1
|
Abstract
Few ideas in cancer genetics have been as influential as the “two-hit” theory of tumor suppressors. This idea was introduced in 1971 by Al Knudson in a paper in the Proceedings of the National Academy of Science and forms the basis for our current understanding of the role of mutations in cancer. In this theoretical discussion proposing a genetic basis for retinoblastoma, a childhood cancer of the retina, Knudson posited that these tumors arise from two inactivating mutations, targeting both alleles of a putative tumor suppressor gene. While this work built on earlier proposals that cancers are the result of mutations in more than one gene, it was the first to propose a plausible mechanism by which single genes that are affected by germ-line mutations in heritable cancers could also cause spontaneous, nonheritable tumors when mutated in somatic tissues. Remarkably, Knudson described the existence and properties of a retinoblastoma tumor suppressor gene a full 15 years before the gene was cloned.
Collapse
|
2
|
Unachukwu U, Shiomi T, Goldklang M, Chada K, D'Armiento J. Renal neoplasms in tuberous sclerosis mice are neurocristopathies. iScience 2021; 24:102684. [PMID: 34222844 PMCID: PMC8243016 DOI: 10.1016/j.isci.2021.102684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/20/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Tuberous sclerosis (TS) is a rare disorder exhibiting multi-systemic benign neoplasms. We hypothesized the origin of TS neoplastic cells derived from the neural crest given the heterogeneous ecto-mesenchymal phenotype of the most common TS neoplasms. To test this hypothesis, we employed Cre-loxP lineage tracing of myelin protein zero (Mpz)-expressing neural crest cells (NCCs) in spontaneously developing renal tumors of Tsc2 +/- /Mpz(Cre)/TdT fl/fl reporter mice. In these mice, ectopic renal tumor onset was detected at 4 months of age increasing in volume by 16 months of age with concomitant increase in the subpopulation of tdTomato+ NCCs from 0% to 6.45% of the total number of renal tumor cells. Our results suggest that Tsc2 +/- mouse renal tumors arise from domiciled proliferative progenitor cell populations of neural crest origin that co-opt tumorigenesis due to mutations in Tsc2 loci. Targeting neural crest antigenic determinants will provide a potential alternative therapeutic approach for TS pathogenesis.
Collapse
Affiliation(s)
- Uchenna Unachukwu
- Center for LAM and Rare Lung Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, 630 West 168 Street, New York, NY 10032, USA
| | - Takayuki Shiomi
- Department of Pathology, International University of Health and Welfare, School of Medicine, 4-3 Kouzunomori, Narita-shi, Chiba 286-8686, Japan
| | - Monica Goldklang
- Center for LAM and Rare Lung Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, 630 West 168 Street, New York, NY 10032, USA
| | - Kiran Chada
- Department of Biochemistry, Rutgers-Robert Wood Johnson Medical School, Rutgers University, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Jeanine D'Armiento
- Center for LAM and Rare Lung Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, 630 West 168 Street, New York, NY 10032, USA
| |
Collapse
|
3
|
Millet-Boureima C, He S, Le TBU, Gamberi C. Modeling Neoplastic Growth in Renal Cell Carcinoma and Polycystic Kidney Disease. Int J Mol Sci 2021; 22:3918. [PMID: 33920158 PMCID: PMC8070407 DOI: 10.3390/ijms22083918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) and autosomal dominant polycystic kidney disease (ADPKD) share several characteristics, including neoplastic cell growth, kidney cysts, and limited therapeutics. As well, both exhibit impaired vasculature and compensatory VEGF activation of angiogenesis. The PI3K/AKT/mTOR and Ras/Raf/ERK pathways play important roles in regulating cystic and tumor cell proliferation and growth. Both RCC and ADPKD result in hypoxia, where HIF-α signaling is activated in response to oxygen deprivation. Primary cilia and altered cell metabolism may play a role in disease progression. Non-coding RNAs may regulate RCC carcinogenesis and ADPKD through their varied effects. Drosophila exhibits remarkable conservation of the pathways involved in RCC and ADPKD. Here, we review the progress towards understanding disease mechanisms, partially overlapping cellular and molecular dysfunctions in RCC and ADPKD and reflect on the potential for the agile Drosophila genetic model to accelerate discovery science, address unresolved mechanistic aspects of these diseases, and perform rapid pharmacological screens.
Collapse
Affiliation(s)
- Cassandra Millet-Boureima
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
| | - Stephanie He
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
| | - Thi Bich Uyen Le
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
- Haematology-Oncology Research Group, National University Cancer Institute, Singapore 119228, Singapore
| | - Chiara Gamberi
- Department of Biology, Coastal Carolina University, Conway, SC 29528-6054, USA
| |
Collapse
|
4
|
The not-so-sweet side of sugar: Influence of the microenvironment on the processes that unleash cancer. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165960. [PMID: 32919034 DOI: 10.1016/j.bbadis.2020.165960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/30/2022]
Abstract
The role of "aerobic glycolysis" in cancer has been examined often in the past. Results from those studies, most of which were performed on two dimensional conditions (2D, tissue culture plastic), demonstrate that aerobic glycolysis occurs as a consequence of oncogenic events. These oncogenic events often drive malignant cell growth and survival. Although 2D based experiments are useful in elucidating the molecular mechanisms of oncogenesis, they fail to take contributions of the extracellular microenvironment into account. Indeed we, and others, have shown that the cellular microenvironment is essential in regulating processes that induce and/or suppress the malignant phenotype/properties. This regulation between the cell and its microenvironment is both dynamic and reciprocal and involves the integration of cellular signaling networks in the right context. Therefore, given our previous demonstration of the effect of the microenvironment including tissue architecture and media composition on gene expression and the integration of signaling events observed in three-dimension (3D), we hypothesized that glucose uptake and metabolism must also be essential components of the tissue's signal "integration plan" - that is, if uptake and metabolism of glucose were hyperactivated, the canonical oncogenic pathways should also be similarly activated. This hypothesis, if proven true, suggests that direct inhibition of glucose metabolism in cancer cells should either suppress or revert the malignant phenotype in 3D. Here, we review the up-to-date progress that has been made towards understanding the role that glucose metabolism plays in oncogenesis and re-establishing basally polarized acini in malignant human breast cells.
Collapse
|
5
|
Signorelli F, Piscopo G, Giraud S, Guerriero S, Laborante A, Latronico ME, Chimenti G, Maduri R, Chirchiglia D, Lavano A, Guyotat J, Alessio G, Gesualdo L. Von Hippel-Lindau disease: when neurosurgery meets nephrology, ophthalmology and genetics. J Neurosurg Sci 2019; 63:548-565. [DOI: 10.23736/s0390-5616.17.04153-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
The Cancer Genome Atlas of renal cell carcinoma: findings and clinical implications. Nat Rev Urol 2019; 16:539-552. [DOI: 10.1038/s41585-019-0211-5] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2019] [Indexed: 11/09/2022]
|
7
|
Ignesti M, Andrenacci D, Fischer B, Cavaliere V, Gargiulo G. Comparative Expression Profiling of Wild Type Drosophila Malpighian Tubules and von Hippel-Lindau Haploinsufficient Mutant. Front Physiol 2019; 10:619. [PMID: 31191337 PMCID: PMC6547062 DOI: 10.3389/fphys.2019.00619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/02/2019] [Indexed: 01/11/2023] Open
Affiliation(s)
- Marilena Ignesti
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Davide Andrenacci
- CNR Istituto di Genetica Molecolare, Unità di Bologna, Bologna, Italy.,IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Bettina Fischer
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Valeria Cavaliere
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Giuseppe Gargiulo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| |
Collapse
|
8
|
Phatak A, Athar M, Crowell JA, Leffel D, Herbert BS, Bale AE, Kopelovich L. Global gene expression of histologically normal primary skin cells from BCNS subjects reveals "single-hit" effects that are influenced by rapamycin. Oncotarget 2019; 10:1360-1387. [PMID: 30858923 PMCID: PMC6402716 DOI: 10.18632/oncotarget.26640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/11/2019] [Indexed: 02/05/2023] Open
Abstract
Studies of dominantly heritable cancers enabled insights about tumor progression. BCNS is a dominantly inherited disorder that is characterized by developmental abnormalities and postnatal neoplasms, principally BCCs. We performed an exploratory gene expression profiling of primary cell cultures derived from clinically unaffected skin biopsies of BCNS gene-carriers (PTCH1+/-) and normal individuals. PCA and HC of untreated keratinocytes or fibroblasts failed to clearly distinguish BCNS samples from controls. These results are presumably due to the common suppression of canonical HH signaling in vitro. We then used a relaxed threshold (p-value <0.05, no FDR cut-off; FC 1.3) that identified a total of 585 and 857 genes differentially expressed in BCNS keratinocytes and fibroblasts samples, respectively. A GSEA identified pancreatic β cell hallmark and mTOR signaling genes in BCNS keratinocytes, whereas analyses of BCNS fibroblasts identified gene signatures regulating pluripotency of stem cells, including WNT pathway. Significantly, rapamycin treatment (FDR<0.05), affected a total of 1411 and 4959 genes in BCNS keratinocytes and BCNS fibroblasts, respectively. In contrast, rapamycin treatment affected a total of 3214 and 4797 genes in normal keratinocytes and normal fibroblasts, respectively. The differential response of BCNS cells to rapamycin involved 599 and 1463 unique probe sets in keratinocytes and fibroblasts, respectively. An IPA of these genes in the presence of rapamycin pointed to hepatic fibrosis/stellate cell activation, and HIPPO signaling in BCNS keratinocytes, whereas mitochondrial dysfunction and AGRN expression were uniquely enriched in BCNS fibroblasts. The gene expression changes seen here are likely involved in the etiology of BCCs and they may represent biomarkers/targets for early intervention.
Collapse
Affiliation(s)
- Amruta Phatak
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - David Leffel
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Brittney-Shea Herbert
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Allen E Bale
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Levy Kopelovich
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
9
|
McKenna J, Kapfhamer D, Kinchen JM, Wasek B, Dunworth M, Murray-Stewart T, Bottiglieri T, Casero RA, Gambello MJ. Metabolomic studies identify changes in transmethylation and polyamine metabolism in a brain-specific mouse model of tuberous sclerosis complex. Hum Mol Genet 2018; 27:2113-2124. [PMID: 29635516 PMCID: PMC5985733 DOI: 10.1093/hmg/ddy118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/06/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant neurodevelopmental disorder and the quintessential disorder of mechanistic Target of Rapamycin Complex 1 (mTORC1) dysregulation. Loss of either causative gene, TSC1 or TSC2, leads to constitutive mTORC1 kinase activation and a pathologically anabolic state of macromolecular biosynthesis. Little is known about the organ-specific metabolic reprogramming that occurs in TSC-affected organs. Using a mouse model of TSC in which Tsc2 is disrupted in radial glial precursors and their neuronal and glial descendants, we performed an unbiased metabolomic analysis of hippocampi to identify Tsc2-dependent metabolic changes. Significant metabolic reprogramming was found in well-established pathways associated with mTORC1 activation, including redox homeostasis, glutamine/tricarboxylic acid cycle, pentose and nucleotide metabolism. Changes in two novel pathways were identified: transmethylation and polyamine metabolism. Changes in transmethylation included reduced methionine, cystathionine, S-adenosylmethionine (SAM-the major methyl donor), reduced SAM/S-adenosylhomocysteine ratio (cellular methylation potential), and elevated betaine, an alternative methyl donor. These changes were associated with alterations in SAM-dependent methylation pathways and expression of the enzymes methionine adenosyltransferase 2A and cystathionine beta synthase. We also found increased levels of the polyamine putrescine due to increased activity of ornithine decarboxylase, the rate-determining enzyme in polyamine synthesis. Treatment of Tsc2+/- mice with the ornithine decarboxylase inhibitor α-difluoromethylornithine, to reduce putrescine synthesis dose-dependently reduced hippocampal astrogliosis. These data establish roles for SAM-dependent methylation reactions and polyamine metabolism in TSC neuropathology. Importantly, both pathways are amenable to nutritional or pharmacologic therapy.
Collapse
Affiliation(s)
- James McKenna
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David Kapfhamer
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Brandi Wasek
- Center of Metabolomics, Baylor Scott and White Research Institute, Dallas 75204, TX, USA
| | - Matthew Dunworth
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Tracy Murray-Stewart
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Baylor Scott and White Research Institute, Dallas 75204, TX, USA
| | - Robert A Casero
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Michael J Gambello
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
Julian LM, Delaney SP, Wang Y, Goldberg AA, Doré C, Yockell-Lelièvre J, Tam RY, Giannikou K, McMurray F, Shoichet MS, Harper ME, Henske EP, Kwiatkowski DJ, Darling TN, Moss J, Kristof AS, Stanford WL. Human Pluripotent Stem Cell-Derived TSC2-Haploinsufficient Smooth Muscle Cells Recapitulate Features of Lymphangioleiomyomatosis. Cancer Res 2017; 77:5491-5502. [PMID: 28830860 DOI: 10.1158/0008-5472.can-17-0925] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/22/2017] [Accepted: 08/16/2017] [Indexed: 01/06/2023]
Abstract
Lymphangioleiomyomatosis (LAM) is a progressive destructive neoplasm of the lung associated with inactivating mutations in the TSC1 or TSC2 tumor suppressor genes. Cell or animal models that accurately reflect the pathology of LAM have been challenging to develop. Here, we generated a robust human cell model of LAM by reprogramming TSC2 mutation-bearing fibroblasts from a patient with both tuberous sclerosis complex (TSC) and LAM (TSC-LAM) into induced pluripotent stem cells (iPSC), followed by selection of cells that resemble those found in LAM tumors by unbiased in vivo differentiation. We established expandable cell lines under smooth muscle cell (SMC) growth conditions that retained a patient-specific genomic TSC2+/- mutation and recapitulated the molecular and functional characteristics of pulmonary LAM cells. These include multiple indicators of hyperactive mTORC1 signaling, presence of specific neural crest and SMC markers, expression of VEGF-D and female sex hormone receptors, reduced autophagy, and metabolic reprogramming. Intriguingly, the LAM-like features of these cells suggest that haploinsufficiency at the TSC2 locus contributes to LAM pathology, and demonstrated that iPSC reprogramming and SMC lineage differentiation of somatic patient cells with germline mutations was a viable approach to generate LAM-like cells. The patient-derived SMC lines we have developed thus represent a novel cellular model of LAM that can advance our understanding of disease pathogenesis and develop therapeutic strategies against LAM. Cancer Res; 77(20); 5491-502. ©2017 AACR.
Collapse
Affiliation(s)
- Lisa M Julian
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada.,University of Ottawa, Ottawa, Ontario, Canada
| | - Sean P Delaney
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada.,University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Ying Wang
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | | | - Carole Doré
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | | | - Roger Y Tam
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada.,University of Ottawa, Ottawa, Ontario, Canada.,University of Toronto, Donnelly Centre for Cellular & Biomolecular Research, Boston, Massachusetts
| | - Krinio Giannikou
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Fiona McMurray
- University of Ottawa, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Health Sciences, Bethesda, Maryland
| | - Molly S Shoichet
- University of Toronto, Donnelly Centre for Cellular & Biomolecular Research, Boston, Massachusetts
| | - Mary-Ellen Harper
- University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Health Sciences, Bethesda, Maryland
| | - Elizabeth P Henske
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - David J Kwiatkowski
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Thomas N Darling
- Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - Joel Moss
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Arnold S Kristof
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - William L Stanford
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada. .,University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| |
Collapse
|