational design of combination treatments with other antitumor strategies and consequently potentiate clinical use. In this study, PTT using indocyanine green (ICG) induced STING-dependent type I interferon (IFN) production in macrophages (RAW264.7 and bone marrow-derived macrophages (BMDMs)), as proven by the use of a STING inhibitor (C178), and triggered STING-independent type I IFN generation in tumor cells (CT26 and 4T1), which was inhibited by DNase pretreatment. A novel liposome coloaded with the STING agonist 2'3'-cGAMP (cGAMP) and chloroquine (CQ) was constructed to achieve synergistic effect with PTT, in which CQ increased cGAMP entrapment efficiency and prevented STING degradation after IFN signaling activation. The sequential combination treatment caused a significant increase in tumor cell apoptosis, probably due to interferon stimulating gene products 15 and 54 (ISG15 and ISG 54), and achieved a more striking antitumor inhibition effect in the CT26 tumor model than the 4T1 model, likely due to higher STAT1 expression and consequently more intense IFN signal transduction. In the tumor microenvironment, the combination treatment increased infiltrating CD8+T cells (4-fold) and M1-like TAMs (10-fold), and decreased M-MDSCs (over 2-fold) and M2-like TAMs (over 4-fold). Above all, in-depth exploration of the antitumor mechanism of PTT provides guidance for selecting sensitive tumor models and designing reasonable clinical schemes.
Collapse
Affiliation(s)
- Xiaoshuang Song
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mao Wang
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Simeng Liu
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huimin Liu
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ailing Jiang
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Zou
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuchuan Deng
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qin Qin
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiran Song
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Zheng
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Tecalco-Cruz AC, Zepeda-Cervantes J. Protein ISGylation: a posttranslational modification with implications for malignant neoplasms. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:699-715. [PMID: 37711589 PMCID: PMC10497404 DOI: 10.37349/etat.2023.00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/05/2023] [Indexed: 09/16/2023] Open
Abstract
Interferon (IFN)-stimulated gene 15 (ISG15) is a member of the ubiquitin-like (UBL) protein family that can modify specific proteins via a catalytic process called ISGylation. This posttranslational modification can modulate the stability of the ISGylated proteins and protein-protein interactions. Some proteins modified by ISG15 have been identified in malignant neoplasms, suggesting the functional relevance of ISGylation in cancer. This review discusses the ISGylated proteins reported in malignant neoplasms that suggest the potential of ISG15 as a biomarker and therapeutic target in cancer.
Collapse
Affiliation(s)
- Angeles C. Tecalco-Cruz
- Postgraduate in Genomic Sciences, Campus Del Valle, Autonomous University of Mexico City (UACM), CDMX 03100, Mexico
| | - Jesús Zepeda-Cervantes
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico (UNAM), CDMX 04510, Mexico
| |
Collapse
|
5
|
Li L, Miao J, Shaheen N, Taleb SJ, Hu J, Ye Q, He J, Yan J, Mallampalli RK, Zhao J, Zhao Y. ISGylation of NF-κBp65 by SCF FBXL19 E3 Ligase Diminishes Endothelial Inflammation. Arterioscler Thromb Vasc Biol 2023; 43:674-683. [PMID: 36994728 PMCID: PMC10133096 DOI: 10.1161/atvbaha.122.318894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND NF-κB (nuclear factor kappa B) plays a pivotal role in endothelial cell (EC) inflammation. Protein ISGylation is regulated by E3 ISG15 (interferon-stimulated gene 15) ligases; however, ISGylation of NF-κBp65 and its role in EC functions have not been investigated. Here, we investigate whether p65 is ISGylated and the role of its ISGylation in endothelial functions. METHODS In vitro ISGylation assay and EC inflammation were performed. EC-specific transgenic mice were utilized in a murine model of acute lung injury. RESULTS We find that NF-κBp65 is ISGylated in resting ECs and that the posttranslational modification is reversible. TNFα (tumor necrosis factor alpha) and endotoxin stimulation of EC reduce p65 ISGylation, promoting its serine phosphorylation through reducing its association with a phosphatase WIP1 (wild-type p53-induced phosphatase 1). Mechanistically, an SCF (Skp1-Cul1-F-box) protein E3 ligase SCFFBXL19 is identified as a new ISG15 E3 ligase that targets and catalyzes ISGylation of p65. Depletion of FBXL19 (F-box and leucine-rich repeat protein 19) increases p65 phosphorylation and EC inflammation, suggesting a negative correlation between p65 ISGylation and phosphorylation. Moreover, EC-specific FBXL19 overexpressing humanized transgenic mice exhibit reduced lung inflammation and severity of experimental acute lung injury. CONCLUSIONS Together, our data reveal a new posttranslational modification of p65 catalyzed by a previously unrecognized role of SCFFBXL19 as an ISG15 E3 ligase that modulates EC inflammation.
Collapse
Affiliation(s)
- Lian Li
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH
| | - Jiaxing Miao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH
| | - Nargis Shaheen
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH
| | - Sarah J. Taleb
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH
| | - Jian Hu
- Department of Internal Medicine, the Ohio State University, Columbus, OH
| | - Qinmao Ye
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH
| | - Jinshan He
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH
| | - Jiasheng Yan
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH
| | | | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH
- Department of Internal Medicine, the Ohio State University, Columbus, OH
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH
- Department of Internal Medicine, the Ohio State University, Columbus, OH
| |
Collapse
|
6
|
Nguyen HM, Gaikwad S, Oladejo M, Agrawal MY, Srivastava SK, Wood LM. Interferon stimulated gene 15 (ISG15) in cancer: An update. Cancer Lett 2023; 556:216080. [PMID: 36736853 DOI: 10.1016/j.canlet.2023.216080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Among the plethora of defense mechanisms which a host elicits after pathogen invasion, type 1 interferons play a central role in regulating the immune system's response. They induce several interferon-stimulated genes (ISGs) which play a diverse role once activated. Over the past few decades, there have been several studies exploring the role of ISGs in cancer and ISG15 is among the most studied for its pro and anti-tumorigenic role. In this review, we aim to provide an update on the recent observations and findings related to ISG15 in cancer. We provide a brief overview about the initial observations and important historical findings which helped scientists understand structure and function of ISG15. We aim to provide an overview of ISG15 in cancer with an emphasis on studies which delve into the molecular mechanism of ISG15 in modulating the tumor microenvironment. Further, the dysregulation of ISG15 in cancer and the molecular mechanisms associated with its pro and anti-tumor roles are discussed in respective cancer types. Finally, we discuss multiple therapeutic applications of ISG15 in current cancer therapy.
Collapse
Affiliation(s)
- Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA; Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Shreyas Gaikwad
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA; Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA; Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Manas Yogendra Agrawal
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA; Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA; Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Laurence M Wood
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA; Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA.
| |
Collapse
|
7
|
The diverse repertoire of ISG15: more intricate than initially thought. Exp Mol Med 2022; 54:1779-1792. [PMID: 36319753 PMCID: PMC9722776 DOI: 10.1038/s12276-022-00872-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022] Open
Abstract
ISG15, the product of interferon (IFN)-stimulated gene 15, is the first identified ubiquitin-like protein (UBL), which plays multifaceted roles not only as a free intracellular or extracellular molecule but also as a post-translational modifier in the process of ISG15 conjugation (ISGylation). ISG15 has only been identified in vertebrates, indicating that the functions of ISG15 and its conjugation are restricted to higher eukaryotes and have evolved with IFN signaling. Despite the highlighted complexity of ISG15 and ISGylation, it has been suggested that ISG15 and ISGylation profoundly impact a variety of cellular processes, including protein translation, autophagy, exosome secretion, cytokine secretion, cytoskeleton dynamics, DNA damage response, telomere shortening, and immune modulation, which emphasizes the necessity of reassessing ISG15 and ISGylation. However, the underlying mechanisms and molecular consequences of ISG15 and ISGylation remain poorly defined, largely due to a lack of knowledge on the ISG15 target repertoire. In this review, we provide a comprehensive overview of the mechanistic understanding and molecular consequences of ISG15 and ISGylation. We also highlight new insights into the roles of ISG15 and ISGylation not only in physiology but also in the pathogenesis of various human diseases, especially in cancer, which could contribute to therapeutic intervention in human diseases.
Collapse
|
8
|
Waqas SFUH, Sohail A, Nguyen AHH, Usman A, Ludwig T, Wegner A, Malik MNH, Schuchardt S, Geffers R, Winterhoff M, Merkert S, Martin U, Olmer R, Lachmann N, Pessler F. ISG15 deficiency features a complex cellular phenotype that responds to treatment with itaconate and derivatives. Clin Transl Med 2022; 12:e931. [PMID: 35842904 PMCID: PMC9288839 DOI: 10.1002/ctm2.931] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Congenital ISG15 deficiency is a rare autoinflammatory disorder that is driven by chronically elevated systemic interferon levels and predominantly affects central nervous system and skin. Methods and results We have developed induced pluripotent stem cell‐derived macrophages and endothelial cells as a model to study the cellular phenotype of ISG15 deficiency and identify novel treatments. ISG15–/– macrophages exhibited the expected hyperinflammatory responses, but normal phagocytic function. In addition, they displayed a multifaceted pathological phenotype featuring increased apoptosis/pyroptosis, oxidative stress, glycolysis, and acylcarnitine levels, but decreased glutamine uptake, BCAT1 expression, branched chain amino acid catabolism, oxidative phosphorylation, β‐oxidation, and NAD(P)H‐dependent oxidoreductase activity. Furthermore, expression of genes involved in mitochondrial biogenesis and respiratory chain complexes II–V was diminished in ISG15–/– cells. Defective mitochondrial respiration was restored by transduction with wild‐type ISG15, but only partially by a conjugation‐deficient variant, suggesting that some ISG15 functions in mitochondrial respiration require ISGylation to cellular targets. Treatment with itaconate, dimethyl‐itaconate, 4‐octyl‐itaconate, and the JAK1/2 inhibitor ruxolitinib ameliorated increased inflammation, propensity for cell death, and oxidative stress. Furthermore, the treatments greatly improved mitochondria‐related gene expression, BCAT1 levels, redox balance, and intracellular and extracellular ATP levels. However, efficacy differed among the compounds according to read‐out and cell type, suggesting that their effects on cellular targets are not identical. Indeed, only itaconates increased expression of anti‐oxidant genes NFE2L2, HMOX1, and GPX7, and dimethyl‐itaconate improved redox balance the most. Even though itaconate treatments normalized the elevated expression of interferon‐stimulated genes, ISG15–/– macrophages maintained their reduced susceptibility to influenza virus infection. Conclusions These findings expand the cellular phenotype of human ISG15 deficiency and reveal the importance of ISG15 for regulating oxidative stress, branched chain amino acid metabolism, and mitochondrial function in humans. The results validate ruxolitinib as treatment for ISG15 deficiency and suggest itaconate‐based medications as additional therapeutics for this rare disorder.
Collapse
Affiliation(s)
- Syed Fakhar-Ul-Hassnain Waqas
- Research Group Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Aaqib Sohail
- Research Group Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Current affiliation: Department of Medicine, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ariane Hai Ha Nguyen
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Abdulai Usman
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Tobias Ludwig
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Andre Wegner
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Muhammad Nasir Hayat Malik
- Research Group Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sven Schuchardt
- Department of Bio and Environmental Analytics, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Moritz Winterhoff
- Research Group Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sylvia Merkert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Nico Lachmann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Frank Pessler
- Research Group Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Centre for Individualised Infection Medicine, Hannover, Germany.,Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
9
|
ISGylation Inhibits an LPS-Induced Inflammatory Response via the TLR4/NF-κB Signaling Pathway in Goat Endometrial Epithelial Cells. Animals (Basel) 2021; 11:ani11092593. [PMID: 34573559 PMCID: PMC8470639 DOI: 10.3390/ani11092593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Endometritis is a common and important reproductive disease of domestic animals, leading to repeated infertility, abortion, and ovarian dysfunction, which affects the reproductive rate and production performance of female domestic animals, and causes serious financial loss to farmers. Infection with Gram-negative bacteria, the release of LPS and activation of the TLR4/NF-κB signaling pathway are the principal factors responsible for the disease. However, the mechanism of the interaction between endometrial immunity and bacterial infection is not entirely clear. Ubiquitin-like protein ISG15 can regulate the TLR4/NF-κB signaling pathway via the ISGylation modification system, which modulates the inflammatory response. In the present study, we found that ISG15 proteins were mainly located in the cytoplasm of goat endometrial epithelial cells (gEECs) and that the expression of key genes and proteins of ISGylation increased in LPS-induce gEECs. Overexpression and silencing of the ISG15 gene demonstrated that ISGylation inhibited an LPS-induced inflammatory response via the TLR4/NF-κB signaling pathway in gEECs. Here, we provide the experimental basis for further exploration of the role of the ISGylation modification system in the inflammatory response of endometrium and a potential method for the treatment of endometritis. Abstract Endometritis is a common and important reproductive disease of domestic animals. The principal factors responsible for the disease are infection with Gram-negative bacteria, the release of Lipopolysaccharides (LPS) and activation of the TLR4/NF-κB signaling pathway. However, we do not fully understand the interaction between endometrial immunity and bacterial infection in the disease etiology. The ubiquitin-like protein ISG15 can regulate the TLR4/NF-κB signaling pathway via the ISGylation modification system, modulating the inflammatory response. In the present study, we found that ISG15 protein was expressed mainly in the cytoplasm of goat endometrial epithelial cells (gEECs) and that the expression of key genes and proteins of ISGylation increased in LPS-induced gEECs. Overexpression and silencing of the ISG15 gene demonstrated that ISGylation inhibited an LPS-induced inflammatory response via the TLR4/NF-κB signaling pathway in gEECs. Here, we provide the experimental basis for further exploration of the role of the ISGylation modification system in the inflammatory response of endometrium and a potential method for the treatment of endometritis.
Collapse
|
10
|
Increased expression of IFI16 predicts adverse prognosis in multiple myeloma. THE PHARMACOGENOMICS JOURNAL 2021; 21:520-532. [PMID: 33712724 DOI: 10.1038/s41397-021-00230-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/19/2021] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
Multiple myeloma (MM) is a malignancy of terminally differentiated plasma cells and does not have sufficient prognostic indicators. Interferon gamma inducible protein 16 (IFI16) plays a crucial role in B-cell differentiation. Several studies have shown that IFI16 predicted prognosis in many cancers. However, the relationship between MM prognosis and IFI16 expression has not been studied. In our study, we analyzed the prognostic role of IFI16 expression and explored the possible mechanism in MM progression by using 4498 myeloma patients and 52 healthy donors from 13 independent gene expression omnibus (GEO) datasets. The IFI16 expression increased with myeloma progression, ISS stage, 1q21 amplification, and relapse (all P < 0.01). MM patients with higher IFI16 expression had shorter survival in six datasets (all P < 0.05). Furthermore, multivariate analysis indicated that enhanced IFI16 expression was an independent poor prognostic factor for EFS and OS (P = 0.007, 0.009, respectively). And PPI, GO, KEGG, and GSEA also confirmed that IFI16 promoted MM progression by participating in tumor-related pathways. In conclusion, our study confirmed that IFI16 was a poor prognostic biomarker in MM.
Collapse
|
11
|
Tecalco-Cruz AC. Molecular Pathways of Interferon-Stimulated Gene 15: Implications in Cancer. Curr Protein Pept Sci 2021; 22:19-28. [DOI: 10.2174/1389203721999201208200747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/18/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022]
Abstract
Human interferon-stimulated gene 15 (ISG15) is a 15-kDa ubiquitin-like protein that
can be detected as either free ISG15 or covalently associated with its target proteins through a process
termed ISGylation. Interestingly, extracellular free ISG15 has been proposed as a cytokinelike
protein, whereas ISGylation is a posttranslational modification. ISG15 is a small protein with
implications in some biological processes and pathologies that include cancer. This review highlights
the findings of both free ISG15 and protein ISGylation involved in several molecular pathways,
emerging as central elements in some cancer types.
Collapse
Affiliation(s)
- Angeles C. Tecalco-Cruz
- Programa en Ciencias Genomicas, Universidad Autonoma de la Ciudad de Mexico (UACM), Apdo. Postal 03100, Ciudad de Mexico, Mexico
| |
Collapse
|
12
|
Khan R, Khan H, Abdullah Y, Dou QP. Feasibility of Repurposing Clioquinol for Cancer Therapy. Recent Pat Anticancer Drug Discov 2021; 15:14-31. [PMID: 32106803 DOI: 10.2174/1574892815666200227090259] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cancer is a prevalent disease in the world and is becoming more widespread as time goes on. Advanced and more effective chemotherapeutics need to be developed for the treatment of cancer to keep up with this prevalence. Repurposing drugs is an alternative to discover new chemotherapeutics. Clioquinol is currently being studied for reposition as an anti-cancer drug. OBJECTIVE This study aimed to summarize the anti-cancer effects of clioquinol and its derivatives through a detailed literature and patent review and to review their potential re-uses in cancer treatment. METHODS Research articles were collected through a PubMed database search using the keywords "Clioquinol" and "Cancer." The keywords "Clioquinol Derivatives" and "Clioquinol Analogues" were also used on a PubMed database search to gather research articles on clioquinol derivatives. Patents were gathered through a Google Patents database search using the keywords "Clioquinol" and "Cancer." RESULTS Clioquinol acts as a copper and zinc ionophore, a proteasome inhibitor, an anti-angiogenesis agent, and is an inhibitor of key signal transduction pathways responsible for its growth-inhibitory activity and cytotoxicity in cancer cells preclinically. A clinical trial conducted by Schimmer et al., resulted in poor outcomes that prompted studies on alternative clioquinol-based applications, such as new combinations, new delivery methods, or new clioquinol-derived analogues. In addition, numerous patents claim alternative uses of clioquinol for cancer therapy. CONCLUSION Clioquinol exhibits anti-cancer activities in many cancer types, preclinically. Low therapeutic efficacy in a clinical trial has prompted new studies that aim to discover more effective clioquinol- based cancer therapies.
Collapse
Affiliation(s)
- Raheel Khan
- Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Harras Khan
- Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Yassen Abdullah
- Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Q Ping Dou
- Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
13
|
Dual EZH2 and G9a inhibition suppresses multiple myeloma cell proliferation by regulating the interferon signal and IRF4-MYC axis. Cell Death Discov 2021; 7:7. [PMID: 33436557 PMCID: PMC7803977 DOI: 10.1038/s41420-020-00400-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Epigenetic mechanisms such as histone modification play key roles in the pathogenesis of multiple myeloma (MM). We previously showed that EZH2, a histone H3 lysine 27 (H3K27) methyltransferase, and G9, a H3K9 methyltransferase, are potential therapeutic targets in MM. Moreover, recent studies suggest EZH2 and G9a cooperate to regulate gene expression. We therefore evaluated the antitumor effect of dual EZH2 and G9a inhibition in MM. A combination of an EZH2 inhibitor and a G9a inhibitor strongly suppressed MM cell proliferation in vitro by inducing cell cycle arrest and apoptosis. Dual EZH2/G9a inhibition also suppressed xenograft formation by MM cells in vivo. In datasets from the Gene Expression Omnibus, higher EZH2 and EHMT2 (encoding G9a) expression was significantly associated with poorer prognoses in MM patients. Microarray analysis revealed that EZH2/G9a inhibition significantly upregulated interferon (IFN)-stimulated genes and suppressed IRF4-MYC axis genes in MM cells. Notably, dual EZH2/G9a inhibition reduced H3K27/H3K9 methylation levels in MM cells and increased expression of endogenous retrovirus (ERV) genes, which suggests that activation of ERV genes may induce the IFN response. These results suggest that dual targeting of EZH2 and G9a may be an effective therapeutic strategy for MM.
Collapse
|
14
|
Kang JA, Jeon YJ. Emerging Roles of USP18: From Biology to Pathophysiology. Int J Mol Sci 2020; 21:ijms21186825. [PMID: 32957626 PMCID: PMC7555095 DOI: 10.3390/ijms21186825] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic proteomes are enormously sophisticated through versatile post-translational modifications (PTMs) of proteins. A large variety of code generated via PTMs of proteins by ubiquitin (ubiquitination) and ubiquitin-like proteins (Ubls), such as interferon (IFN)-stimulated gene 15 (ISG15), small ubiquitin-related modifier (SUMO) and neural precursor cell expressed, developmentally downregulated 8 (NEDD8), not only provides distinct signals but also orchestrates a plethora of biological processes, thereby underscoring the necessity for sophisticated and fine-tuned mechanisms of code regulation. Deubiquitinases (DUBs) play a pivotal role in the disassembly of the complex code and removal of the signal. Ubiquitin-specific protease 18 (USP18), originally referred to as UBP43, is a major DUB that reverses the PTM of target proteins by ISG15 (ISGylation). Intriguingly, USP18 is a multifaceted protein that not only removes ISG15 or ubiquitin from conjugated proteins in a deconjugating activity-dependent manner but also acts as a negative modulator of type I IFN signaling, irrespective of its catalytic activity. The function of USP18 has become gradually clear, but not yet been completely addressed. In this review, we summarize recent advances in our understanding of the multifaceted roles of USP18. We also highlight new insights into how USP18 is implicated not only in physiology but also in pathogenesis of various human diseases, involving infectious diseases, neurological disorders, and cancers. Eventually, we integrate a discussion of the potential of therapeutic interventions for targeting USP18 for disease treatment.
Collapse
Affiliation(s)
- Ji An Kang
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Young Joo Jeon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
- Correspondence: ; Tel.: +82-42-280-6766; Fax: +82-42-280-6769
| |
Collapse
|
15
|
ISG15 suppresses translation of ABCC2 via ISGylation of hnRNPA2B1 and enhances drug sensitivity in cisplatin resistant ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118647. [PMID: 31926942 DOI: 10.1016/j.bbamcr.2020.118647] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022]
Abstract
Cisplatin-based chemotherapies have long been considered as a standard chemotherapy in ovarian cancer. However, cisplatin resistance restricts beneficial therapy for patients with ovarian cancer. The ubiquitin-like protein interferon-stimulated gene 15 (ISG15) encodes a 15-kDa protein, that is implicated in the post-translational modification of diverse proteins. In this work, we found that ISG15 was downregulated in cisplatin resistant tissues and cell lines of ovarian cancer. Functional studies demonstrated that overexpression of wild type (WT) ISG15, but not nonISGylatable (Mut) ISG15 increased cell responses to cisplatin in resistant ovarian cancer cells. Furthermore, we found that WT ISG15 decreased ABCC2 expression at the protein level. Importantly, overexpression of ABCC2 blocked sensitizing effect of ISG15 on cisplatin. In addition, we identified that hnRNPA2B1 was recruited to 5'UTR of ABCC2 mRNA and promoted its translation, which was blocked by ISG15. We further demonstrated that hnRNPA2B1 could be ISGylated, and ISGylation blocked its recruitment to ABCC2 mRNA, thereby suppressed translation of ABCC2. Altogether, our data support targeting ISG15 might be a potential therapeutic strategy for patients with cisplatin-resistant ovarian cancer.
Collapse
|
16
|
Abstract
Over the past decade, preclinical and clinical research have confirmed the essential role of interferons for effective host immunological responses to malignant cells. Type I interferons (IFNα and IFNβ) directly regulate transcription of >100 downstream genes, which results in a myriad of direct (on cancer cells) and indirect (through immune effector cells and vasculature) effects on the tumour. New insights into endogenous and exogenous activation of type I interferons in the tumour and its microenvironment have given impetus to drug discovery and patient evaluation of interferon-directed strategies. When combined with prior observations or with other effective modalities for cancer treatment, modulation of the interferon system could contribute to further reductions in cancer morbidity and mortality. This Review discusses new interferon-directed therapeutic opportunities, ranging from cyclic dinucleotides to genome methylation inhibitors, angiogenesis inhibitors, chemoradiation, complexes with neoantigen-targeted monoclonal antibodies, combinations with other emerging therapeutic interventions and associations of interferon-stimulated gene expression with patient prognosis - all of which are strategies that have or will soon enter translational clinical evaluation.
Collapse
|
17
|
Loss of TRIM29 suppresses cancer stem cell-like characteristics of PDACs via accelerating ISG15 degradation. Oncogene 2019; 39:546-559. [DOI: 10.1038/s41388-019-0992-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 12/30/2022]
|
18
|
Non-muscle myosin IIA is post-translationally modified by interferon-stimulated gene 15 in breast cancer cells. Int J Biochem Cell Biol 2018; 107:14-26. [PMID: 30529400 DOI: 10.1016/j.biocel.2018.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/17/2018] [Accepted: 12/03/2018] [Indexed: 11/20/2022]
Abstract
ISG15 (interferon-stimulated gene 15) exists as free ISG15 or conjugated ISG15 modifying its target proteins via ISGylation. Few proteins have been identified and studied as ISGylation targets, and their relevance is not completely clear. Here, we isolated ISG15 from MDA-MB-231 breast cancer cells using immunoprecipitation and identified non-muscle myosin IIA (NMIIA) using mass spectrometry as endogenously associated with ISG15. The identification of NMIIA as an ISG15-interacting protein was important, because levels of NMIIA mRNA were not deregulated in all breast cancers, and because our in silico analysis indicated that NMIIA was the target of different posttranslational modifications and had an interactome associated with cytoskeletal remodeling. Furthermore, our experimental assays of co-immunoprecipitation and immunofluorescence confirmed that ISG15 was covalently associated with NMIIA in the cytoplasm of breast cancer cells and that interferon γ (IFN-γ) increased this association without alterations in the NMIIA levels. Thus, NMIIA ISGylation is regulated by IFN-γ, and this modification may modulate its interactions with proteins that remodel the cytoskeleton, participating in the growth and progression of mammary tumors.
Collapse
|
19
|
Tecalco-Cruz AC, Cortés-González CC, Cruz-Ramos E, Ramírez Jarquín JO, Romero-Mandujano AK, Sosa-Garrocho M. Interplay between interferon-stimulated gene 15/ISGylation and interferon gamma signaling in breast cancer cells. Cell Signal 2018; 54:91-101. [PMID: 30500379 DOI: 10.1016/j.cellsig.2018.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022]
Abstract
Interferon-stimulated gene 15 (ISG15) is a ubiquitin-like protein that conjugates to its target proteins to modify them through ISGylation, but the relevance of ISG15 expression and its effects have been not completely defined. Herein, we examined the interplay between ISG15/ISGylation and the interferon-gamma (IFN-γ) signaling pathway in mammary tumors and compared it with that in normal mammary tissues. Our results indicated that mammary tumors had higher levels of ISG15 mRNA and ISG15 protein than the adjacent normal mammary tissue. Furthermore, the expression of IFN-γ signaling components was altered in breast cancer. Interestingly, IFN-γ treatment induced morphological changes in MCF-7 and MDA-MB-231 breast cancer cell lines due to cytoskeletal reorganization. This cellular process seems to be related to the increase in ISGylation of cytoplasmic IQ Motif Containing GTPase Activating Protein 1 (IQGAP1). Interactome analysis also indicated that IFN-γ signaling and the ISGylation system are associated with several proteins implicated in cytoskeletal remodeling, including IQGAP1. Thus, ISG15 may present a potential biomarker for breast cancer, and IFN-γ signaling and protein ISGylation may participate in the regulation of the cytoskeleton in breast cancer cells.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Carlo César Cortés-González
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Tlalpan, C.P. 14080 Mexico City, Mexico
| | - Eduardo Cruz-Ramos
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Josué O Ramírez Jarquín
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Aline Kay Romero-Mandujano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Tlalpan, C.P. 14080 Mexico City, Mexico
| | - Marcela Sosa-Garrocho
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
20
|
Protein ISGylation and free ISG15 levels are increased by interferon gamma in breast cancer cells. Biochem Biophys Res Commun 2018; 499:973-978. [DOI: 10.1016/j.bbrc.2018.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/03/2018] [Indexed: 11/24/2022]
|
21
|
Huang C, Yu XH, Zheng XL, Ou X, Tang CK. Interferon-stimulated gene 15 promotes cholesterol efflux by activating autophagy via the miR-17-5p/Beclin-1 pathway in THP-1 macrophage-derived foam cells. Eur J Pharmacol 2018. [PMID: 29518394 DOI: 10.1016/j.ejphar.2018.02.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Macrophage autophagy contributes to the hydrolysis of cholesteryl ester into free cholesterol mainly for ATP-binding cassette transporter A1 (ABCA1)-dependent efflux. Interferon-stimulated gene 15 (ISG15) has been shown to regulate autophagy in multiple types of cells. The present study aimed to examine the effects of ISG15 on autophagy and cholesterol efflux in THP-1 macrophage-derived foam cells and to explore the underlying molecular mechanisms. Our results showed that overexpression of ISG15 promoted autophagy and cholesterol efflux and inhibited lipid accumulation without impact on ABCA1 expression. Inhibition of autophagy by 3-methyladenine (3-MA) abrogated the enhancing effects of ISG15 on cholesterol efflux. Both bioinformatics analysis and dual luciferase reporter assay identified Beclin-1 as a direct target of miR-17-5p. Moreover, ISG15 overexpression markedly decreased miR-17-5p levels and upregulated Beclin-1 expression. ISG15-induced enhancement of autophagy and cholesterol efflux was reversed by pretreatment with either miR-17-5p mimic or Beclin-1 siRNA. In conclusion, these findings suggest that ISG15 reduces miR-17-5p levels and thereby promotes Beclin-1-mediated autophagy, resulting in increased cholesterol efflux from THP-1 macrophage-derived foam cells.
Collapse
Affiliation(s)
- Chong Huang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta, Canada T2N 4N1
| | - Xiang Ou
- Department of Endocrinology, The First Hospital of Changsha, Changsha, Hunan 410005, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
22
|
Jiang J, Geng G, Yu X, Liu H, Gao J, An H, Cai C, Li N, Shen D, Wu X, Zheng L, Mi Y, Yang S. Repurposing the anti-malarial drug dihydroartemisinin suppresses metastasis of non-small-cell lung cancer via inhibiting NF-κB/GLUT1 axis. Oncotarget 2018; 7:87271-87283. [PMID: 27895313 PMCID: PMC5349987 DOI: 10.18632/oncotarget.13536] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 11/02/2016] [Indexed: 12/24/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is an aggressive malignancy and long-term survival remains unsatisfactory for patients with metastatic and recurrent disease. Repurposing the anti-malarial drug dihydroartemisinin (DHA) has been proved to possess potent antitumor effect on various cancers. However, the effects of DHA in preventing the invasion of NSCLC cells have not been studied. In the present study, we determined the inhibitory effects of DHA on invasion and migration and the possible mechanisms involved using A549 and H1975 cells. DHA inhibited in vitro migration and invasion of NSCLC cells even in low concentration with little cytotoxicity. Additionally, low concentration DHA also inhibited Warburg effect in NSCLC cells. Mechanically, DHA negatively regulates NF-κB signaling to inhibit the GLUT1 translocation. Blocking the NF-κB signaling largely abolishes the inhibitory effects of DHA on the translocation of GLUT1 to the plasma membrane and the Warburg effect. Furthermore, GLUT1 knockdown significantly decreased the inhibition of invasion, and migration by DHA. Our results suggested that DHA can inhibit metastasis of NSCLC by targeting glucose metabolism via inhibiting NF-κB signaling pathway and DHA may deserve further investigation in NSCLC treatment.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Thoracic Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Guojun Geng
- Department of Thoracic Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Xiuyi Yu
- Department of Thoracic Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Hongming Liu
- Department of Thoracic Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Jing Gao
- Department of Thoracic Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Hanxiang An
- Department of Medical Oncology, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Chengfu Cai
- Department of Thoracic Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Ning Li
- Department of Thoracic Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Dongyan Shen
- Biobank, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Xiaoqiang Wu
- Biobank, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Lisheng Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Yanjun Mi
- Department of Thoracic Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China.,Department of Medical Oncology, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Shuyu Yang
- Xiamen Diabetes Institution, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
23
|
Yoo L, Yoon AR, Yun CO, Chung KC. Covalent ISG15 conjugation to CHIP promotes its ubiquitin E3 ligase activity and inhibits lung cancer cell growth in response to type I interferon. Cell Death Dis 2018; 9:97. [PMID: 29367604 PMCID: PMC5833375 DOI: 10.1038/s41419-017-0138-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 12/20/2022]
Abstract
The carboxyl terminus of Hsp70-interacting protein (CHIP) acts as a ubiquitin E3 ligase and a link between the chaperones Hsp70/90 and the proteasome system, playing a vital role in maintaining protein homeostasis. CHIP regulates a number of proteins involved in a myriad of physiological and pathological processes, but the underlying mechanism of action via posttranslational modification has not been extensively explored. In this study, we investigated a novel modulatory mode of CHIP and its effect on CHIP enzymatic activity. ISG15, an ubiquitin-like modifier, is induced by type I interferon (IFN) stimulation and can be conjugated to target proteins (ISGylation). Here we demonstrated that CHIP may be a novel target of ISGylation in HEK293 cells stimulated with type I IFN. We also found that Lys143/144/145 and Lys287 residues in CHIP are important for and target residues of ISGylation. Moreover, ISGylation promotes the E3 ubiquitin ligase activity of CHIP, subsequently causing a decrease in levels of oncogenic c-Myc, one of its many ubiquitination targets, in A549 lung cancer cells and inhibiting A549 cell and tumor growth. In conclusion, the present study demonstrates that covalent ISG15 conjugation produces a novel CHIP regulatory mode that enhances the tumor-suppressive activity of CHIP, thereby contributing to the antitumor effect of type I IFN.
Collapse
Affiliation(s)
- Lang Yoo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
24
|
Mustachio LM, Lu Y, Kawakami M, Roszik J, Freemantle SJ, Liu X, Dmitrovsky E. Evidence for the ISG15-Specific Deubiquitinase USP18 as an Antineoplastic Target. Cancer Res 2018; 78:587-592. [PMID: 29343520 DOI: 10.1158/0008-5472.can-17-1752] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/06/2017] [Accepted: 10/19/2017] [Indexed: 11/16/2022]
Abstract
Ubiquitination and ubiquitin-like posttranslational modifications (PTM) regulate activity and stability of oncoproteins and tumor suppressors. This implicates PTMs as antineoplastic targets. One way to alter PTMs is to inhibit activity of deubiquitinases (DUB) that remove ubiquitin or ubiquitin-like proteins from substrate proteins. Roles of DUBs in carcinogenesis have been intensively studied, yet few inhibitors exist. Prior work provides a basis for the ubiquitin-specific protease 18 (USP18) as an antineoplastic target. USP18 is the major DUB that removes IFN-stimulated gene 15 (ISG15) from conjugated proteins. Prior work discovered that engineered loss of USP18 increases ISGylation and in contrast to its gain decreases cancer growth by destabilizing growth-regulatory proteins. Loss of USP18 reduced cancer cell growth by triggering apoptosis. Genetic loss of USP18 repressed cancer formation in engineered murine lung cancer models. The translational relevance of USP18 was confirmed by finding its expression was deregulated in malignant versus normal tissues. Notably, the recent elucidation of the USP18 crystal structure offers a framework for developing an inhibitor to this DUB. This review summarizes strong evidence for USP18 as a previously unrecognized pharmacologic target in oncology. Cancer Res; 78(3); 587-92. ©2018 AACR.
Collapse
Affiliation(s)
- Lisa Maria Mustachio
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yun Lu
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Masanori Kawakami
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah J Freemantle
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Illinois
| | - Xi Liu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ethan Dmitrovsky
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
25
|
Tecalco Cruz AC, Mejía-Barreto K. Cell type-dependent regulation of free ISG15 levels and ISGylation. J Cell Commun Signal 2017; 11:127-135. [PMID: 28285335 DOI: 10.1007/s12079-017-0385-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/28/2017] [Indexed: 12/12/2022] Open
Abstract
Interferon-stimulated gene 15 (ISG15) is an ubiquitin-like protein, which can either be found as a free protein or covalently-bound to target proteins via ISGylation. The functions of free and conjugated ISG15 are ambiguous in tumorigenesis owing to its roles as an oncogene and a tumour suppressor gene. This dual role for ISG15 could be a result of the cancer cell type and the cellular context. Here, we report that ISG15 expression is upregulated in different cancer cells compared to normal cells. Furthermore, we found higher endogenous, free ISG15 protein levels in MCF7 breast cancer cells than in other cells, suggesting that non-conjugated ISG15 levels are cell type-specific. Additionally, we demonstrated that interferon gamma (IFN-Ɣ) increased both free and conjugated levels of ISG15 in MCF7 cells. Interestingly, endogenous conjugated and free ISG15 levels were differentially regulated by IFN-Ɣ in several cell lines. On characterisation of the subcellular distribution of ISG15 in several cell types, our results indicated that free ISG15 was mainly localised to the cytoplasm of MCF7 cells, whereas ISGylation marks were also found in the cytoplasm, but mainly in the nucleus, with a specific distribution pattern in each cell type. Thus, free and conjugated ISG15 protein levels and their subcellular distribution are cell type-dependent, whereas IFN-Ɣ signalling may differentially control the abundance of both ISG15 forms in transformed and normal cells.
Collapse
Affiliation(s)
- Angeles C Tecalco Cruz
- Programa de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Karen Mejía-Barreto
- Programa de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| |
Collapse
|