1
|
Bazan Russo TD, Mujacic C, Di Giovanni E, Vitale MC, Ferrante Bannera C, Randazzo U, Contino S, Bono M, Gristina V, Galvano A, Perez A, Badalamenti G, Russo A, Bazan V, Incorvaia L. Polθ: emerging synthetic lethal partner in homologous recombination-deficient tumors. Cancer Gene Ther 2024; 31:1619-1631. [PMID: 39122831 DOI: 10.1038/s41417-024-00815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
The most remarkable finding in synthetic lethality (SL) is the hypersensitivity to PARP inhibitors (PARPis) of the tumors harboring defects in genes involved in homologous repair (HR) such as BRCA1/2. Despite initial responsiveness to PARPi, the penetrance of the synthetic lethal interactions between BRCA1/2 genes and PARPi is incomplete. Thus, a significant proportion of HR-defective tumors experience intrinsic or acquired resistance, representing a key challenge of clinical research. An expanded concept of SL is opening new ways and includes novel forms of genetic interactions, investigating not only traditional SL of pairs genes but also SL between biological pathways that regulate the same essential survival cell function. In this context, recent research showed that HR and theta-mediated end-joining (TMEJ) pathways exhibit SL. DNA polymerase theta (Polθ) is encoded by the POLQ gene and is a key component of the TMEJ, an essential backup pathway, intrinsically mutagenic, to repair resected double-strand breaks (DSBs) when the non-homologous end joining (NHEJ) and HR are impaired. Polθ is broadly expressed in normal tissues, overexpressed in several cancers, and typically associated with poor outcomes and shorter relapse-free survival. Notably, HR-deficient tumor cells present the characteristic mutational signatures of the error-prone TMEJ pathway. According to this observation, the loss of HR proteins, such as BRCA1 or BRCA2, contributes to increasing the TMEJ-specific genomic profile, suggesting synthetic lethal interactions between loss of the POLQ and HR genes, and resulting in the emerging interest for Polθ as a potential therapeutic target in BRCA1/2-associated tumors.This review summarizes the converging roles of the POLQ and HR genes in DNA DSB repair, the early-stage clinical trials using Polθ inhibitor to treat HR-defective tumors and to overcome BRCA-reversion mutations responsible for therapeutic resistance, and the novel pleiotropic effects of Polθ, paving the way for the development of unexplored synthetic lethality strategies.
Collapse
Affiliation(s)
- Tancredi Didier Bazan Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Clarissa Mujacic
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Emilia Di Giovanni
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Maria Concetta Vitale
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Carla Ferrante Bannera
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Ugo Randazzo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Silvia Contino
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Marco Bono
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Valerio Gristina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Antonio Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Alessandro Perez
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy.
| | - Antonio Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| |
Collapse
|
2
|
Arafeh R, Shibue T, Dempster JM, Hahn WC, Vazquez F. The present and future of the Cancer Dependency Map. Nat Rev Cancer 2024:10.1038/s41568-024-00763-x. [PMID: 39468210 DOI: 10.1038/s41568-024-00763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 10/30/2024]
Abstract
Despite tremendous progress in the past decade, the complex and heterogeneous nature of cancer complicates efforts to identify new therapies and therapeutic combinations that achieve durable responses in most patients. Further advances in cancer therapy will rely, in part, on the development of targeted therapeutics matched with the genetic and molecular characteristics of cancer. The Cancer Dependency Map (DepMap) is a large-scale data repository and research platform, aiming to systematically reveal the landscape of cancer vulnerabilities in thousands of genetically and molecularly annotated cancer models. DepMap is used routinely by cancer researchers and translational scientists and has facilitated the identification of several novel and selective therapeutic strategies for multiple cancer types that are being tested in the clinic. However, it is also clear that the current version of DepMap is not yet comprehensive. In this Perspective, we review (1) the impact and current uses of DepMap, (2) the opportunities to enhance DepMap to overcome its current limitations, and (3) the ongoing efforts to further improve and expand DepMap.
Collapse
Affiliation(s)
- Rand Arafeh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | | | - William C Hahn
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
3
|
Mitri Z, Goodyear SM, Mills G. Strategies for the prevention or reversal of PARP inhibitor resistance. Expert Rev Anticancer Ther 2024; 24:959-975. [PMID: 39145413 DOI: 10.1080/14737140.2024.2393251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
INTRODUCTION Advances in our understanding of tumor biology shed light on hallmarks of cancer development and progression that include dysregulated DNA damage repair (DDR) machinery. Leveraging the underlying tumor genomic instability and tumor-specific defects in DDR, Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induced DNA damage emerges as a novel non-chemotherapy therapeutic opportunity. PARPis are currently approved in multiple tumor types, with the largest benefit seen in tumors with homologous recombination repair (HRR) deficiency, including germline and somatic mutations in BRCA1/2 genes (BRCA) and other pathway members such as PALB2 and Rad51c. AREAS COVERED This review article summarizes the current approval landscape and known and proposed mechanisms of resistance to PARPi. Further, therapeutic strategies to overcome PARPi resistance are discussed, including ongoing clinical trials. EXPERT OPINION PARPi have proven to be a safe and effective therapy and represents a cornerstone treatment across multiple solid tumor types. Elucidating innate and acquired mechanisms of resistance, coupled with the emergence of novel therapeutic options to capitalize on the activity of PARPi and prevent or reverse the acquisition of resistance, provides an opportunity to further expand the role of PARPi in cancer therapy.
Collapse
Affiliation(s)
- Zahi Mitri
- Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Shaun M Goodyear
- Developmental and Cancer Biology, Knight Cancer Institute, Portland, OR, USA
| | - Gordon Mills
- Developmental and Cancer Biology, Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
4
|
Yu T, Lok BH. PARP inhibitor resistance mechanisms and PARP inhibitor derived imaging probes. Expert Rev Anticancer Ther 2024; 24:989-1008. [PMID: 39199000 DOI: 10.1080/14737140.2024.2398494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/01/2024]
Abstract
INTRODUCTION Poly(ADP-ribose) polymerase 1 (PARP1) inhibition has become a major target in anticancer therapy. While PARP inhibitors (PARPi) are approved for homologous recombination (HR) deficient cancers, therapeutic resistance is a challenge and PARPi are now being investigated in cancers lacking HR deficiencies. This creates a need to develop molecular and imaging biomarkers of PARPi response to improve patient selection and circumvent therapeutic resistance. AREAS COVERED PubMed and clinicaltrials.gov were queried for studies on PARPi resistance and imaging. This review summarizes established and emerging resistance mechanisms to PARPi, and the current state of imaging and theragnostic probes for PARPi, including fluorescently labeled and radiolabeled probes. EXPERT OPINION While progress has been made in understanding PARPi therapeutic resistance, clinical evidence remains lacking and relatively little is known regarding PARPi response outside of HR deficiencies. Continued research will clarify the importance of known biomarkers and resistance mechanisms in patient cohorts and the broader utility of PARPi. Progress has also been made in PARPi imaging, particularly with radiolabeled probes, and both imaging and theragnostic probes have now reached clinical validation. Reducing abdominal background signal from probe clearance will broaden their applicability, and improvements to molecular synthesis and radiation delivery will increase their utility.
Collapse
Affiliation(s)
- Tony Yu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Andrini E, Ricco G, Zappi A, Aloi S, Giordano M, Altimari A, Gruppioni E, Maloberti T, de Biase D, Campana D, Lamberti G. Challenges and future perspectives for the use of temozolomide in the treatment of SCLC. Cancer Treat Rev 2024; 129:102798. [PMID: 38970838 DOI: 10.1016/j.ctrv.2024.102798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/09/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Small-cell lung cancer (SCLC), accounting for 10-20 % of all lung tumors, represents the most aggressive high-grade neuroendocrine carcinoma. Most patients are diagnosed with extensive-stage SCLC (ES-SCLC), with brian metastases identified in ∼ 80 % of cases during the disease cours, and the prognosis is dismal, with a 5-year survival rate of less than 5 %. Current available treatments in the second-line setting are limited, and topotecan has long been the only FDA-approved drug in relapsed or refractory ES-SCLC, until the recent approval of lurbinectedin, a selective inhibitor of RNA polymerase II. Temozolomide (TMZ) is an oral alkylating agent, which showed single-agent activity in SCLC, particularly among patients with O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation. Several studies have revealed the synergistic activity of temozolomide with poly-ADP-ribose polymerase (PARP) inhibitors, that prevent repair of TMZ-induced DNA damage. This review focuses on the rationale for the use of TMZ in ES-SCLC and provides an overview of the main trials that have evaluated and are currently investigating its role, both as a single-agent and in combinations, in relapse or refractory disease.
Collapse
Affiliation(s)
- Elisa Andrini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Gianluca Ricco
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
| | - Arianna Zappi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
| | - Serena Aloi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
| | - Mirela Giordano
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
| | - Annalisa Altimari
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Elisa Gruppioni
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Thais Maloberti
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Dario de Biase
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy.
| | - Davide Campana
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Giuseppe Lamberti
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
6
|
Kaczorowski M, Ylaya K, Chłopek M, Taniyama D, Pommier Y, Lasota J, Miettinen M. Immunohistochemical Evaluation of Schlafen 11 (SLFN11) Expression in Cancer in the Search of Biomarker-Informed Treatment Targets: A Study of 127 Entities Represented by 6658 Tumors. Am J Surg Pathol 2024:00000478-990000000-00409. [PMID: 39185596 DOI: 10.1097/pas.0000000000002299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Schlafen 11 (SLFN11), a DNA/RNA helicase, acts as a regulator of cellular response to replicative stress and irreversibly triggers replication block and cell death. Several preclinical in vitro studies and clinical trials established that SLFN11 expression predicts outcomes in patients with advanced cancer treated with DNA-damaging chemotherapeutics and more recently with poly(ADP-ribose) polymerase inhibitors. SLFN11 expression status remains unknown in many cancer types, especially in mesenchymal tumors. This study evaluated a cohort of well characterized 3808 epithelial and 2850 mesenchymal and neuroectodermal tumors for SLFN11 expression using immunohistochemistry. Nuclear SLFN11 expression was rare in some of the most common carcinomas, for example, hepatocellular (1%), prostatic (2%), colorectal (5%), or breast (16%) cancers. In contrast, other epithelial tumors including mesotheliomas (92%), clear cell renal cell carcinomas (79%), small cell lung cancers (76%), squamous cell carcinomas of the tonsil (89%) and larynx (71%), or ovarian serous carcinomas (69%) were mostly SLFN11-positive. Compared with epithelial malignancies, SLFN11 expression was overall higher in neuroectodermal and mesenchymal tumors. Most positive entities included desmoplastic small round cell tumor (100%), Ewing sarcoma (92%), undifferentiated sarcoma (92%), solitary fibrous tumor (91%), dedifferentiated liposarcoma (89%), synovial sarcoma (86%), and malignant peripheral nerve sheath tumor (85%). Also, this study identifies tumors with potentially worse response to DNA-damaging drugs including antibody drug conjugates due to the absence of SLFN11 expression. Such entities may benefit from alternative treatments or strategies to overcome SLFN11 deficiency-related drug resistance. Our approach and results should serve as a foundation for future biomarker-associated clinical trials.
Collapse
Affiliation(s)
- Maciej Kaczorowski
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Wrocław, Poland
| | - Kris Ylaya
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| | | | - Daiki Taniyama
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Jerzy Lasota
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| |
Collapse
|
7
|
Mohan A, Quingalahua E, Gunchick V, Paul S, Kumar-Sinha C, Crysler O, Zalupski MM, Sahai V. PARP inhibitor therapy in patients with IDH1 mutated cholangiocarcinoma. Oncologist 2024; 29:725-730. [PMID: 39036962 PMCID: PMC11299928 DOI: 10.1093/oncolo/oyae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/06/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Isocitrate dehydrogenase 1 (IDH1) missense mutations occur at a frequency of 10%-15% in intrahepatic cholangiocarcinoma (iCCA). IDH1 mutations result in accumulation of (R)-2-hydroxyglutarate, an oncometabolite that leads to DNA hypermethylation and impairment of homologous recombination (HR). Impairment of HR results in a "BRCAness" phenotype which may confer sensitivity to poly(ADP ribose) polymerase (PARP) inhibition. METHODS We conducted a retrospective cohort review to identify patients with advanced, IDH1 mutated iCCA treated with a PARP inhibitor (PARPi) at the University of Michigan between 2018 and 2023. Patients are described with respect to prior lines of therapy, response to platinum-based chemotherapy, and progression-free survival (PFS) and overall survival (OS) from the time of PARPi initiation. RESULTS Between 2018 and 2023 we identified 40 patients with IDH1 mutated iCCA of which 6 patients were treated with a PARPi as monotherapy or in combination with an ATR inhibitor or anti-PD-1 immune checkpoint inhibitor. Majority of patients (n = 5) carried an IDH1 R132C mutation per tissue-based next generation sequencing. All patients had previously received at least one line of cisplatin-based systemic therapy for advanced disease prior to treatment with PARPi. PFS and OS from time of PARPi initiation ranged from 1.4 to 18.5 months and 2.8 to 42.4 months, respectively. Best response on PARPi therapy included 2 partial responses. CONCLUSION This is the first case series to describe PARPi treatment in IDH1 mutated iCCA. Results underscore the limitation of PARPi monotherapy, potentially support combined PARPi therapies, and highlight a need for effective treatment options for patients with IDH1 mutated iCCA.
Collapse
Affiliation(s)
- Arathi Mohan
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Elit Quingalahua
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Valerie Gunchick
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Simi Paul
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Chandan Kumar-Sinha
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, United States
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Oxana Crysler
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Mark M Zalupski
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Vaibhav Sahai
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Onji H, Tate S, Sakaue T, Fujiwara K, Nakano S, Kawaida M, Onishi N, Matsumoto T, Yamagami W, Sugiyama T, Higashiyama S, Pommier Y, Kobayashi Y, Murai J. Schlafen 11 further sensitizes BRCA-deficient cells to PARP inhibitors through single-strand DNA gap accumulation behind replication forks. Oncogene 2024; 43:2475-2489. [PMID: 38961202 PMCID: PMC11315672 DOI: 10.1038/s41388-024-03094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
The preferential response to PARP inhibitors (PARPis) in BRCA-deficient and Schlafen 11 (SLFN11)-expressing ovarian cancers has been documented, yet the underlying molecular mechanisms remain unclear. As the accumulation of single-strand DNA (ssDNA) gaps behind replication forks is key for the lethality effect of PARPis, we investigated the combined effects of SLFN11 expression and BRCA deficiency on PARPi sensitivity and ssDNA gap formation in human cancer cells. PARPis increased chromatin-bound RPA2 and ssDNA gaps in SLFN11-expressing cells and even more in cells with BRCA1 or BRCA2 deficiency. SLFN11 was co-localized with chromatin-bound RPA2 under PARPis treatment, with enhanced recruitment in BRCA2-deficient cells. Notably, the chromatin-bound SLFN11 under PARPis did not block replication, contrary to its function under replication stress. SLFN11 recruitment was attenuated by the inactivation of MRE11. Hence, under PARPi treatment, MRE11 expression and BRCA deficiency lead to ssDNA gaps behind replication forks, where SLFN11 binds and increases their accumulation. As ovarian cancer patients who responded (progression-free survival >2 years) to olaparib maintenance therapy had a significantly higher SLFN11-positivity than short-responders (<6 months), our findings provide a mechanistic understanding of the favorable responses to PARPis in SLFN11-expressing and BRCA-deficient tumors. It highlight the clinical implications of SLFN11.
Collapse
Affiliation(s)
- Hiroshi Onji
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Sota Tate
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Toon, Ehime, Japan
| | - Tomohisa Sakaue
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Toon, Ehime, Japan
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Kohei Fujiwara
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Shiho Nakano
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Miho Kawaida
- Division of Diagnostic Pathology, Keio University Hospital, Shinjuku-ku, Tokyo, Japan
| | - Nobuyuki Onishi
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Shinagawa-ku, Tokyo, Japan
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takashi Matsumoto
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Wataru Yamagami
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takashi Sugiyama
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shigeki Higashiyama
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Toon, Ehime, Japan
- Department of Oncogenesis and Tumor Regulation, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.
- Department of Obstetrics and Gynecology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Junko Murai
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan.
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Toon, Ehime, Japan.
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.
| |
Collapse
|
9
|
Kulkarni S, Gajjar K, Madhusudan S. Poly (ADP-ribose) polymerase inhibitor therapy and mechanisms of resistance in epithelial ovarian cancer. Front Oncol 2024; 14:1414112. [PMID: 39135999 PMCID: PMC11317305 DOI: 10.3389/fonc.2024.1414112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Advanced epithelial ovarian cancer is the commonest cause of gynaecological cancer deaths. First-line treatment for advanced disease includes a combination of platinum-taxane chemotherapy (post-operatively or peri-operatively) and maximal debulking surgery whenever feasible. Initial response rate to chemotherapy is high (up to 80%) but most patients will develop recurrence (approximately 70-90%) and succumb to the disease. Recently, poly-ADP-ribose polymerase (PARP) inhibition (by drugs such as Olaparib, Niraparib or Rucaparib) directed synthetic lethality approach in BRCA germline mutant or platinum sensitive disease has generated real hope for patients. PARP inhibitor (PARPi) maintenance therapy can prolong survival but therapeutic response is not sustained due to intrinsic or acquired secondary resistance to PARPi therapy. Reversion of BRCA1/2 mutation can lead to clinical PARPi resistance in BRCA-germline mutated ovarian cancer. However, in the more common platinum sensitive sporadic HGSOC, the clinical mechanisms of development of PARPi resistance remains to be defined. Here we provide a comprehensive review of the current status of PARPi and the mechanisms of resistance to therapy.
Collapse
Affiliation(s)
- Sanat Kulkarni
- Department of Medicine, Sandwell and West Birmingham NHS Trust, West Bromwich, United Kingdom
| | - Ketankumar Gajjar
- Department of Gynaecological Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| |
Collapse
|
10
|
Jo U, Arakawa Y, Zimmermann A, Taniyama D, Mizunuma M, Jenkins LM, Maity T, Kumar S, Zenke FT, Takebe N, Pommier Y. The Novel ATR Inhibitor M1774 Induces Replication Protein Overexpression and Broad Synergy with DNA-targeted Anticancer Drugs. Mol Cancer Ther 2024; 23:911-923. [PMID: 38466804 PMCID: PMC11555614 DOI: 10.1158/1535-7163.mct-23-0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/09/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Ataxia telangiectasia and Rad3-related (ATR) checkpoint kinase inhibitors are in clinical trials. Here we explored the molecular pharmacology and therapeutic combination strategies of the oral ATR inhibitor M1774 (Tuvusertib) with DNA-damaging agents (DDA). As single agent, M1774 suppressed cancer cell viability at nanomolar concentrations, showing greater activity than ceralasertib and berzosertib, but less potency than gartisertib and elimusertib in the small cell lung cancer H146, H82, and DMS114 cell lines. M1774 also efficiently blocked the activation of the ATR-CHK1 checkpoint pathway caused by replication stress induced by TOP1 inhibitors. Combination with non-toxic dose of M1774 enhanced TOP1 inhibitor-induced cancer cell death by enabling unscheduled replication upon replicative damage, thereby increasing genome instability. Tandem mass tag-based quantitative proteomics uncovered that M1774, in the presence of DDA, forces the expression of proteins activating replication (CDC45) and G2-M progression (PLK1 and CCNB1). In particular, the fork protection complex proteins (TIMELESS and TIPIN) were enriched. Low dose of M1774 was found highly synergistic with a broad spectrum of clinical DDAs including TOP1 inhibitors (SN-38/irinotecan, topotecan, exatecan, and exatecan), the TOP2 inhibitor etoposide, cisplatin, the RNA polymerase II inhibitor lurbinectedin, and the PARP inhibitor talazoparib in various models including cancer cell lines, patient-derived organoids, and mouse xenograft models. Furthermore, we demonstrate that M1774 reverses chemoresistance to anticancer DDAs in cancer cells lacking SLFN11 expression, suggesting that SLFN11 can be utilized for patient selection in upcoming clinical trials.
Collapse
Affiliation(s)
- Ukhyun Jo
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yasuhiro Arakawa
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Daiki Taniyama
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Makito Mizunuma
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tapan Maity
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suresh Kumar
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Naoko Takebe
- Developmental Therapeutics Branch and Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Lead contact
| |
Collapse
|
11
|
Scattolin D, Maso AD, Ferro A, Frega S, Bonanno L, Guarneri V, Pasello G. The emerging role of Schlafen-11 (SLFN11) in predicting response to anticancer treatments: Focus on small cell lung cancer. Cancer Treat Rev 2024; 128:102768. [PMID: 38797062 DOI: 10.1016/j.ctrv.2024.102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Small cell lung cancer (SCLC) is characterized by a dismal prognosis. Many efforts have been made so far for identifying novel biomarkers for a personalized treatment for SCLC patients. Schlafen 11 (SLFN11) is a protein differently expressed in many cancers and recently emerged as a new potential biomarker. Lower expression of SLFN11 correlates with a worse prognosis in SCLC and other tumors. SLFN11 has a role in tumorigenesis, inducing replication arrest in the presence of DNA damage through the block of the replication fork. SLFN11 interacts also with chromatin accessibility, proteotoxic stress and mammalian target of rapamycin signalling pathway. The expression of SLFN11 is regulated by epigenetic mechanisms, including promoter methylation, histone deacetylation, and the histone methylation. The downregulation of SLFN11 correlates with a worse response to topoisomerase I and II inhibitors, alkylating agents, and poly ADP-ribose polymerase inhibitors in different cancer types. Some studies exploring strategies for overcoming drug resistance in tumors with low levels of SLFN11 showed promising results. One of these strategies includes the interaction with the Ataxia Telangiectasia and Rad3-related pathway, constitutively activated and leading to cell survival and tumor growth in the presence of low levels of SLFN11. Furthermore, the expression of SLFN11 is dynamic through time and different anticancer therapy and liquid biopsy seems to be an attractive tool for catching SLFN11 different expressions. Despite this, further investigations exploring SLFN11 as a predictive biomarker, its longitudinal changes, and new strategies to overcome drug resistances are needed.
Collapse
Affiliation(s)
- Daniela Scattolin
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | | | - Alessandra Ferro
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Stefano Frega
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Laura Bonanno
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Valentina Guarneri
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Giulia Pasello
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.
| |
Collapse
|
12
|
Boon NJ, Oliveira RA, Körner PR, Kochavi A, Mertens S, Malka Y, Voogd R, van der Horst SEM, Huismans MA, Smabers LP, Draper JM, Wessels LFA, Haahr P, Roodhart JML, Schumacher TNM, Snippert HJ, Agami R, Brummelkamp TR. DNA damage induces p53-independent apoptosis through ribosome stalling. Science 2024; 384:785-792. [PMID: 38753784 DOI: 10.1126/science.adh7950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
In response to excessive DNA damage, human cells can activate p53 to induce apoptosis. Cells lacking p53 can still undergo apoptosis upon DNA damage, yet the responsible pathways are unknown. We observed that p53-independent apoptosis in response to DNA damage coincided with translation inhibition, which was characterized by ribosome stalling on rare leucine-encoding UUA codons and globally curtailed translation initiation. A genetic screen identified the transfer RNAse SLFN11 and the kinase GCN2 as factors required for UUA stalling and global translation inhibition, respectively. Stalled ribosomes activated a ribotoxic stress signal conveyed by the ribosome sensor ZAKα to the apoptosis machinery. These results provide an explanation for the frequent inactivation of SLFN11 in chemotherapy-unresponsive tumors and highlight ribosome stalling as a signaling event affecting cell fate in response to DNA damage.
Collapse
Affiliation(s)
- Nicolaas J Boon
- Oncode Institute, Utrecht, Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Rafaela A Oliveira
- Oncode Institute, Utrecht, Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Pierré-René Körner
- Oncode Institute, Utrecht, Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Adva Kochavi
- Oncode Institute, Utrecht, Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Sander Mertens
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Yuval Malka
- Oncode Institute, Utrecht, Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Rhianne Voogd
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Suzanne E M van der Horst
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Maarten A Huismans
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lidwien P Smabers
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jonne M Draper
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Lodewyk F A Wessels
- Oncode Institute, Utrecht, Netherlands
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Peter Haahr
- Oncode Institute, Utrecht, Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
- Center for Gene Expression, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeanine M L Roodhart
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ton N M Schumacher
- Oncode Institute, Utrecht, Netherlands
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Hugo J Snippert
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Reuven Agami
- Oncode Institute, Utrecht, Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Thijn R Brummelkamp
- Oncode Institute, Utrecht, Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
13
|
Khan R, Coleman N. Challenges and opportunities in the immunotherapy era: balancing expectations with hope in small-cell lung cancer. Ther Adv Med Oncol 2024; 16:17588359241249627. [PMID: 38765713 PMCID: PMC11102705 DOI: 10.1177/17588359241249627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024] Open
Abstract
Small-cell lung cancer (SCLC) is a biologically aggressive subtype of lung cancer, a lethal disease characterized by rapid tumor growth, early relapse, a strong tendency for early widespread metastasis, and high genomic instability, making it a formidable foe in modern oncology practice. While the management of non-SCLC has been revolutionized in the era of immunotherapy, progress in SCLC has been more muted. Recent randomized phase III clinical trials have combined programmed death ligand-1 inhibitors to a chemotherapy backbone and demonstrated improved survival; however, the absolute benefit observed is short months. There is an undeniable urgent need for better responses, better agents, novel therapeutic approaches, and more rational, biomarker-driven clinical trials in SCLC. In this review, we discuss the rationale and current understanding of the biology of SCLC in the modern era of immunotherapy, discuss recent advances in front-line immunotherapeutic approaches that have changed clinical practice globally, provide an overview of some of the challenges and limitations that have staggered immune checkpoint blockade in SCLC, and explore some of the novel immunotherapeutic approaches currently being investigated.
Collapse
Affiliation(s)
- Raza Khan
- School of Medicine, Trinity College, Dublin, Ireland
- St James’s Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
| | - Niamh Coleman
- Trinity St James’s Cancer Institute, James Street, D08 NHY1 Dublin, Ireland
- School of Medicine, Trinity College, Dublin, Ireland
- St James’s Hospital, Dublin, Ireland
| |
Collapse
|
14
|
Zhou J, Zhang MY, Gao AA, Zhu C, He T, Herman JG, Guo MZ. Epigenetic silencing schlafen-11 sensitizes esophageal cancer to ATM inhibitor. World J Gastrointest Oncol 2024; 16:2060-2073. [PMID: 38764821 PMCID: PMC11099458 DOI: 10.4251/wjgo.v16.i5.2060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/26/2024] [Accepted: 04/01/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Targeting DNA damage response (DDR) pathway is a cutting-edge strategy. It has been reported that Schlafen-11 (SLFN11) contributes to increase chemosensitivity by participating in DDR. However, the detailed mechanism is unclear. AIM To investigate the role of SLFN11 in DDR and the application of synthetic lethal in esophageal cancer with SLFN11 defects. METHODS To reach the purpose, eight esophageal squamous carcinoma cell lines, 142 esophageal dysplasia (ED) and 1007 primary esophageal squamous cell carcinoma (ESCC) samples and various techniques were utilized, including methylation-specific polymerase chain reaction, CRISPR/Cas9 technique, Western blot, colony formation assay, and xenograft mouse model. RESULTS Methylation of SLFN11 was exhibited in 9.15% of (13/142) ED and 25.62% of primary (258/1007) ESCC cases, and its expression was regulated by promoter region methylation. SLFN11 methylation was significantly associated with tumor differentiation and tumor size (both P < 0.05). However, no significant associations were observed between promoter region methylation and age, gender, smoking, alcohol consumption, TNM stage, or lymph node metastasis. Utilizing DNA damaged model induced by low dose cisplatin, SLFN11 was found to activate non-homologous end-joining and ATR/CHK1 signaling pathways, while inhibiting the ATM/CHK2 signaling pathway. Epigenetic silencing of SLFN11 was found to sensitize the ESCC cells to ATM inhibitor (AZD0156), both in vitro and in vivo. CONCLUSION SLFN11 is frequently methylated in human ESCC. Methylation of SLFN11 is sensitive marker of ATM inhibitor in ESCC.
Collapse
Affiliation(s)
- Jing Zhou
- School of Medicine, NanKai University, Tianjin 300071, China
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Mei-Ying Zhang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ai-Ai Gao
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Cheng Zhu
- School of Medicine, NanKai University, Tianjin 300071, China
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Tao He
- Departments of Pathology, Characteristic Medical Center of The Chinese People’s Armed Police Force, Tianjin 300162, China
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, United States
| | - Ming-Zhou Guo
- School of Medicine, NanKai University, Tianjin 300071, China
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
15
|
Zhao SJ, Prior D, Heske CM, Vasquez JC. Therapeutic Targeting of DNA Repair Pathways in Pediatric Extracranial Solid Tumors: Current State and Implications for Immunotherapy. Cancers (Basel) 2024; 16:1648. [PMID: 38730598 PMCID: PMC11083679 DOI: 10.3390/cancers16091648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
DNA damage is fundamental to tumorigenesis, and the inability to repair DNA damage is a hallmark of many human cancers. DNA is repaired via the DNA damage repair (DDR) apparatus, which includes five major pathways. DDR deficiencies in cancers give rise to potential therapeutic targets, as cancers harboring DDR deficiencies become increasingly dependent on alternative DDR pathways for survival. In this review, we summarize the DDR apparatus, and examine the current state of research efforts focused on identifying vulnerabilities in DDR pathways that can be therapeutically exploited in pediatric extracranial solid tumors. We assess the potential for synergistic combinations of different DDR inhibitors as well as combinations of DDR inhibitors with chemotherapy. Lastly, we discuss the immunomodulatory implications of targeting DDR pathways and the potential for using DDR inhibitors to enhance tumor immunogenicity, with the goal of improving the response to immune checkpoint blockade in pediatric solid tumors. We review the ongoing and future research into DDR in pediatric tumors and the subsequent pediatric clinical trials that will be critical to further elucidate the efficacy of the approaches targeting DDR.
Collapse
Affiliation(s)
- Sophia J. Zhao
- Department of Pediatric Hematology/Oncology, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.Z.); (D.P.)
| | - Daniel Prior
- Department of Pediatric Hematology/Oncology, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.Z.); (D.P.)
| | - Christine M. Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Juan C. Vasquez
- Department of Pediatric Hematology/Oncology, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.Z.); (D.P.)
| |
Collapse
|
16
|
Ngoi NYL, Pilié PG, McGrail DJ, Zimmermann M, Schlacher K, Yap TA. Targeting ATR in patients with cancer. Nat Rev Clin Oncol 2024; 21:278-293. [PMID: 38378898 DOI: 10.1038/s41571-024-00863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Pharmacological inhibition of the ataxia telangiectasia and Rad3-related protein serine/threonine kinase (ATR; also known as FRAP-related protein (FRP1)) has emerged as a promising strategy for cancer treatment that exploits synthetic lethal interactions with proteins involved in DNA damage repair, overcomes resistance to other therapies and enhances antitumour immunity. Multiple novel, potent ATR inhibitors are being tested in clinical trials using biomarker-directed approaches and involving patients across a broad range of solid cancer types; some of these inhibitors have now entered phase III trials. Further insight into the complex interactions of ATR with other DNA replication stress response pathway components and with the immune system is necessary in order to optimally harness the potential of ATR inhibitors in the clinic and achieve hypomorphic targeting of the various ATR functions. Furthermore, a deeper understanding of the diverse range of predictive biomarkers of response to ATR inhibitors and of the intraclass differences between these agents could help to refine trial design and patient selection strategies. Key challenges that remain in the clinical development of ATR inhibitors include the optimization of their therapeutic index and the development of rational combinations with these agents. In this Review, we detail the molecular mechanisms regulated by ATR and their clinical relevance, and discuss the challenges that must be addressed to extend the benefit of ATR inhibitors to a broad population of patients with cancer.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patrick G Pilié
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Katharina Schlacher
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
17
|
Kanev PB, Atemin A, Stoynov S, Aleksandrov R. PARP1 roles in DNA repair and DNA replication: The basi(c)s of PARP inhibitor efficacy and resistance. Semin Oncol 2024; 51:2-18. [PMID: 37714792 DOI: 10.1053/j.seminoncol.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/10/2023] [Indexed: 09/17/2023]
Abstract
Genome integrity is under constant insult from endogenous and exogenous sources. In order to cope, eukaryotic cells have evolved an elaborate network of DNA repair that can deal with diverse lesion types and exhibits considerable functional redundancy. PARP1 is a major sensor of DNA breaks with established and putative roles in a number of pathways within the DNA repair network, including repair of single- and double-strand breaks as well as protection of the DNA replication fork. Importantly, PARP1 is the major target of small-molecule PARP inhibitors (PARPi), which are employed in the treatment of homologous recombination (HR)-deficient tumors, as the latter are particularly susceptible to the accumulation of DNA damage due to an inability to efficiently repair highly toxic double-strand DNA breaks. The clinical success of PARPi has fostered extensive research into PARP biology, which has shed light on the involvement of PARP1 in various genomic transactions. A major goal within the field has been to understand the relationship between catalytic inhibition and PARP1 trapping. The specific consequences of inhibition and trapping on genomic stability as a basis for the cytotoxicity of PARP inhibitors remain a matter of debate. Finally, PARP inhibition is increasingly recognized for its capacity to elicit/modulate anti-tumor immunity. The clinical potential of PARP inhibition is, however, hindered by the development of resistance. Hence, extensive efforts are invested in identifying factors that promote resistance or sensitize cells to PARPi. The current review provides a summary of advances in our understanding of PARP1 biology, the mechanistic nature, and molecular consequences of PARP inhibition, as well as the mechanisms that give rise to PARPi resistance.
Collapse
Affiliation(s)
- Petar-Bogomil Kanev
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Aleksandar Atemin
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stoyno Stoynov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Radoslav Aleksandrov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
18
|
Sacdalan DB, Ul Haq S, Lok BH. Plasma Cell-Free Tumor Methylome as a Biomarker in Solid Tumors: Biology and Applications. Curr Oncol 2024; 31:482-500. [PMID: 38248118 PMCID: PMC10814449 DOI: 10.3390/curroncol31010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
DNA methylation is a fundamental mechanism of epigenetic control in cells and its dysregulation is strongly implicated in cancer development. Cancers possess an extensively hypomethylated genome with focal regions of hypermethylation at CPG islands. Due to the highly conserved nature of cancer-specific methylation, its detection in cell-free DNA in plasma using liquid biopsies constitutes an area of interest in biomarker research. The advent of next-generation sequencing and newer computational technologies have allowed for the development of diagnostic and prognostic biomarkers that utilize methylation profiling to diagnose disease and stratify risk. Methylome-based predictive biomarkers can determine the response to anti-cancer therapy. An additional emerging application of these biomarkers is in minimal residual disease monitoring. Several key challenges need to be addressed before cfDNA-based methylation biomarkers become fully integrated into practice. The first relates to the biology and stability of cfDNA. The second concerns the clinical validity and generalizability of methylation-based assays, many of which are cancer type-specific. The third involves their practicability, which is a stumbling block for translating technologies from bench to clinic. Future work on developing pan-cancer assays with their respective validities confirmed using well-designed, prospective clinical trials is crucial in pushing for the greater use of these tools in oncology.
Collapse
Affiliation(s)
- Danielle Benedict Sacdalan
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| | - Sami Ul Haq
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
- Schulich School of Medicine & Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada
| | - Benjamin H. Lok
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street, Room 15-701, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
19
|
Watanabe K, Seki N. Biology and Development of DNA-Targeted Drugs, Focusing on Synthetic Lethality, DNA Repair, and Epigenetic Modifications for Cancer: A Review. Int J Mol Sci 2024; 25:752. [PMID: 38255825 PMCID: PMC10815806 DOI: 10.3390/ijms25020752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
DNA-targeted drugs constitute a specialized category of pharmaceuticals developed for cancer treatment, directly influencing various cellular processes involving DNA. These drugs aim to enhance treatment efficacy and minimize side effects by specifically targeting molecules or pathways crucial to cancer growth. Unlike conventional chemotherapeutic drugs, recent discoveries have yielded DNA-targeted agents with improved effectiveness, and a new generation is anticipated to be even more specific and potent. The sequencing of the human genome in 2001 marked a transformative milestone, contributing significantly to the advancement of targeted therapy and precision medicine. Anticipated progress in precision medicine is closely tied to the continuous development in the exploration of synthetic lethality, DNA repair, and expression regulatory mechanisms, including epigenetic modifications. The integration of technologies like circulating tumor DNA (ctDNA) analysis further enhances our ability to elucidate crucial regulatory factors, promising a more effective era of precision medicine. The combination of genomic knowledge and technological progress has led to a surge in clinical trials focusing on precision medicine. These trials utilize biomarkers for identifying genetic alterations, molecular profiling for potential therapeutic targets, and tailored cancer treatments addressing multiple genetic changes. The evolving landscape of genomics has prompted a paradigm shift from tumor-centric to individualized, genome-directed treatments based on biomarker analysis for each patient. The current treatment strategy involves identifying target genes or pathways, exploring drugs affecting these targets, and predicting adverse events. This review highlights strategies incorporating DNA-targeted drugs, such as PARP inhibitors, SLFN11, methylguanine methyltransferase (MGMT), and ATR kinase.
Collapse
Affiliation(s)
- Kiyotaka Watanabe
- Department of Medicine, School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | | |
Collapse
|
20
|
Akashi H, Yachida N, Ueda H, Yamaguchi M, Yamawaki K, Tamura R, Suda K, Ishiguro T, Adachi S, Nagase Y, Ueda Y, Ueda M, Abiko K, Kagabu M, Baba T, Nakaoka H, Enomoto T, Murai J, Yoshihara K. SLFN11 is a BRCA Independent Biomarker for the Response to Platinum-Based Chemotherapy in High-Grade Serous Ovarian Cancer and Clear Cell Ovarian Carcinoma. Mol Cancer Ther 2024; 23:106-116. [PMID: 37717249 DOI: 10.1158/1535-7163.mct-23-0257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/12/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
BRCA1/2 mutations are robust biomarkers for platinum-based chemotherapy in epithelial ovarian cancers. However, BRCA1/2 mutations in clear cell ovarian carcinoma (CCC) are less frequent compared with high-grade serous ovarian cancer (HGSC). The discovery of biomarkers that can be applied to CCC is an unmet need in chemotherapy. Schlafen 11 (SLFN11) has attracted attention as a novel sensitizer for DNA-damaging agents including platinum. In this study, we investigated the utility of SLFN11 in HGSC and CCC for platinum-based chemotherapy. SLFN11 expression was analyzed retrospectively by IHC across 326 ovarian cancer samples. The clinicopathologic significance of SLFN11 expression was analyzed across 57 advanced HGSC as a discovery set, 96 advanced HGSC as a validation set, and 57 advanced CCC cases, all of whom received platinum-based chemotherapy. BRCA1/2 mutation was analyzed using targeted-gene sequencing. In the HGSC cohort, the SLFN11-positive and BRCA mutation group showed significantly longer whereas the SLFN11-negative and BRCA wild-type group showed significantly shorter progression-free survival and overall survival. Moreover, SLFN11-positive HGSC shrunk significantly better than SLFN11-negative HGSC after neoadjuvant chemotherapy. Comparable results were obtained with CCC but without consideration of BRCA1/2 mutation due to a small population. Multivariate analysis identified SLFN11 as an independent factor for better survival in HGSC and CCC. The SLFN11-dependent sensitivity to platinum and PARP inhibitors were validated with genetically modified non-HGSC ovarian cancer cell lines. Our study reveals that SLFN11 predicts platinum sensitivity in HGSC and CCC independently of BRCA1/2 mutation status, indicating that SLFN11 assessment can guide treatment selection in HGSC and CCC.
Collapse
Affiliation(s)
- Hidehiko Akashi
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nozomi Yachida
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Haruka Ueda
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Manako Yamaguchi
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kaoru Yamawaki
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryo Tamura
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuaki Suda
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tatsuya Ishiguro
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Sosuke Adachi
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshikazu Nagase
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yutaka Ueda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masashi Ueda
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Kaoru Abiko
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Masahiro Kagabu
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Shiwa, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Shiwa, Japan
| | - Hirofumi Nakaoka
- Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation Chiyoda-ku, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Junko Murai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Department of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
21
|
Qi F, Alvi E, Ogawa M, Kobayashi J, Mu A, Takata M. The ribonuclease domain function is dispensable for SLFN11 to mediate cell fate decision during replication stress response. Genes Cells 2023; 28:663-673. [PMID: 37469008 DOI: 10.1111/gtc.13056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
The SLFN11 gene participates in cell fate decision following cancer chemotherapy and encodes the N-terminal ribonuclease (RNase) domain and the C-terminal helicase/ATPase domain. How these domains contribute to the chemotherapeutic response remains controversial. Here, we expressed SLFN11 containing mutations in two critical residues required for RNase activity in SLFN11-/- cells. We found that this mutant was still able to suppress DNA damage tolerance, destabilized the stalled replication forks, and perturbed recruitment of the fork protector RAD51. In contrast, we confirmed that the helicase domain was essential to accelerate fork degradation. The fork degradation by the RNase mutant was dependent on both DNA2 and MRE11 nuclease, but not on MRE11's novel interactor FXR1. Collectively, these results supported the view that the RNase domain function is dispensable for SLFN11 to mediate cell fate decision during replication stress response.
Collapse
Affiliation(s)
- Fei Qi
- Department of Interdisciplinary Environmental Sciences, Graduate School of Human and Environmental Sciences, Kyoto University, Kyoto, Japan
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory of Cancer Cell Biology, Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Erin Alvi
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Minori Ogawa
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Junya Kobayashi
- Department of Interdisciplinary Environmental Sciences, Graduate School of Human and Environmental Sciences, Kyoto University, Kyoto, Japan
- Laboratory of Cancer Cell Biology, Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Anfeng Mu
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Multilayer Network Research Unit, Research Coordination Alliance, Kyoto University, Kyoto, Japan
| | - Minoru Takata
- Department of Interdisciplinary Environmental Sciences, Graduate School of Human and Environmental Sciences, Kyoto University, Kyoto, Japan
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Multilayer Network Research Unit, Research Coordination Alliance, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Konstantinopoulos PA, Matulonis UA. Clinical and translational advances in ovarian cancer therapy. NATURE CANCER 2023; 4:1239-1257. [PMID: 37653142 DOI: 10.1038/s43018-023-00617-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
Ovarian cancer is an aggressive disease that is frequently detected at advanced stages and is initially very responsive to platinum-based chemotherapy. However, the majority of patients relapse following initial surgery and chemotherapy, highlighting the urgent need to develop new therapeutic strategies. In this Review, we outline the main therapeutic principles behind the management of newly diagnosed and recurrent epithelial ovarian cancer and discuss the current landscape of targeted and immune-based approaches.
Collapse
|
23
|
Beneyton A, Nonfoux L, Gagné JP, Rodrigue A, Kothari C, Atalay N, Hendzel M, Poirier G, Masson JY. The dynamic process of covalent and non-covalent PARylation in the maintenance of genome integrity: a focus on PARP inhibitors. NAR Cancer 2023; 5:zcad043. [PMID: 37609662 PMCID: PMC10440794 DOI: 10.1093/narcan/zcad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Poly(ADP-ribosylation) (PARylation) by poly(ADP-ribose) polymerases (PARPs) is a highly regulated process that consists of the covalent addition of polymers of ADP-ribose (PAR) through post-translational modifications of substrate proteins or non-covalent interactions with PAR via PAR binding domains and motifs, thereby reprogramming their functions. This modification is particularly known for its central role in the maintenance of genomic stability. However, how genomic integrity is controlled by an intricate interplay of covalent PARylation and non-covalent PAR binding remains largely unknown. Of importance, PARylation has caught recent attention for providing a mechanistic basis of synthetic lethality involving PARP inhibitors (PARPi), most notably in homologous recombination (HR)-deficient breast and ovarian tumors. The molecular mechanisms responsible for the anti-cancer effect of PARPi are thought to implicate both catalytic inhibition and trapping of PARP enzymes on DNA. However, the relative contribution of each on tumor-specific cytotoxicity is still unclear. It is paramount to understand these PAR-dependent mechanisms, given that resistance to PARPi is a challenge in the clinic. Deciphering the complex interplay between covalent PARylation and non-covalent PAR binding and defining how PARP trapping and non-trapping events contribute to PARPi anti-tumour activity is essential for developing improved therapeutic strategies. With this perspective, we review the current understanding of PARylation biology in the context of the DNA damage response (DDR) and the mechanisms underlying PARPi activity and resistance.
Collapse
Affiliation(s)
- Adèle Beneyton
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Louis Nonfoux
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Philippe Gagné
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Amélie Rodrigue
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Charu Kothari
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Nurgul Atalay
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Michael J Hendzel
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AlbertaT6G 1Z2, Canada
| | - Guy G Poirier
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| |
Collapse
|
24
|
Legrand AJ, Choul-li S, Villeret V, Aumercier M. Poly(ADP-ribose) Polyremase-1 (PARP-1) Inhibition: A Promising Therapeutic Strategy for ETS-Expressing Tumours. Int J Mol Sci 2023; 24:13454. [PMID: 37686260 PMCID: PMC10487777 DOI: 10.3390/ijms241713454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
ETS transcription factors are a highly conserved family of proteins involved in the progression of many cancers, such as breast and prostate carcinomas, Ewing's sarcoma, and leukaemias. This significant involvement can be explained by their roles at all stages of carcinogenesis progression. Generally, their expression in tumours is associated with a poor prognosis and an aggressive phenotype. Until now, no efficient therapeutic strategy had emerged to specifically target ETS-expressing tumours. Nevertheless, there is evidence that pharmacological inhibition of poly(ADP-ribose) polymerase-1 (PARP-1), a key DNA repair enzyme, specifically sensitises ETS-expressing cancer cells to DNA damage and limits tumour progression by leading some of the cancer cells to death. These effects result from a strong interplay between ETS transcription factors and the PARP-1 enzyme. This review summarises the existing knowledge of this molecular interaction and discusses the promising therapeutic applications.
Collapse
Affiliation(s)
- Arnaud J. Legrand
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France; (A.J.L.); (V.V.)
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Deter-minants of Aging-Related Diseases, F-59000 Lille, France
| | - Souhaila Choul-li
- Département de Biologie, Faculté des Sciences, Université Chouaib Doukkali, BP-20, El Jadida 24000, Morocco;
| | - Vincent Villeret
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France; (A.J.L.); (V.V.)
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Deter-minants of Aging-Related Diseases, F-59000 Lille, France
| | - Marc Aumercier
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France; (A.J.L.); (V.V.)
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Deter-minants of Aging-Related Diseases, F-59000 Lille, France
| |
Collapse
|
25
|
Schultz CW, Zhang Y, Elmeskini R, Zimmermann A, Fu H, Murai Y, Wangsa D, Kumar S, Takahashi N, Atkinson D, Saha LK, Lee C, Elenbaas B, Desai P, Sebastian R, Sharma AK, Abel M, Schroeder B, Krishnamurthy M, Kumar R, Roper N, Aladjem M, Zenke FT, Ohler ZW, Pommier Y, Thomas A. ATR inhibition augments the efficacy of lurbinectedin in small-cell lung cancer. EMBO Mol Med 2023; 15:e17313. [PMID: 37491889 PMCID: PMC10405061 DOI: 10.15252/emmm.202217313] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Small-cell lung cancer (SCLC) is the most lethal type of lung cancer. Specifically, MYC-driven non-neuroendocrine SCLC is particularly resistant to standard therapies. Lurbinectedin was recently approved for the treatment of relapsed SCLC, but combinatorial approaches are needed to increase the depth and duration of responses to lurbinectedin. Using high-throughput screens, we found inhibitors of ataxia telangiectasia mutated and rad3 related (ATR) as the most effective agents for augmenting lurbinectedin efficacy. First-in-class ATR inhibitor berzosertib synergized with lurbinectedin in multiple SCLC cell lines, organoid, and in vivo models. Mechanistically, ATR inhibition abrogated S-phase arrest induced by lurbinectedin and forced cell cycle progression causing mitotic catastrophe and cell death. High CDKN1A/p21 expression was associated with decreased synergy due to G1 arrest, while increased levels of ERCC5/XPG were predictive of increased combination efficacy. Importantly, MYC-driven non-neuroendocrine tumors which are resistant to first-line therapies show reduced CDKN1A/p21 expression and increased ERCC5/XPG indicating they are primed for response to lurbinectedin-berzosertib combination. The combination is being assessed in a clinical trial NCT04802174.
Collapse
Affiliation(s)
- Christopher W Schultz
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Yang Zhang
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Rajaa Elmeskini
- Center for Advanced Preclinical Research, Leidos Biomedical Research, IncFrederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Astrid Zimmermann
- Translational Innovation Platform OncologyMerck KGaA, Biopharma R&DDarmstadtGermany
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Yasuhisa Murai
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Darawalee Wangsa
- Genetics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Suresh Kumar
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Nobuyuki Takahashi
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
- Medical Oncology BranchNational Center for Global Health and MedicineTokyoJapan
| | - Devon Atkinson
- Center for Advanced Preclinical Research, Leidos Biomedical Research, IncFrederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Liton Kumar Saha
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Chien‐Fei Lee
- Translational Innovation Platform OncologyEMD Serono Research and Development Institute Inc., Biopharma R&DBillericaMAUSA
| | - Brian Elenbaas
- Translational Innovation Platform OncologyEMD Serono Research and Development Institute Inc., Biopharma R&DBillericaMAUSA
| | - Parth Desai
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Robin Sebastian
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Ajit Kumar Sharma
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Melissa Abel
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Brett Schroeder
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Manan Krishnamurthy
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Rajesh Kumar
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Nitin Roper
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Mirit Aladjem
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Frank T Zenke
- Translational Innovation Platform OncologyMerck KGaA, Biopharma R&DDarmstadtGermany
| | - Zoe Weaver Ohler
- Center for Advanced Preclinical Research, Leidos Biomedical Research, IncFrederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| |
Collapse
|
26
|
Murai J, Ceribelli M, Fu H, Redon CE, Jo U, Murai Y, Aladjem MI, Thomas CJ, Pommier Y. Schlafen 11 (SLFN11) Kills Cancer Cells Undergoing Unscheduled Re-replication. Mol Cancer Ther 2023; 22:985-995. [PMID: 37216280 PMCID: PMC10524552 DOI: 10.1158/1535-7163.mct-22-0552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/24/2022] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Schlafen 11 (SLFN11) is an increasingly prominent predictive biomarker and a molecular sensor for a wide range of clinical drugs: topoisomerases, PARP and replication inhibitors, and platinum derivatives. To expand the spectrum of drugs and pathways targeting SLFN11, we ran a high-throughput screen with 1,978 mechanistically annotated, oncology-focused compounds in two isogenic pairs of SLFN11-proficient and -deficient cells (CCRF-CEM and K562). We identified 29 hit compounds that selectively kill SLFN11-proficient cells, including not only previously known DNA-targeting agents, but also the neddylation inhibitor pevonedistat (MLN-4924) and the DNA polymerase α inhibitor AHPN/CD437, which both induced SLFN11 chromatin recruitment. By inactivating cullin-ring E3 ligases, pevonedistat acts as an anticancer agent partly by inducing unscheduled re-replication through supraphysiologic accumulation of CDT1, an essential factor for replication initiation. Unlike the known DNA-targeting agents and AHPN/CD437 that recruit SLFN11 onto chromatin in 4 hours, pevonedistat recruited SLFN11 at late time points (24 hours). While pevonedistat induced unscheduled re-replication in SLFN11-deficient cells after 24 hours, the re-replication was largely blocked in SLFN11-proficient cells. The positive correlation between sensitivity to pevonedistat and SLFN11 expression was also observed in non-isogenic cancer cells in three independent cancer cell databases (NCI-60, CTRP: Cancer Therapeutics Response Portal and GDSC: Genomic of Drug Sensitivity in Cancer). The present study reveals that SLFN11 not only detects stressed replication but also inhibits unscheduled re-replication induced by pevonedistat, thereby enhancing its anticancer efficacy. It also suggests SLFN11 as a potential predictive biomarker for pevonedistat in ongoing and future clinical trials.
Collapse
Affiliation(s)
- Junko Murai
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
- Department of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon 791-0295, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon 791-0295, Japan
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Haiqing Fu
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Christophe E. Redon
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ukhyun Jo
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yasuhisa Murai
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Mirit I. Aladjem
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Craig J. Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
27
|
Casimir L, Zimmer S, Racine-Brassard F, Goudreau F, Jacques PÉ, Maréchal A. Chronic treatment with ATR and CHK1 inhibitors does not substantially increase the mutational burden of human cells. Mutat Res 2023; 827:111834. [PMID: 37531716 DOI: 10.1016/j.mrfmmm.2023.111834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
DNA replication stress (RS) entails the frequent slow down and arrest of replication forks by a variety of conditions that hinder accurate and processive genome duplication. Elevated RS leads to genome instability, replication catastrophe and eventually cell death. RS is particularly prevalent in cancer cells and its exacerbation to unsustainable levels by chemotherapeutic agents remains a cornerstone of cancer treatments. The adverse consequences of RS are normally prevented by the ATR and CHK1 checkpoint kinases that stabilize stressed forks, suppress origin firing and promote cell cycle arrest when replication is perturbed. Specific inhibitors of these kinases have been developed and shown to potentiate RS and cell death in multiple in vitro cancer settings. Ongoing clinical trials are now probing their efficacy against various cancer types, either as single agents or in combination with mainstay chemotherapeutics. Despite their promise as valuable additions to the anti-cancer pharmacopoeia, we still lack a genome-wide view of the potential mutagenicity of these new drugs. To investigate this question, we performed chronic long-term treatments of TP53-depleted human cancer cells with ATR and CHK1 inhibitors (ATRi, AZD6738/ceralasertib and CHK1i, MK8776/SCH-900776). ATR or CHK1 inhibition did not significantly increase the mutational burden of cells, nor generate specific mutational signatures. Indeed, no notable changes in the numbers of base substitutions, short insertions/deletions and larger scale rearrangements were observed despite induction of replication-associated DNA breaks during treatments. Interestingly, ATR inhibition did induce a slight increase in closely-spaced mutations, a feature previously attributed to translesion synthesis DNA polymerases. The results suggest that ATRi and CHK1i do not have substantial mutagenic effects in vitro when used as standalone agents.
Collapse
Affiliation(s)
- Lisa Casimir
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1K 2R1, QC, Canada
| | - Samuel Zimmer
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1K 2R1, QC, Canada
| | - Félix Racine-Brassard
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1K 2R1, QC, Canada
| | - Félix Goudreau
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1K 2R1, QC, Canada
| | - Pierre-Étienne Jacques
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1K 2R1, QC, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke J1H 5N3, QC, Canada.
| | - Alexandre Maréchal
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1K 2R1, QC, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke J1H 5N3, QC, Canada.
| |
Collapse
|
28
|
Bhin J, Paes Dias M, Gogola E, Rolfs F, Piersma SR, de Bruijn R, de Ruiter JR, van den Broek B, Duarte AA, Sol W, van der Heijden I, Andronikou C, Kaiponen TS, Bakker L, Lieftink C, Morris B, Beijersbergen RL, van de Ven M, Jimenez CR, Wessels LFA, Rottenberg S, Jonkers J. Multi-omics analysis reveals distinct non-reversion mechanisms of PARPi resistance in BRCA1- versus BRCA2-deficient mammary tumors. Cell Rep 2023; 42:112538. [PMID: 37209095 DOI: 10.1016/j.celrep.2023.112538] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/16/2023] [Accepted: 05/03/2023] [Indexed: 05/22/2023] Open
Abstract
BRCA1 and BRCA2 both function in DNA double-strand break repair by homologous recombination (HR). Due to their HR defect, BRCA1/2-deficient cancers are sensitive to poly(ADP-ribose) polymerase inhibitors (PARPis), but they eventually acquire resistance. Preclinical studies yielded several PARPi resistance mechanisms that do not involve BRCA1/2 reactivation, but their relevance in the clinic remains elusive. To investigate which BRCA1/2-independent mechanisms drive spontaneous resistance in vivo, we combine molecular profiling with functional analysis of HR of matched PARPi-naive and PARPi-resistant mouse mammary tumors harboring large intragenic deletions that prevent reactivation of BRCA1/2. We observe restoration of HR in 62% of PARPi-resistant BRCA1-deficient tumors but none in the PARPi-resistant BRCA2-deficient tumors. Moreover, we find that 53BP1 loss is the prevalent resistance mechanism in HR-proficient BRCA1-deficient tumors, whereas resistance in BRCA2-deficient tumors is mainly induced by PARG loss. Furthermore, combined multi-omics analysis identifies additional genes and pathways potentially involved in modulating PARPi response.
Collapse
Affiliation(s)
- Jinhyuk Bhin
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Department of Biomedical System Informatics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Mariana Paes Dias
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Ewa Gogola
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Frank Rolfs
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; OncoProteomics Laboratory, Department Medical Oncology, Amsterdam UMC, 1081HV Amsterdam, the Netherlands
| | - Sander R Piersma
- OncoProteomics Laboratory, Department Medical Oncology, Amsterdam UMC, 1081HV Amsterdam, the Netherlands
| | - Roebi de Bruijn
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Julian R de Ruiter
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Bram van den Broek
- Division of Cell Biology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Alexandra A Duarte
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Wendy Sol
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Ingrid van der Heijden
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Christina Andronikou
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Cancer Therapy Resistance Cluster and Bern Center for Precision Medicine, Department for Biomedical Research, University of Bern, 3088 Bern, Switzerland; Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Taina S Kaiponen
- Cancer Therapy Resistance Cluster and Bern Center for Precision Medicine, Department for Biomedical Research, University of Bern, 3088 Bern, Switzerland; Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Lara Bakker
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Ben Morris
- Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Marieke van de Ven
- Mouse Clinic for Cancer and Aging, Preclinical Intervention Unit, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Connie R Jimenez
- OncoProteomics Laboratory, Department Medical Oncology, Amsterdam UMC, 1081HV Amsterdam, the Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands.
| | - Sven Rottenberg
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Cancer Therapy Resistance Cluster and Bern Center for Precision Medicine, Department for Biomedical Research, University of Bern, 3088 Bern, Switzerland; Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
29
|
Yano K, Shiotani B. Emerging strategies for cancer therapy by ATR inhibitors. Cancer Sci 2023. [PMID: 37189251 DOI: 10.1111/cas.15845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
DNA replication stress (RS) causes genomic instability and vulnerability in cancer cells. To counteract RS, cells have evolved various mechanisms involving the ATR kinase signaling pathway, which regulates origin firing, cell cycle checkpoints, and fork stabilization to secure the fidelity of replication. However, ATR signaling also alleviates RS to support cell survival by driving RS tolerance, thereby contributing to therapeutic resistance. Cancer cells harboring genetic mutations and other changes that disrupt normal DNA replication increase the risk of DNA damage and the levels of RS, conferring addiction to ATR activity for sustainable replication and susceptibility to therapeutic approaches using ATR inhibitors (ATRis). Therefore, clinical trials are currently being conducted to evaluate the efficacy of ATRis as monotherapies or in combination with other drugs and biomarkers. In this review, we discuss recent advances in the elucidation of the mechanisms by which ATR functions in the RS response and its therapeutic relevance when utilizing ATRis.
Collapse
Affiliation(s)
- Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
30
|
Moliner L, Zhang B, Lamberti G, Ardizzoni A, Byers LA, Califano R. Novel therapeutic strategies for recurrent SCLC. Crit Rev Oncol Hematol 2023; 186:104017. [PMID: 37150311 DOI: 10.1016/j.critrevonc.2023.104017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023] Open
Abstract
Therapeutic options for patients with relapsed SCLC are limited, and the prognosis in this setting remains poor. While clinical outcomes for frontline treatment have modestly improved with the introduction of immunotherapy, treatment in the second-line setting persists almost unchanged. In this review, current treatment options and recent advances in molecular biology are described. Emerging therapeutic options in this setting and potential strategies to improve clinical outcomes of these patients are also addressed.
Collapse
Affiliation(s)
- Laura Moliner
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - Bingnan Zhang
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Giuseppe Lamberti
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Bologna, 40138, Italy
| | - Andrea Ardizzoni
- Department of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
| | - Lauren A Byers
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Raffaele Califano
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK; Division of Cancer Sciences, The University of Manchester, Manchester, M13 9NT, UK.
| |
Collapse
|
31
|
Nakata S, Murai J, Okada M, Takahashi H, Findlay TH, Malebranche K, Parthasarathy A, Miyashita S, Gabdulkhaev R, Benkimoun I, Druillennec S, Chabi S, Hawkins E, Miyahara H, Tateishi K, Yamashita S, Yamada S, Saito T, On J, Watanabe J, Tsukamoto Y, Yoshimura J, Oishi M, Nakano T, Imamura M, Imai C, Yamamoto T, Takeshima H, Sasaki AT, Rodriguez FJ, Nobusawa S, Varlet P, Pouponnot C, Osuka S, Pommier Y, Kakita A, Fujii Y, Raabe EH, Eberhart CG, Natsumeda M. Epigenetic upregulation of Schlafen11 renders
WNT- and SHH-activated medulloblastomas sensitive to cisplatin. Neuro Oncol 2023; 25:899-912. [PMID: 36273330 PMCID: PMC10158119 DOI: 10.1093/neuonc/noac243] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Intensive chemotherapeutic regimens with craniospinal irradiation have greatly improved survival in medulloblastoma patients. However, survival markedly differs among molecular subgroups and their biomarkers are unknown. Through unbiased screening, we found Schlafen family member 11 (SLFN11), which is known to improve response to DNA damaging agents in various cancers, to be one of the top prognostic markers in medulloblastomas. Hence, we explored the expression and functions of SLFN11 in medulloblastoma. METHODS SLFN11 expression for each subgroup was assessed by immunohistochemistry in 98 medulloblastoma patient samples and by analyzing transcriptomic databases. We genetically or epigenetically modulated SLFN11 expression in medulloblastoma cell lines and determined cytotoxic response to the DNA damaging agents cisplatin and topoisomerase I inhibitor SN-38 in vitro and in vivo. RESULTS High SLFN11 expressing cases exhibited significantly longer survival than low expressing cases. SLFN11 was highly expressed in the WNT-activated subgroup and in a proportion of the SHH-activated subgroup. While WNT activation was not a direct cause of the high expression of SLFN11, a specific hypomethylation locus on the SLFN11 promoter was significantly correlated with high SLFN11 expression. Overexpression or deletion of SLFN11 made medulloblastoma cells sensitive and resistant to cisplatin and SN-38, respectively. Pharmacological upregulation of SLFN11 by the brain-penetrant histone deacetylase-inhibitor RG2833 markedly increased sensitivity to cisplatin and SN-38 in SLFN11-negative medulloblastoma cells. Intracranial xenograft studies also showed marked sensitivity to cisplatin by SLFN11-overexpression in medulloblastoma cells. CONCLUSIONS High SLFN11 expression is one factor which renders favorable outcomes in WNT-activated and a subset of SHH-activated medulloblastoma possibly through enhancing response to cisplatin.
Collapse
Affiliation(s)
- Satoshi Nakata
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurosurgery, Gunma University, Maebashi, Japan
| | - Junko Murai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masayasu Okada
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Haruhiko Takahashi
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
- Division of Neurosurgery, Department of Clinical Neuroscience, Faculty of Medicine University of Miyazaki, Miyazaki, Japan
| | - Tyler H Findlay
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristen Malebranche
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Akhila Parthasarathy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Satoshi Miyashita
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ramil Gabdulkhaev
- Department of Pathology, Brain Research Institute Niigata University, Niigata, Japan
| | - Ilan Benkimoun
- Department of Neuropathology, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Sabine Druillennec
- Institut Curie, Centre de Recherche, F-91405, Orsay, France
- INSERM U1021, Centre Universitaire, F-91405, Orsay, France
- CNRS UMR 3347, Centre Universitaire, F-91405, Orsay, France
- Université Paris-Saclay, F-91405, Orsay, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, F-91405, Orsay, France
| | - Sara Chabi
- Institut Curie, Centre de Recherche, F-91405, Orsay, France
- INSERM U1021, Centre Universitaire, F-91405, Orsay, France
- CNRS UMR 3347, Centre Universitaire, F-91405, Orsay, France
- Université Paris-Saclay, F-91405, Orsay, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, F-91405, Orsay, France
| | - Eleanor Hawkins
- Institut Curie, Centre de Recherche, F-91405, Orsay, France
- INSERM U1021, Centre Universitaire, F-91405, Orsay, France
- CNRS UMR 3347, Centre Universitaire, F-91405, Orsay, France
- Université Paris-Saclay, F-91405, Orsay, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, F-91405, Orsay, France
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Kensuke Tateishi
- Department of Neurosurgery, Yokohama City University, Yokohama, Japan
| | - Shinji Yamashita
- Division of Neurosurgery, Department of Clinical Neuroscience, Faculty of Medicine University of Miyazaki, Miyazaki, Japan
| | - Shiori Yamada
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Taiki Saito
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Jotaro On
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Jun Watanabe
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yoshihiro Tsukamoto
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Junichi Yoshimura
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Makoto Oishi
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Toshimichi Nakano
- Department of Radiology and Radiation Oncology Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Masaru Imamura
- Department of Pediatrics, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Chihaya Imai
- Department of Pediatrics, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Yokohama City University, Yokohama, Japan
| | - Hideo Takeshima
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
- Division of Neurosurgery, Department of Clinical Neuroscience, Faculty of Medicine University of Miyazaki, Miyazaki, Japan
| | - Atsuo T Sasaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Department of Internal Medicine, Department of Cancer Biology, University of Cincinnati College of Medicine, Columbus, Ohio, USA
| | - Fausto J Rodriguez
- Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, Ohio, USA
| | | | - Pascale Varlet
- Department of Neuropathology, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Celio Pouponnot
- Institut Curie, Centre de Recherche, F-91405, Orsay, France
- INSERM U1021, Centre Universitaire, F-91405, Orsay, France
- CNRS UMR 3347, Centre Universitaire, F-91405, Orsay, France
- Université Paris-Saclay, F-91405, Orsay, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, F-91405, Orsay, France
| | - Satoru Osuka
- Department of Neurosurgery, School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Alabama, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, USA
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute Niigata University, Niigata, Japan
| | - Yukihiko Fujii
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Eric H Raabe
- Department of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Manabu Natsumeda
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
32
|
Wang SSY, Jie YE, Cheng SW, Ling GL, Ming HVY. PARP Inhibitors in Breast and Ovarian Cancer. Cancers (Basel) 2023; 15:cancers15082357. [PMID: 37190285 DOI: 10.3390/cancers15082357] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors are one of the most successful examples of clinical translation of targeted therapies in medical oncology, and this has been demonstrated by their effective management of BRCA1/BRCA2 mutant cancers, most notably in breast and ovarian cancers. PARP inhibitors target DNA repair pathways that BRCA1/2-mutant tumours are dependent upon. Inhibition of the key components of these pathways leads to DNA damage triggering subsequent critical levels of genomic instability, mitotic catastrophe and cell death. This ultimately results in a synthetic lethal relationship between BRCA1/2 and PARP, which underpins the effectiveness of PARP inhibitors. Despite the early and dramatic response seen with PARP inhibitors, patients receiving them often develop treatment resistance. To date, data from both clinical and preclinical studies have highlighted multiple resistance mechanisms to PARP inhibitors, and only by understanding these mechanisms are we able to overcome the challenges. The focus of this review is to summarise the underlying mechanisms underpinning treatment resistance to PARP inhibitors and to aid both clinicians and scientists to develop better clinically applicable assays to better select patients who would derive the greatest benefit as well as develop new novel/combination treatment strategies to overcome these mechanisms of resistance. With a better understanding of PARP inhibitor resistance mechanisms, we would not only be able to identify a subset of patients who are unlikely to benefit from therapy but also to sequence our treatment paradigm to avoid and overcome these resistance mechanisms.
Collapse
Affiliation(s)
- Samuel S Y Wang
- Medical Oncology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Yeo Ee Jie
- Medical Oncology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Sim Wey Cheng
- Molecular Diagnostic Laboratory, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Goh Liuh Ling
- Molecular Diagnostic Laboratory, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | | |
Collapse
|
33
|
Groelly FJ, Fawkes M, Dagg RA, Blackford AN, Tarsounas M. Targeting DNA damage response pathways in cancer. Nat Rev Cancer 2023; 23:78-94. [PMID: 36471053 DOI: 10.1038/s41568-022-00535-5] [Citation(s) in RCA: 245] [Impact Index Per Article: 245.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Cells have evolved a complex network of biochemical pathways, collectively known as the DNA damage response (DDR), to prevent detrimental mutations from being passed on to their progeny. The DDR coordinates DNA repair with cell-cycle checkpoint activation and other global cellular responses. Genes encoding DDR factors are frequently mutated in cancer, causing genomic instability, an intrinsic feature of many tumours that underlies their ability to grow, metastasize and respond to treatments that inflict DNA damage (such as radiotherapy). One instance where we have greater insight into how genetic DDR abrogation impacts on therapy responses is in tumours with mutated BRCA1 or BRCA2. Due to compromised homologous recombination DNA repair, these tumours rely on alternative repair mechanisms and are susceptible to chemical inhibitors of poly(ADP-ribose) polymerase (PARP), which specifically kill homologous recombination-deficient cancer cells, and have become a paradigm for targeted cancer therapy. It is now clear that many other synthetic-lethal relationships exist between DDR genes. Crucially, some of these interactions could be exploited in the clinic to target tumours that become resistant to PARP inhibition. In this Review, we discuss state-of-the-art strategies for DDR inactivation using small-molecule inhibitors and highlight those compounds currently being evaluated in the clinic.
Collapse
Affiliation(s)
- Florian J Groelly
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Matthew Fawkes
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rebecca A Dagg
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
34
|
Hamada S, Kano S, Murai J, Suzuki T, Tsushima N, Mizumachi T, Suzuki M, Takashima T, Taniyama D, Sakamoto N, Fujioka Y, Ohba Y, Homma A. Schlafen family member 11 indicates favorable prognosis of patients with head and neck cancer following platinum-based chemoradiotherapy. Front Oncol 2023; 12:978875. [PMID: 36741698 PMCID: PMC9892834 DOI: 10.3389/fonc.2022.978875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/07/2022] [Indexed: 01/21/2023] Open
Abstract
Recently, Schlafen family member 11 (SLFN11) has been reported to increase the sensitivity of cancer cells to DNA-damaging agents, including platinum derivatives; thus, SLFN11 may be a predictive biomarker for platinum-based chemoradiotherapy (CRT). In this study, we examined whether SLFN11 expression was associated with the therapeutic outcome of platinum-based CRT in head and neck squamous cell carcinoma (HNSCC). We performed immunohistochemical analyses for SLFN11 expression in 161 HNSCC tissues from patients who had been administered cisplatin-based CRT and examined the correlation between SLFN11 expression and progression-free survival (PFS). Additionally, SLFN11 expression was examined in 10 paired samples obtained before and after CRT in patients with local failure. Furthermore, in vitro experiments were performed using several HNSCC cell lines and isogenic SLFN11-knockout cells to assess the association between SLFN11 expression and drug sensitivity. PFS was found to be significantly better in the SLFN11-positive group than in the SLFN11-negative group among the 161 patients (5-year PFS: 78.8% vs. 52.8%, respectively, p < 0.001). Similar results were observed for the PFS at each primary site. The percentage of SLFN11 positivity was lower in tumor samples from patients with local failure after CRT than that in the corresponding primary tumors before CRT in 8 of 10 cases. Results of the in vitro assay demonstrated that SLFN11-knockout cells exhibited reduced sensitivity to DNA-damaging agents but not to the non-DNA-damaging agent docetaxel. Our findings suggest that SLFN11 may serve as a potential biomarker for predicting the response of HNSCC patients to platinum-based CRT.
Collapse
Affiliation(s)
- Seijiro Hamada
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Kano
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan,*Correspondence: Satoshi Kano,
| | - Junko Murai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Takayoshi Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nayuta Tsushima
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takatsugu Mizumachi
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masanobu Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tsuyoshi Takashima
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Daiki Taniyama
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoya Sakamoto
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoichiro Fujioka
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiro Homma
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
35
|
da Costa AABA, Chowdhury D, Shapiro GI, D'Andrea AD, Konstantinopoulos PA. Targeting replication stress in cancer therapy. Nat Rev Drug Discov 2023; 22:38-58. [PMID: 36202931 PMCID: PMC11132912 DOI: 10.1038/s41573-022-00558-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 02/06/2023]
Abstract
Replication stress is a major cause of genomic instability and a crucial vulnerability of cancer cells. This vulnerability can be therapeutically targeted by inhibiting kinases that coordinate the DNA damage response with cell cycle control, including ATR, CHK1, WEE1 and MYT1 checkpoint kinases. In addition, inhibiting the DNA damage response releases DNA fragments into the cytoplasm, eliciting an innate immune response. Therefore, several ATR, CHK1, WEE1 and MYT1 inhibitors are undergoing clinical evaluation as monotherapies or in combination with chemotherapy, poly[ADP-ribose]polymerase (PARP) inhibitors, or immune checkpoint inhibitors to capitalize on high replication stress, overcome therapeutic resistance and promote effective antitumour immunity. Here, we review current and emerging approaches for targeting replication stress in cancer, from preclinical and biomarker development to clinical trial evaluation.
Collapse
Affiliation(s)
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, USA.
| | | |
Collapse
|
36
|
Arnold MR, Langelier MF, Gartrell J, Kirby IT, Sanderson DJ, Bejan DS, Šileikytė J, Sundalam SK, Nagarajan S, Marimuthu P, Duell AK, Shelat AA, Pascal JM, Cohen MS. Allosteric regulation of DNA binding and target residence time drive the cytotoxicity of phthalazinone-based PARP-1 inhibitors. Cell Chem Biol 2022; 29:1694-1708.e10. [PMID: 36493759 DOI: 10.1016/j.chembiol.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/31/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022]
Abstract
Allosteric coupling between the DNA binding site to the NAD+-binding pocket drives PARP-1 activation. This allosteric communication occurs in the reverse direction such that NAD+ mimetics can enhance PARP-1's affinity for DNA, referred to as type I inhibition. The cellular effects of type I inhibition are unknown, largely because of the lack of potent, membrane-permeable type I inhibitors. Here we identify the phthalazinone inhibitor AZ0108 as a type I inhibitor. Unlike the structurally related inhibitor olaparib, AZ0108 induces replication stress in tumorigenic cells. Synthesis of analogs of AZ0108 revealed features of AZ0108 that are required for type I inhibition. One analog, Pip6, showed similar type I inhibition of PARP-1 but was ∼90-fold more cytotoxic than AZ0108. Washout experiments suggest that the enhanced cytotoxicity of Pip6 compared with AZ0108 is due to prolonged target residence time on PARP-1. Pip6 represents a new class of PARP-1 inhibitors that may have unique anticancer properties.
Collapse
Affiliation(s)
- Moriah R Arnold
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Pk. Rd., Portland, OR 97210, USA
| | - Marie-France Langelier
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jessica Gartrell
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ilsa T Kirby
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Pk. Rd., Portland, OR 97210, USA
| | - Daniel J Sanderson
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Pk. Rd., Portland, OR 97210, USA
| | - Daniel S Bejan
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Pk. Rd., Portland, OR 97210, USA
| | - Justina Šileikytė
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Pk. Rd., Portland, OR 97210, USA
| | - Sunil K Sundalam
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Pk. Rd., Portland, OR 97210, USA
| | - Shanthi Nagarajan
- Medicinal Chemistry Core, Oregon Health & Science University, Portland, OR 97210, USA
| | - Parthiban Marimuthu
- Structural Bioinformatics Laboratory, Åbo Akademi University, Faculty of Science and Engineering, 20520 Turku, Finland
| | - Anna K Duell
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Pk. Rd., Portland, OR 97210, USA
| | - Anang A Shelat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Michael S Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Pk. Rd., Portland, OR 97210, USA.
| |
Collapse
|
37
|
Washington CR, Moore KN. Resistance to Poly (ADP-Ribose) Polymerase Inhibitors (PARPi): Mechanisms and Potential to Reverse. Curr Oncol Rep 2022; 24:1685-1693. [PMID: 36346509 DOI: 10.1007/s11912-022-01337-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE OF REVIEW This review will focus on the most common mechanisms for poly (ADP-ribose) polymerase inhibitors' (PARPi) resistance and the main strategies for overcoming acquired or de novo PARPi resistance. RECENT FINDINGS Initial approvals for PARPi as part of treatment for advanced epithelial ovarian cancer (EOC) started in 2014 with patient with recurrent cancer characterized by BRCA mutations in the 3rd and 4th line and now have approvals for front-line maintenance in both the BRCA mutated and BRCAwt populations. As with all therapies, patients will eventually develop resistance to treatment. The most common mechanisms for PARPi resistance include reversion mutations, methylation events, and restoration of homologous recombination deficiency (HRD) through combinations and targeting replication stress. As more and more patients receive initial treatment (and potential retreatment with PARPi), we need to better understand the mechanisms in which tumors acquire PARPi resistance.
Collapse
Affiliation(s)
- Christina R Washington
- Stephenson Cancer Center, University of Oklahoma HSC, 800 NE 10th St, Suite 5050, Oklahoma City, OK, 73104, USA.
| | - Kathleen N Moore
- Stephenson Cancer Center, University of Oklahoma HSC, 800 NE 10th St, Suite 5050, Oklahoma City, OK, 73104, USA
| |
Collapse
|
38
|
Schleicher EM, Moldovan GL. CRISPR screens guide the way for PARP and ATR inhibitor biomarker discovery. FEBS J 2022; 289:7854-7868. [PMID: 34601817 PMCID: PMC9003637 DOI: 10.1111/febs.16217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/28/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023]
Abstract
DNA repair pathways are heavily studied for their role in cancer initiation and progression. Due to the large amount of inherent DNA damage in cancer cells, tumor cells profoundly rely on proper DNA repair for efficient cell cycle progression. Several current chemotherapeutics promote excessive DNA damage in cancer cells, thus leading to cell death during cell cycle progression. However, if the tumor has efficient DNA repair mechanisms, DNA-damaging therapeutics may not be as effective. Therefore, directly inhibiting DNA repair pathways alone and in combination with chemotherapeutics that cause DNA damage may result in improved clinical outcomes. Nevertheless, tumors can acquire resistance to DNA repair inhibitors. It is essential to understand the genetic mechanisms underlying this resistance. Genome-wide CRISPR screening has emerged as a powerful tool to identify biomarkers of resistance or sensitivity to DNA repair inhibitors. CRISPR knockout and CRISPR activation screens can be designed to investigate how the loss or overexpression of any human gene impacts resistance or sensitivity to specific inhibitors. This review will address the role of CRISPR screening in identifying biomarkers of resistance and sensitivity to DNA repair pathway inhibitors. We will focus on inhibitors targeting the PARP1 and ATR enzymes, and how the biomarkers identified from CRISPR screens can help inform the treatment plan for cancer patients.
Collapse
Affiliation(s)
- Emily M. Schleicher
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
39
|
M A, Xavier J, A S F, Bisht P, Murti K, Ravichandiran V, Kumar N. Epigenetic basis for PARP mutagenesis in glioblastoma: A review. Eur J Pharmacol 2022; 938:175424. [PMID: 36442619 DOI: 10.1016/j.ejphar.2022.175424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Several modifications in the glioblastoma genes are caused by epigenetic modifications, which are crucial in appropriate developmental processes such as self-renewal and destiny determination of neural stem cells. Poly (ADP-ribose)polymerase (PARP) is an essential cofactor involved in DNA repair as well as several other cellular functions such as transcription and chromatin shape modification. Inhibiting PARP has evolved for triggering cell damage in cancerous cells when paired with certain other anticancer drugs including temozolomide (TMZ). PARP1 is involved with in base excision repair (BER) pathway, however its functionality differs across types of tumours. Epigenomics as well as chromosomal statistics have contributed to the growth of main subgroups of glioma, which serve as foundation for the categorization of central nervous system (CNS) tumours as well as a unique classification based only on DNA methylation information, which demonstrates extraordinary diagnostic accuracy. Unfortunately, not all patients respond to PARP inhibitors (PARPi), and there is no way to anticipate who will and who will not. In this field, PARPi are one of the innovative medicines currently being explored. As a result, cancer cells that also have a homologous recombination defect become fatal synthetically. As well as preparing the tumour microenvironment for immunotherapy, PARPi may enhance the lethal effects of chemotherapy and radiotherapy. This article analyzes the justification and clinical evidence for PARPi in glioma to offer potential therapeutic approaches. Despite the effectiveness of these targeted drugs, researchers have looked into a number of resistance mechanisms as well as the growing usage of PARPi in clinical practice for the treatment of various malignancies.
Collapse
Affiliation(s)
- Anu M
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar, 844102, India
| | - Joyal Xavier
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar, 844102, India
| | - Fathima A S
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar, 844102, India
| | - Priya Bisht
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar, 844102, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar, 844102, India
| | - V Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar, 844102, India; Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar, 844102, India; Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar, 844102, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar, 844102, India.
| |
Collapse
|
40
|
Pongor LS, Tlemsani C, Elloumi F, Arakawa Y, Jo U, Gross JM, Mosavarpour S, Varma S, Kollipara RK, Roper N, Teicher BA, Aladjem MI, Reinhold W, Thomas A, Minna JD, Johnson JE, Pommier Y. Integrative epigenomic analyses of small cell lung cancer cells demonstrates the clinical translational relevance of gene body methylation. iScience 2022; 25:105338. [DOI: 10.1016/j.isci.2022.105338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022] Open
|
41
|
The Prognostic and Therapeutic Potential of DNA Damage Repair Pathway Alterations and Homologous Recombination Deficiency in Lung Cancer. Cancers (Basel) 2022; 14:cancers14215305. [DOI: 10.3390/cancers14215305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer remains the second most commonly diagnosed cancer worldwide and the leading cause of cancer-related mortality. The mapping of genomic alterations and their role in lung-cancer progression has been followed by the development of new therapeutic options. Several novel drugs, such as targeted therapy and immunotherapy, have significantly improved outcomes. However, many patients with lung cancer do not benefit from existing therapies or develop progressive disease, leading to increased morbidity and mortality despite initial responses to treatment. Alterations in DNA-damage repair (DDR) genes represent a cancer hallmark that impairs a cell’s ability to prevent deleterious mutation accumulation and repair. These alterations have recently emerged as a therapeutic target in breast, ovarian, prostate, and pancreatic cancers. The role of DDR alterations remains largely unknown in lung cancer. Nevertheless, recent research efforts have highlighted a potential role of some DDR alterations as predictive biomarkers of response to treatment. Despite the failure of PARP inhibitors (main class of DDR targeting agents) to improve outcomes in lung cancer patients, there is some evidence suggesting a role of PARP inhibitors and other DDR targeting agents in benefiting a distinct subset of lung cancer patients. In this review, we will discuss the existing literature on DDR alterations and homologous recombination deficiency (HRD) state as predictive biomarkers and therapeutic targets in both non-small cell lung and small cell lung cancer.
Collapse
|
42
|
Zhang X, Huo X, Guo H, Xue L. Combined inhibition of PARP and EZH2 for cancer treatment: Current status, opportunities, and challenges. Front Pharmacol 2022; 13:965244. [PMID: 36263120 PMCID: PMC9574044 DOI: 10.3389/fphar.2022.965244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Tumors with BRCA1/2 mutations or homologous recombination repair defects are sensitive to PARP inhibitors through the mechanism of synthetic lethality. Several PARP inhibitors are currently approved for ovarian, breast and pancreatic cancer in clinical practice. However, more than 40% of patients with BRCA1/2 mutations are insensitive to PARP inhibitors, which has aroused attention to the mechanism of PARP resistance and sensitization schemes. PARP inhibitor resistance is related to homologous recombination repair, stability of DNA replication forks, PARylation and epigenetic modification. Studies on epigenetics have become the hotspots of research on PARP inhibitor resistance. As an important epigenetic regulator of transcription mediated by histone methylation, EZH2 interacts with PARP through DNA homologous recombination, DNA replication, posttranslational modification, tumor immunity and other aspects. EZH2 inhibitors have been just shifting from the bench to the bedside, but the combination scheme in cancer therapy has not been fully explored yet. Recently, a revolutionary drug design combining PARP inhibitors and EZH2 inhibitors based on PROTAC techniques has shed light on the resolution of PARP inhibitor resistance. This review summarizes the interactions between EZH2 and PARP, suggests the potential PARP inhibitor sensitization effect of EZH2 inhibitors, and further discusses the potential populations that benefit from the combination of EZH2 inhibitors and PARP inhibitors.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian, China
| | - Xiao Huo
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Haidian, China
- Biobank, Peking University Third Hospital, Haidian, China
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian, China
- *Correspondence: Lixiang Xue, ; Hongyan Guo,
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Haidian, China
- Biobank, Peking University Third Hospital, Haidian, China
- *Correspondence: Lixiang Xue, ; Hongyan Guo,
| |
Collapse
|
43
|
Metzner FJ, Wenzl SJ, Kugler M, Krebs S, Hopfner KP, Lammens K. Mechanistic understanding of human SLFN11. Nat Commun 2022; 13:5464. [PMID: 36115853 PMCID: PMC9482658 DOI: 10.1038/s41467-022-33123-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/01/2022] [Indexed: 11/12/2022] Open
Abstract
Schlafen 11 (SLFN11) is an interferon-inducible antiviral restriction factor with tRNA endoribonuclease and DNA binding functions. It is recruited to stalled replication forks in response to replication stress and inhibits replication of certain viruses such as the human immunodeficiency virus 1 (HIV-1) by modulating the tRNA pool. SLFN11 has been identified as a predictive biomarker in cancer, as its expression correlates with a beneficial response to DNA damage inducing anticancer drugs. However, the mechanism and interdependence of these two functions are largely unknown. Here, we present cryo-electron microscopy (cryo-EM) structures of human SLFN11 in its dimeric apoenzyme state, bound to tRNA and in complex with single-strand DNA. Full-length SLFN11 neither hydrolyses nor binds ATP and the helicase domain appears in an autoinhibited state. Together with biochemical and structure guided mutagenesis studies, our data give detailed insights into the mechanism of endoribonuclease activity as well as suggestions on how SLFN11 may block stressed replication forks. Schlafen 11 serves as an antiviral restriction factor and a predictive biomarker in cancer. Here, the authors use cryoelectron microscopy and biochemical assays to understand tRNA endoribonuclease and DNA binding functions of human Schlafen 11.
Collapse
|
44
|
Fischietti M, Eckerdt F, Perez RE, Guillen Magaña JN, Mazewski C, Ho S, Gonzalez C, Streich LD, Beauchamp EM, Heimberger AB, Baran AH, Yue F, James CD, Platanias LC. SLFN11 Negatively Regulates Noncanonical NFκB Signaling to Promote Glioblastoma Progression. CANCER RESEARCH COMMUNICATIONS 2022; 2:966-978. [PMID: 36382088 PMCID: PMC9648417 DOI: 10.1158/2767-9764.crc-22-0192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is an aggressive and incurable brain tumor in nearly all instances, whose disease progression is driven in part by the glioma stem cell (GSC) subpopulation. Here, we explored the effects of Schlafen family member 11 (SLFN11) in the molecular, cellular, and tumor biology of GBM. CRISPR/Cas9-mediated knockout of SLFN11 inhibited GBM cell proliferation and neurosphere growth and was associated with reduced expression of progenitor/stem cell marker genes, such as NES, SOX2, and CD44. Loss of SLFN11 stimulated expression of NFκB target genes, consistent with a negative regulatory role for SLFN11 on the NFκB pathway. Furthermore, our studies identify p21 as a direct transcriptional target of NFκB2 in GBM whose expression was stimulated by loss of SLFN11. Genetic disruption of SLFN11 blocked GBM growth and significantly extended survival in an orthotopic patient-derived xenograft model. Together, our results identify SLFN11 as a novel component of signaling pathways that contribute to GBM and GSC with implications for future diagnostic and therapeutic strategies.
Significance:
We identify a negative regulatory role for SLFN11 in noncanonical NFκB signaling that results in suppression of the cell-cycle inhibitor p21. We provide evidence that SLFN11 contributes to regulation of stem cell markers in GBM, promoting the malignant phenotype. In addition, SLFN11 targeting triggers p21 expression and antitumor responses. Our studies define a highly novel function for SLFN11 and identify it as a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Mariafausta Fischietti
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 2Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Frank Eckerdt
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 2Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- 3Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ricardo E. Perez
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 2Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - Candice Mazewski
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 2Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Sang Ho
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Christopher Gonzalez
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Lukas D. Streich
- 4Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Elspeth M. Beauchamp
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 2Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- 5Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Amy B. Heimberger
- 3Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Aneta H. Baran
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 2Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- 5Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Feng Yue
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 6Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - C. David James
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 3Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Leonidas C. Platanias
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 2Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- 5Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
45
|
Turpin A, Neuzillet C, Colle E, Dusetti N, Nicolle R, Cros J, de Mestier L, Bachet JB, Hammel P. Therapeutic advances in metastatic pancreatic cancer: a focus on targeted therapies. Ther Adv Med Oncol 2022; 14:17588359221118019. [PMID: 36090800 PMCID: PMC9459481 DOI: 10.1177/17588359221118019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022] Open
Abstract
Mortality from pancreatic ductal adenocarcinoma (PDAC) is increasing worldwide and effective new treatments are urgently needed. The current treatment of metastatic PDAC in fit patients is based on two chemotherapy combinations (FOLFIRINOX and gemcitabine plus nab-paclitaxel) which were validated more than 8 years ago. Although almost all treatments targeting specific molecular alterations have failed so far when administered to unselected patients, encouraging results were observed in the small subpopulations of patients with germline BRCA 1/2 mutations, and somatic gene fusions (neurotrophic tyrosine receptor kinase, Neuregulin 1, which are enriched in KRAS wild-type PDAC), KRAS G12C mutations, or microsatellite instability. While targeted tumor metabolism therapies and immunotherapy have been disappointing, they are still under investigation in combination with other drugs. Optimizing pharmacokinetics and adapting available chemotherapies based on molecular signatures are other promising avenues of research. This review evaluates the current expectations and limits of available treatments and analyses the existing trials. A permanent search for actionable vulnerabilities in PDAC tumor cells and microenvironments will probably result in a more personalized therapeutic approach, keeping in mind that supportive care must also play a major role if real clinical efficacy is to be achieved in these patients.
Collapse
Affiliation(s)
- Anthony Turpin
- Department of Medical Oncology, CNRS UMR9020,
Inserm UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to
Therapies, University Lille, CHU Lille, Lille, France
| | - Cindy Neuzillet
- Department of Medical Oncology, Curie
Institute, Versailles Saint-Quentin University, Paris-Saclay University,
Saint-Cloud, France
| | - Elise Colle
- Department of Digestive and Medical Oncology,
Hospital Paul Brousse (AP-HP), Villejuif, University of Paris Saclay,
France
| | - Nelson Dusetti
- Cancer Research Center of Marseille, CRCM,
Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, Marseille,
France
| | - Rémy Nicolle
- Centre de Recherche sur l’Inflammation, INSERM,
U1149, CNRS, ERL 8252, Université de Paris Cité, Paris, France
| | - Jérôme Cros
- Department of Pathology, University of Paris
Cité, Hospital Beaujon (AP-HP), Clichy, France
| | - Louis de Mestier
- Department of Gastroenterology and
Pancreatology, University of Paris Cité, Hospital Beaujon (AP-HP), Clichy,
France
| | - Jean-Baptiste Bachet
- Department of Gastroenterology and Digestive
Oncology, Pitié-Salpêtrière Hospital, Sorbonne University, UPMC University,
Paris, France
| | - Pascal Hammel
- Department of Digestive and Medical Oncology,
Hôpital Paul Brousse (AP-HP), 12 Avenue Paul Vaillant-Couturier, Villejuif
94800, University of Paris Saclay, France
| |
Collapse
|
46
|
PARP inhibitors in small cell lung cancer: The underlying mechanisms and clinical implications. Biomed Pharmacother 2022; 153:113458. [DOI: 10.1016/j.biopha.2022.113458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022] Open
|
47
|
Combination of Talazoparib and Calcitriol Enhanced Anticancer Effect in Triple−Negative Breast Cancer Cell Lines. Pharmaceuticals (Basel) 2022; 15:ph15091075. [PMID: 36145297 PMCID: PMC9504984 DOI: 10.3390/ph15091075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022] Open
Abstract
Monotherapy for triple−negative breast cancer (TNBC) is often ineffective. This study aimed to investigate the effect of calcitriol and talazoparib combination on cell proliferation, migration, apoptosis and cell cycle in TNBC cell lines. Monotherapies and their combination were studied for (i.) antiproliferative effect (using real−time cell analyzer assay), (ii.) cell migration (CIM−Plate assay), and (iii.) apoptosis and cell cycle analysis (flow cytometry) in MDA−MB−468 and BT−20 cell lines. The optimal antiproliferative concentration of talazoparib and calcitriol in BT−20 was 91.6 and 10 µM, respectively, and in MDA−MB−468, it was 1 mM and 10 µM. Combined treatment significantly increased inhibition of cell migration in both cell lines. The combined treatment in BT−20 significantly increased late apoptosis (89.05 vs. control 0.63%) and S and G2/M populations (31.95 and 24.29% vs. control (18.62 and 12.09%)). Combined treatment in MDA−MB−468 significantly increased the S population (45.72%) and decreased G0/G1 (45.86%) vs. the control (26.79 and 59.78%, respectively). In MDA−MB−468, combined treatment significantly increased necrosis, early and late apoptosis (7.13, 33.53 and 47.1% vs. control (1.5, 3.1 and 2.83%, respectively)). Talazoparib and calcitriol combination significantly affected cell proliferation and migration, induction of apoptosis and necrosis in TNBC cell lines. This combination could be useful as a formulation to treat TNBC.
Collapse
|
48
|
Predictive biomarkers for molecularly targeted therapies and immunotherapies in breast cancer. Arch Pharm Res 2022; 45:597-617. [PMID: 35982262 DOI: 10.1007/s12272-022-01402-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Globally, breast cancer is the most common malignancy in women. Substantial efforts have been made to develop novel therapies, including targeted therapies and immunotherapies, for patients with breast cancer who do not respond to standard therapies. Consequently, new targeted therapies, such as cyclin-dependent kinase 4 and 6 inhibitors, poly (ADP-ribose) polymerase inhibitors, phosphoinositide 3-kinase inhibitor, and antibody-drug conjugates targeting human epidermal growth factor receptor 2 or trophoblast cell surface antigen-2, and immune checkpoint inhibitor targeting programmed cell death-1, have been developed and are now in clinical use. However, only some patients have benefited from these novel therapies; therefore, the identification and validation of reliable or more accurate biomarkers for predicting responses to these agents remain a major challenge. This review summarizes the currently available predictive biomarkers for breast cancer and describes recent efforts undertaken to identify potential predictive markers for molecularly targeted therapies and immune checkpoint inhibitors.
Collapse
|
49
|
Keogh A, Finn S, Radonic T. Emerging Biomarkers and the Changing Landscape of Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14153772. [PMID: 35954436 PMCID: PMC9367597 DOI: 10.3390/cancers14153772] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Small cell lung cancer (SCLC) is an aggressive cancer representing 15% of all lung cancers. Unlike other types of lung cancer, treatments for SCLC have changed very little in the past 20 years and therefore, the survival rate remains low. This is due, in part, to the lack of understanding of the biological basis of this disease and the previous idea that all SCLCs are the same. Multiple recent studies have identified that SCLCs have varying biological activity and can be divided into four different groups. The advantage of this is that each of these four groups responds differently to new treatments, which hopefully will dramatically improve survival. Additionally, the aim of these new treatments is to specifically target these biological differences in SCLC so normal/non cancer cells are unaffected, leading to decreased side effects and a better quality of life. There is still a lot unknown about SCLC, but these new findings offer a glimmer of hope for patients in the future. Abstract Small cell lung cancer (SCLC) is a high-grade neuroendocrine malignancy with an aggressive behavior and dismal prognosis. 5-year overall survival remains a disappointing 7%. Genomically, SCLCs are homogeneous compared to non-small cell lung cancers and are characterized almost always by functional inactivation of RB1 and TP53 with no actionable mutations. Additionally, SCLCs histologically appear uniform. Thus, SCLCs are currently managed as a single disease with platinum-based chemotherapy remaining the cornerstone of treatment. Recent studies have identified expression of dominant transcriptional signatures which may permit classification of SCLCs into four biologically distinct subtypes, namely, SCLC-A, SCLC-N, SCLC-P, and SCLC-I. These groups are readily detectable by immunohistochemistry and also have potential predictive utility for emerging therapies, including PARPi, immune checkpoint inhibitors, and DLL3 targeted therapies. In contrast with their histology, studies have identified that SCLCs display both inter- and intra-tumoral heterogeneity. Identification of subpopulations of cells with high expression of PLCG2 has been linked with risk of metastasis. SCLCs also display subtype switching under therapy pressure which may contribute furthermore to metastatic ability and chemoresistance. In this review, we summarize the recent developments in the understanding of the biology of SCLCs, and discuss the potential diagnostic, prognostic, and treatment opportunities the four proposed subtypes may present for the future. We also discuss the emerging evidence of tumor heterogeneity and plasticity in SCLCs which have been implicated in metastasis and acquired therapeutic resistance seen in these aggressive tumors.
Collapse
Affiliation(s)
- Anna Keogh
- Department of Histopathology, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 HD53 Dublin, Ireland
- Correspondence:
| | - Stephen Finn
- Department of Histopathology, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 HD53 Dublin, Ireland
| | - Teodora Radonic
- Department of Pathology, Amsterdam University Medical Center, VUMC, University Amsterdam, 1081 HV Amsterdam, The Netherlands;
| |
Collapse
|
50
|
Xiong J, Barayan R, Louie AV, Lok BH. Novel therapeutic combinations with PARP inhibitors for small cell lung cancer: A bench-to-bedside review. Semin Cancer Biol 2022; 86:521-542. [PMID: 35917883 DOI: 10.1016/j.semcancer.2022.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/02/2022] [Accepted: 07/29/2022] [Indexed: 10/31/2022]
Abstract
Small cell lung cancer (SCLC) is treated as a monolithic disease despite the evident intra- and intertumoral heterogeneity. Non-specific DNA-damaging agents have remained the first-line treatment for decades. Recently, emerging transcriptomic and genomic profiling of SCLC tumors identified distinct SCLC subtypes and vulnerabilities towards targeted therapeutics, including inhibitors of the nuclear enzyme poly (ADP-ribose) polymerase (PARPi). SCLC cell lines and tumors exhibited an elevated level of PARP1 protein and mRNA compared to healthy lung tissues and other subtypes of lung tumors. Notable responses to PARPi were also observed in preclinical SCLC models. Clinically, PARPi monotherapy exerted variable benefits for SCLC patients. To date, research is being vigorously conducted to examine predictive biomarkers of PARPi response and various PARPi combination strategies to maximize the clinical utility of PARPi. This narrative review summarizes existing preclinical evidence supporting PARPi monotherapy, combination therapy, and respective translation to the clinic. Specifically, we covered the combination of PARPi with DNA-damaging chemotherapy (cisplatin, etoposide, temozolomide), thoracic radiotherapy, immunotherapy (immune checkpoint inhibitors), and many other novel therapeutic agents that target DNA damage response, tumor microenvironment, epigenetic modulation, angiogenesis, the ubiquitin-proteasome system, or autophagy. Putative biomarkers, such as SLFN11 expression, MGMT methylation, E2F1 expression, and platinum sensitivity, which may be predictive of response to distinct therapeutic combinations, were also discussed. The future of SCLC treatment is undergoing rapid change with a focus on tailored and personalized treatment strategies. Further development of cancer therapy with PARPi will immensely benefit at least a subset of biomarker-defined SCLC patients.
Collapse
Affiliation(s)
- Jiaqi Xiong
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ranya Barayan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Alexander V Louie
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Odette Cancer Centre - Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
| | - Benjamin H Lok
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|