1
|
Li J, Lim JYS, Eu JQ, Chan AKMH, Goh BC, Wang L, Wong ALA. Reactive Oxygen Species Modulation in the Current Landscape of Anticancer Therapies. Antioxid Redox Signal 2024; 41:322-341. [PMID: 38445392 DOI: 10.1089/ars.2023.0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Significance: Reactive oxygen species (ROS) are generated during mitochondrial oxidative metabolism, and are tightly controlled through homeostatic mechanisms to maintain intracellular redox, regulating growth and proliferation in healthy cells. However, ROS production is perturbed in cancers where abnormal accumulation of ROS leads to oxidative stress and genomic instability, triggering oncogenic signaling pathways on one hand, while increasing oxidative damage and triggering ROS-dependent death signaling on the other. Recent Advances: Our review illuminates how critical interactions between ROS and oncogenic signaling, the tumor microenvironment, and DNA damage response (DDR) pathways have led to interest in ROS modulation as a means of enhancing existing anticancer strategies and developing new therapeutic opportunities. Critical Issues: ROS equilibrium exists via a delicate balance of pro-oxidant and antioxidant species within cells. "Antioxidant" approaches have been explored mainly in the form of chemoprevention, but there is insufficient evidence to advocate its routine application. More progress has been made via the "pro-oxidant" approach of targeting cancer vulnerabilities and inducing oxidative stress. Various therapeutic modalities have employed this approach, including direct ROS-inducing agents, chemotherapy, targeted therapies, DDR therapies, radiotherapy, and immunotherapy. Finally, emerging delivery systems such as "nanosensitizers" as radiotherapy enhancers are currently in development. Future Directions: While approaches designed to induce ROS have shown considerable promise in selectively targeting cancer cells and dealing with resistance to conventional therapies, most are still in early phases of development and challenges remain. Further research should endeavor to refine treatment strategies, optimize drug combinations, and identify predictive biomarkers of ROS-based cancer therapies.
Collapse
Affiliation(s)
- Jiaqi Li
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | | | - Jie Qing Eu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| |
Collapse
|
2
|
Wang S, Wang Y, Li Q, Li X, Feng X, Zeng K. The novel β-TrCP protein isoform hidden in circular RNA confers trastuzumab resistance in HER2-positive breast cancer. Redox Biol 2023; 67:102896. [PMID: 37783059 PMCID: PMC10551893 DOI: 10.1016/j.redox.2023.102896] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023] Open
Abstract
Trastuzumab notably improves the outcome of human epidermal growth factor receptor 2 (HER2)-positive breast cancer patients, however, resistance to trastuzumab remains a major hurdle to clinical treatment. In the present study, we identify a circular RNA intimately linked to trastuzumab resistance. circ-β-TrCP, derived from the back-splicing of β-TrCP exon 7 and 13, confers trastuzumab resistance by regulating NRF2-mediated antioxidant pathway in a KEAP1-independent manner. Concretely, circ-β-TrCP encodes a novel truncated 343-amino acid peptide located in the nucleus, referred as β-TrCP-343aa, which competitively binds to NRF2, blocks SCFβ-TrCP-mediated NRF2 proteasomal degradation, and this protective effect of β-TrCP-343aa on NRF2 protein requires GSK3 activity. Subsequently, the elevated NRF2 transcriptionally upregulates a cohort of antioxidant genes, giving rise to trastuzumab resistance. Moreover, the translation ability of circ-β-TrCP is inhibited by eIF3j under both basal and oxidative stress conditions, and eIF3j is transcriptionally repressed by NRF2, thus forming a positive feedback circuit between β-TrCP-343aa and NRF2, expediting trastuzumab resistance. Collectively, our data demonstrate that circ-β-TrCP-encoded β-TrCP protein isoform drives HER2-targeted therapy resistance in a NRF2-dependent manner, which provides potential therapeutic targets for overcoming trastuzumab resistance.
Collapse
Affiliation(s)
- Shengting Wang
- Clinical Medical Center, Xi'an Peihua University, Xi'an, 710125, Shaanxi, China
| | - Yufang Wang
- Clinical Medical Center, Xi'an Peihua University, Xi'an, 710125, Shaanxi, China
| | - Qian Li
- Clinical Medical Center, Xi'an Peihua University, Xi'an, 710125, Shaanxi, China
| | - Xiaoming Li
- Clinical Medical Center, Xi'an Peihua University, Xi'an, 710125, Shaanxi, China
| | - Xinghua Feng
- Clinical Medical Center, Xi'an Peihua University, Xi'an, 710125, Shaanxi, China
| | - Kaixuan Zeng
- Precision Medical Research Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
3
|
Wei YC, Zhu JY, Wu J, Yu S, Li W, Zhu MX, Liu TS, Cui YH, Li Q. Nestin overexpression reduces the sensitivity of gastric cancer cells to trastuzumab. J Gastrointest Oncol 2023; 14:1694-1706. [PMID: 37720426 PMCID: PMC10502550 DOI: 10.21037/jgo-22-1048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 07/21/2023] [Indexed: 09/19/2023] Open
Abstract
Background Trastuzumab (TRA) shows significant efficacy in patients with human epidermal growth factor receptor 2 (HER2)-positive gastric cancer (GC). While TRA can help treat HER2-positive breast cancer, TRA resistance is a key clinical challenge. Nestin reportedly regulates the cellular redox homeostasis in lung cancer. This study aimed at identifying the functions of Nestin on the TRA sensitivity of HER2-positive GC cells. Methods Real-time polymerase chain reaction (PCR) and Western blotting (WB) were performed to explore the association between the mRNA and protein expression profiles, respectively, of Nestin and the Keap1-Nrf2 pathway. The influence of Nestin overexpression on the in vitro sensitivity of GC cells to TRA was explored by Cell Counting Kit-8 (CCK-8) assay, colony formation assay, reactive oxygen species (ROS) detection, and flow cytometry. Results TRA treatment caused Nestin downregulation in two HER2-positive GC cell lines (MKN45 and NCI-N87). Nestin overexpression reduced the sensitivity of GC cells to TRA. The expression and activity of Nrf2 and relevant downstream antioxidant genes were increased by Nestin overexpression. Nestin overexpression also significantly suppressed TRA-induced apoptosis and ROS generation. In vivo tumor growth experiment with female BALB/c nude mice indicated that Nestin upregulation restored the tumor growth rate which was inhibited by TRA treatment. Conclusions Collectively, the inhibitory effect of Nestin on the TRA sensitivity of cells to TRA was confirmed in this study. These results imply that the antioxidant Nestin-Nrf2 axis may play a role in the mechanism underlying the resistance of GC cells to TRA.
Collapse
Affiliation(s)
- Yi-Chou Wei
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiang-Yi Zhu
- Department of Radiotherapy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Wu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shan Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meng-Xuan Zhu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tian-Shu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue-Hong Cui
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qian Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Role of NRF2 in Ovarian Cancer. Antioxidants (Basel) 2022; 11:antiox11040663. [PMID: 35453348 PMCID: PMC9027335 DOI: 10.3390/antiox11040663] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Among gynaecologic malignancies, ovarian cancer is one of the most dangerous, with a high fatality rate and relapse due to the occurrence of chemoresistance. Many researchers demonstrated that oxidative stress is involved in tumour occurrence, growth and development. Nuclear factor erythroid 2-related factor 2 (NRF2) is an important transcription factor, playing an important role in protecting against oxidative damage. Increased levels of Reactive Oxygen Species (ROS) activate NRF2 signalling, inducing the expression of antioxidant enzymes, such as haem oxygenase (HO-1), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD), that protect cells against oxidative stress. However, NRF2 activation in cancer cells is responsible for the development of chemoresistance, inactivating drug-mediated oxidative stress that normally leads to cancer cells’ death. In this review, we report evidence from the literature describing the effect of NRF2 on ovarian cancer, with a focus on its function in drug resistance, NRF2 natural and synthetic modulators and its protective function in normal ovarian preservation.
Collapse
|
5
|
Paiboonrungruang C, Simpson E, Xiong Z, Huang C, Li J, Li Y, Chen X. Development of targeted therapy of NRF2 high esophageal squamous cell carcinoma. Cell Signal 2021; 86:110105. [PMID: 34358647 PMCID: PMC8403639 DOI: 10.1016/j.cellsig.2021.110105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a deadly disease and one of the most aggressive cancers of the gastrointestinal tract. As a master transcription factor regulating the stress response, NRF2 is often mutated and becomes hyperactive, and thus causes chemo-radioresistance and poor survival in human ESCC. There is a great need to develop NRF2 inhibitors for targeted therapy of NRF2high ESCC. In this review, we mainly focus on three aspects, NRF2 inhibitors and their mechanisms of action, screening novel drug targets, and evaluation of NRF2 activity in the esophagus. A research strategy has been proposed to develop NRF2 inhibitors using human ESCC cells and mouse models.
Collapse
Affiliation(s)
- Chorlada Paiboonrungruang
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Emily Simpson
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Zhaohui Xiong
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Caizhi Huang
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
| | - Jianying Li
- Euclados Bioinformatics Solutions, Cary, NC 27519, USA
| | - Yahui Li
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Panieri E, Saso L. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells. Antioxid Redox Signal 2021; 34:1428-1483. [PMID: 33403898 DOI: 10.1089/ars.2020.8146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (NRF2/KEAP1) pathway is a crucial and highly conserved defensive system that is required to maintain or restore the intracellular homeostasis in response to oxidative, electrophilic, and other types of stress conditions. The tight control of NRF2 function is maintained by a complex network of biological interactions between positive and negative regulators that ultimately ensure context-specific activation, culminating in the NRF2-driven transcription of cytoprotective genes. Recent Advances: Recent studies indicate that deregulated NRF2 activation is a frequent event in malignant tumors, wherein it is associated with metabolic reprogramming, increased antioxidant capacity, chemoresistance, and poor clinical outcome. On the other hand, the growing interest in the modulation of the cancer cells' redox balance identified NRF2 as an ideal therapeutic target. Critical Issues: For this reason, many efforts have been made to identify potent and selective NRF2 inhibitors that might be used as single agents or adjuvants of anticancer drugs with redox disrupting properties. Despite the lack of specific NRF2 inhibitors still represents a major clinical hurdle, the researchers have exploited alternative strategies to disrupt NRF2 signaling at different levels of its biological activation. Future Directions: Given its dualistic role in tumor initiation and progression, the identification of the appropriate biological context of NRF2 activation and the specific clinicopathological features of patients cohorts wherein its inactivation is expected to have clinical benefits, will represent a major goal in the field of cancer research. In this review, we will briefly describe the structure and function of the NRF2/ KEAP1 system and some of the most promising NRF2 inhibitors, with a particular emphasis on natural compounds and drug repurposing. Antioxid. Redox Signal. 34, 1428-1483.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
7
|
Kankia IH, Paramasivan P, Elcombe M, Langdon SP, Deeni YY. Nuclear factor erythroid 2-related factor 2 modulates HER4 receptor in ovarian cancer cells to influence their sensitivity to tyrosine kinase inhibitors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:187-203. [PMID: 36046141 PMCID: PMC9400752 DOI: 10.37349/etat.2021.00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/25/2021] [Indexed: 11/19/2022] Open
Abstract
Aim: Nuclear factor erythroid 2-related factor 2 (NRF2) is a key component in the cell’s response to oxidative and electrophilic stress and is a transcription factor regulating the expression of a collection of anti-oxidative and cytoprotective genes. Human epidermal growth factor receptor 4 (HER4/erbB4) regulates growth and differentiation in many cancer types. Here, NRF2 and HER4 receptor interactions were investigated in a panel of ovarian cancer cell lines. Methods: Pharmacological [tert-butylhydroquinone (tBHQ) and retinoid/rexinoid, bexarotene] and genetic [small interfering RNA (siRNA)] manipulations were used to activate or inhibit NRF2 function in the cell line panel (PE01, OVCAR3, SKOV3). Activity of the HER-targeted tyrosine kinase inhibitors, erlotinib (ERL) and lapatinib (LAP), was evaluated after NRF2 activation. Results: While tBHQ increased the levels of both phosphorylated-NRF2 (pNRF2) and HER4 in PE01, OVCAR3 and SKOV3 cells, bexatorene and NRF2-target siRNA treatment decreased pNRF2 and total HER4 levels. The tBHQ-dependent pharmacological activation of NRF2 attenuated the therapeutic effectiveness of ERL and LAP. Analyses of gene expression data from a HER4 driven reporter system and in vitro or in vivo cancer models, support NRF2 regulation of HER4 expression. Conclusions: These results support the presence of signaling interaction between the NRF2 and HER4 receptor pathways and suggest that intervention modulating this cross-talk could have anticancer therapeutic value.
Collapse
Affiliation(s)
- Ibrahim H. Kankia
- Division of Health Sciences, School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK 3Department of Biochemistry, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University, Katsina PMB 2218, Nigeria
| | - Poornima Paramasivan
- Division of Health Sciences, School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK
| | - Matthew Elcombe
- Division of Health Sciences, School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK
| | - Simon P. Langdon
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Yusuf Y. Deeni
- Division of Health Sciences, School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK 4Department of Microbiology and Biotechnology, Faculty of Science, Federal University Dutse, Dutse PMB 7156, Nigeria
| |
Collapse
|
8
|
Zhan X, Li J, Zhou T. Targeting Nrf2-Mediated Oxidative Stress Response Signaling Pathways as New Therapeutic Strategy for Pituitary Adenomas. Front Pharmacol 2021; 12:565748. [PMID: 33841137 PMCID: PMC8024532 DOI: 10.3389/fphar.2021.565748] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress and oxidative damage are the common pathophysiological characteristics in pituitary adenomas (PAs), which have been confirmed with many omics studies in PA tissues and cell/animal experimental studies. Nuclear factor erythroid 2 p45-related factor 2 (Nrf2), the core of oxidative stress response, is an oxidative stress sensor. Nrf2 is synthesized and regulated by multiple factors, including Keap1, ERK1/2, ERK5, JNK1/2, p38 MAPK, PKC, PI3K/AKT, and ER stress, in the cytoplasm. Under the oxidative stress status, Nrf2 quickly translocates from cytoplasm into the nucleus and binds to antioxidant response element /electrophile responsive element to initiate the expressions of antioxidant genes, phases I and II metabolizing enzymes, phase III detoxifying genes, chaperone/stress response genes, and ubiquitination/proteasomal degradation proteins. Many Nrf2 or Keap1 inhibitors have been reported as potential anticancer agents for different cancers. However, Nrf2 inhibitors have not been studied as potential anticancer agents for PAs. We recommend the emphasis on in-depth studies of Nrf2 signaling and potential therapeutic agents targeting Nrf2 signaling pathways as new therapeutic strategies for PAs. Also, the use of Nrf2 inhibitors targeting Nrf2 signaling in combination with ERK inhibitors plus p38 activators or JNK activators targeting MAPK signaling pathways, or drugs targeting mitochondrial dysfunction pathway might produce better anti-tumor effects on PAs. This perspective article reviews the advances in oxidative stress and Nrf2-mediated oxidative stress response signaling pathways in pituitary tumorigenesis, and the potential of targeting Nrf2 signaling pathways as a new therapeutic strategy for PAs.
Collapse
Affiliation(s)
- Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Cancer Hospital of Shandong First Medical University, Jinan, China.,Science and Technology Innovation Center, Shandong First Medical University, Jinan, China.,Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiajia Li
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, China.,Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Tian Zhou
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, China.,Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Targeting Nrf2 may reverse the drug resistance in ovarian cancer. Cancer Cell Int 2021; 21:116. [PMID: 33596893 PMCID: PMC7890806 DOI: 10.1186/s12935-021-01822-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/06/2021] [Indexed: 12/11/2022] Open
Abstract
Background Acquired resistance to therapeutic drugs has become an important issue in treating ovarian cancer. Studies have shown that the prevalent chemotherapy resistance (cisplatin, paclitaxel etc.) for ovarian cancer occurs partly because of decreased production of reactive oxygen species within the mitochondria of ovarian cancer cells. Main Body Nuclear erythroid-related factor-2 (Nrf2) mainly controls the regulation of transcription of genes through the Keap1-Nrf2-ARE signaling pathway and protects cells by fighting oxidative stress and defending against harmful substances. This protective effect is reflected in the promotion of tumor cell growth and their resistance to chemotherapy drugs. Therefore, inhibition of the Nrf2 pathway may reverse drug resistance. In this review, we describe the functions of Nrf2 in drug resistance based on Nrf2-associated signaling pathways determined in previous studies. Conclusions Further studies on the relevant mechanisms of Nrf2 may help improve the outcomes of ovarian cancer therapy.
Collapse
|
10
|
Wang J, Xiao M, Wang J, Wang S, Zhang J, Guo Y, Tang Y, Gu J. NRF2-Related Epigenetic Modifications in Cardiac and Vascular Complications of Diabetes Mellitus. Front Endocrinol (Lausanne) 2021; 12:598005. [PMID: 34248833 PMCID: PMC8269153 DOI: 10.3389/fendo.2021.598005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) is a highly prevalent chronic disease that is accompanied with serious complications, especially cardiac and vascular complications. Thus, there is an urgent need to identify new strategies to treat diabetic cardiac and vascular complications. Nuclear factor erythroid 2-related factor 2 (NRF2) has been verified as a crucial target for the prevention and treatment of diabetic complications. The function of NRF2 in the treatment of diabetic complications has been widely reported, but the role of NRF2-related epigenetic modifications remains unclear. The purpose of this review is to summarize the recent advances in targeting NRF2-related epigenetic modifications in the treatment of cardiac and vascular complications associated with DM. We also discuss agonists that could potentially regulate NRF2-associated epigenetic mechanisms. This review provides a better understanding of strategies to target NRF2 to protect against DM-related cardiac and vascular complications.
Collapse
Affiliation(s)
- Jie Wang
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengjie Xiao
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shudong Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Jingjing Zhang
- Department of Cardiology, The First Hospital of China Medical University, and Department of Cardiology at the People’s Hospital of Liaoning Province, Shenyang, China
| | - Yuanfang Guo
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Junlian Gu
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Junlian Gu,
| |
Collapse
|
11
|
Nrf2 Inhibitor, Brusatol in Combination with Trastuzumab Exerts Synergistic Antitumor Activity in HER2-Positive Cancers by Inhibiting Nrf2/HO-1 and HER2-AKT/ERK1/2 Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9867595. [PMID: 32765809 PMCID: PMC7387975 DOI: 10.1155/2020/9867595] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/18/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
The HER2-targeting antibody trastuzumab has shown effectiveness in treating HER2-positive breast and gastric cancers; however, its responses are limited. Currently, Nrf2 has been deemed as a key transcription factor in promoting cancer progression and resistance by crosstalk with other proliferative signaling pathways. Brusatol as a novel Nrf2 inhibitor has been deemed as an efficacious and safe drug candidate in cancer therapy. In this study, we firstly reported that brusatol exerted the growth-inhibitory effects on HER2-positive cancer cells by regressing Nrf2/HO-1 and HER2-AKT/ERK1/2 signaling pathways in these cells. More importantly, we found that brusatol synergistically enhanced the antitumor activity of trastuzumab against HER2-positive SK-OV-3 and BT-474 cells, which may be attributed to the inhibition of Nrf2/HO-1 and HER2-AKT/ERK1/2 signaling pathways. Furthermore, the synergistic effects were also observed in BT-474 and SK-OV-3 tumor xenografts. In addition, our results showed that trastuzumab markedly enhanced brusatol-induced ROS accumulation and apoptosis level, which could further explain the synergistic effects. To conclude, the study provided a new insight on exploring Nrf2 inhibition in combination with HER2-targeted trastuzumab as a potential clinical treatment regimen in treating HER2-positive cancers.
Collapse
|
12
|
de Falco B, Petridis A, Paramasivan P, Troise AD, Scaloni A, Deeni Y, Stephens WE, Fiore A. Reducing toxic reactive carbonyl species in e-cigarette emissions: testing a harm-reduction strategy based on dicarbonyl trapping. RSC Adv 2020; 10:21535-21544. [PMID: 35518766 PMCID: PMC9054509 DOI: 10.1039/d0ra02138e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Reducing the concentration of reactive carbonyl species (RCS) in e-cigarette emissions represents a major goal to control their potentially harmful effects. Here, we adopted a novel strategy of trapping carbonyls present in e-cigarette emissions by adding polyphenols in e-liquid formulations. Our work showed that the addition of gallic acid, hydroxytyrosol and epigallocatechin gallate reduced the levels of carbonyls formed in the aerosols of vaped e-cigarettes, including formaldehyde, methylglyoxal and glyoxal. Liquid chromatography mass spectrometry analysis highlighted the formation of covalent adducts between aromatic rings and dicarbonyls in both e-liquids and vaped samples, suggesting that dicarbonyls were formed in the e-liquids as degradation products of propylene glycol and glycerol before vaping. Short-term cytotoxic analysis on two lung cellular models showed that dicarbonyl-polyphenol adducts are not cytotoxic, even though carbonyl trapping did not improve cell viability. Our work sheds lights on the ability of polyphenols to trap RCS in high carbonyl e-cigarette emissions, suggesting their potential value in commercial e-liquid formulations.
Collapse
Affiliation(s)
- Bruna de Falco
- Division of Engineering and Food Science, School of Applied Science, University of Abertay Bell Street Dundee DD1 1HG UK +44 (0) 1382 308043
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technology Division, School of Pharmacy, University of Nottingham Nottingham NG7 2RD UK
| | - Antonios Petridis
- Division of Engineering and Food Science, School of Applied Science, University of Abertay Bell Street Dundee DD1 1HG UK +44 (0) 1382 308043
- School of Earth & Environmental Sciences, University of St Andrews Irvine Building, North Street, St Andrews, Fife KY16 9AL UK +44 (0) 1334 463947
| | - Poornima Paramasivan
- Division of Health Sciences, School of Applied Science, University of Abertay Bell Street Dundee DD1 1HG UK
| | - Antonio Dario Troise
- Department of Agricultural Sciences, University of Naples II Portici 80055 Italy
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council 80147 Naples Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council 80147 Naples Italy
| | - Yusuf Deeni
- Division of Health Sciences, School of Applied Science, University of Abertay Bell Street Dundee DD1 1HG UK
| | - W Edryd Stephens
- School of Earth & Environmental Sciences, University of St Andrews Irvine Building, North Street, St Andrews, Fife KY16 9AL UK +44 (0) 1334 463947
| | - Alberto Fiore
- Division of Engineering and Food Science, School of Applied Science, University of Abertay Bell Street Dundee DD1 1HG UK +44 (0) 1382 308043
| |
Collapse
|
13
|
Paramasivan P, Kankia IH, Langdon SP, Deeni YY. Emerging role of nuclear factor erythroid 2-related factor 2 in the mechanism of action and resistance to anticancer therapies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:490-515. [PMID: 35582567 PMCID: PMC8992506 DOI: 10.20517/cdr.2019.57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/12/2019] [Accepted: 08/26/2019] [Indexed: 04/28/2023]
Abstract
Nuclear factor E2-related factor 2 (NRF2), a transcription factor, is a master regulator of an array of genes related to oxidative and electrophilic stress that promote and maintain redox homeostasis. NRF2 function is well studied in in vitro, animal and general physiology models. However, emerging data has uncovered novel functionality of this transcription factor in human diseases such as cancer, autism, anxiety disorders and diabetes. A key finding in these emerging roles has been its constitutive upregulation in multiple cancers promoting pro-survival phenotypes. The survivability pathways in these studies were mostly explained by classical NRF2 activation involving KEAP-1 relief and transcriptional induction of reactive oxygen species (ROS) neutralizing and cytoprotective drug-metabolizing enzymes (phase I, II, III and 0). Further, NRF2 status and activation is associated with lowered cancer therapeutic efficacy and the eventual emergence of therapeutic resistance. Interestingly, we and others have provided further evidence of direct NRF2 regulation of anticancer drug targets like receptor tyrosine kinases and DNA damage and repair proteins and kinases with implications for therapy outcome. This novel finding demonstrates a renewed role of NRF2 as a key modulatory factor informing anticancer therapeutic outcomes, which extends beyond its described classical role as a ROS regulator. This review will provide a knowledge base for these emerging roles of NRF2 in anticancer therapies involving feedback and feed forward models and will consolidate and present such findings in a systematic manner. This places NRF2 as a key determinant of action, effectiveness and resistance to anticancer therapy.
Collapse
Affiliation(s)
- Poornima Paramasivan
- Division of Science, School of Applied Sciences, Abertay University, Dundee DD1 1HG, United Kingdom
| | - Ibrahim H. Kankia
- Division of Science, School of Applied Sciences, Abertay University, Dundee DD1 1HG, United Kingdom
- Department of Biochemistry, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University, Katsina PMB 2218, Nigeria
| | - Simon P. Langdon
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, United Kingdom
| | - Yusuf Y. Deeni
- Division of Science, School of Applied Sciences, Abertay University, Dundee DD1 1HG, United Kingdom
- Correspondence Address: Prof. Yusuf Y Deeni, Division of Science, School of Applied Sciences, Abertay University, Dundee DD1 1HG, United Kingdom. E-mail:
| |
Collapse
|
14
|
Harris FR, Zhang P, Yang L, Hou X, Leventakos K, Weroha SJ, Vasmatzis G, Kovtun IV. Targeting HER2 in patient-derived xenograft ovarian cancer models sensitizes tumors to chemotherapy. Mol Oncol 2018; 13:132-152. [PMID: 30499260 PMCID: PMC6360362 DOI: 10.1002/1878-0261.12414] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/22/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy. About 75% of ovarian cancer patients relapse and/or develop chemo‐resistant disease after initial response to standard‐of‐care treatment with platinum‐based therapies. HER2 amplifications and overexpression in ovarian cancer are reported to vary, and responses to HER2 inhibitors have been poor. Next generation sequencing technologies in conjunction with testing using patient‐derived xenografts (PDX) allow validation of personalized treatments. Using a whole‐genome mate‐pair next generation sequencing (MPseq) protocol, we identified several high grade serous ovarian cancers (HGS‐OC) with DNA alterations in genes encoding members of the ERBB2 pathway. The efficiency of anti‐HER2 therapy was tested in three different PDX lines with the identified alterations and high levels of HER2 protein expression. Treatment responses to pertuzumab or pertuzumab/trastuzumab were compared in each PDX line WITH standard carboplatin and paclitaxel combination treatment. In all three PDX models, HER2‐targeted therapy resulted in significant inhibition of tumor growth compared with untreated controls. However, the responses in each case were inferior to those to chemotherapy, even for chemo‐resistant lines. When chemotherapy and HER2‐targeted therapy were administered together, a significant regression of tumor was observed after 6 weeks of treatment compared with chemotherapy alone. Post‐treatment analysis of these tissues revealed that inhibition of the ERBB2 pathway occurred at the level of phosphorylation and expression of downstream targets. In conclusion, while targeting of presumably activated ERBB2 pathway alone in HGS‐OC results in a modest treatment benefit, a combination therapy including both chemotherapy drugs and HER2 inhibitors provides a far better response. Further studies are needed to address development of recurrence and sensitivity of recurrent disease to HER2‐targeted therapy.
Collapse
Affiliation(s)
- Faye R Harris
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Piyan Zhang
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lin Yang
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Xiaonan Hou
- Departments of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | | | - Saravut J Weroha
- Departments of Medical Oncology, Mayo Clinic, Rochester, MN, USA.,Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - George Vasmatzis
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Irina V Kovtun
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
Yang Y, Tian Z, Ding Y, Li X, Zhang Z, Yang L, Zhao F, Ren F, Guo R. EGFR-Targeted Immunotoxin Exerts Antitumor Effects on Esophageal Cancers by Increasing ROS Accumulation and Inducing Apoptosis via Inhibition of the Nrf2-Keap1 Pathway. J Immunol Res 2018; 2018:1090287. [PMID: 30596104 PMCID: PMC6286775 DOI: 10.1155/2018/1090287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/20/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022] Open
Abstract
Previously, we developed a novel EGFR-targeted antibody (denoted as Pan), which has superior antitumor activity against EGFR-overexpressed tumors. However, it shows marginal effect on the growth of esophageal cancers. Therefore, the variable region of Pan was fused to a fragment of Pseudomonas exotoxin A (PE38) to create the immunotoxin, denoted as Ptoxin (PT). Results indicated that PT shows more effective antitumor activity as compared with Pan both on EGFR-overexpressed KYSE-450 and KYSE-150 esophageal cancer cells, especially on KYSE-450 cells. Moreover, treatment of PT induces regression of KYSE-450 tumor xenografts in nude mice. Furthermore, we investigated the potential mechanism involved in the enhanced antitumor effects of PT. Data showed that PT was more potent in reducing the phosphorylation of EGFR and ERK1/2. More importantly, we for the first time found that PT was more effective than Pan in inducing ROS accumulation by suppression of the Nrf2-Keap1 antioxidant pathway, and then induced apoptosis in KYSE-450 esophageal cancer cells, which may partly explain the more sensitive response of KYSE-450 to PT treatment. To conclude, our study provides a promising therapeutic approach for immunotoxin-based esophageal cancer treatment.
Collapse
Affiliation(s)
- Yun Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai, China
| | - Ziyin Tian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yanke Ding
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiaojing Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ziheng Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Liu Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Fangyu Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Feng Ren
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Rui Guo
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
16
|
Nami B, Maadi H, Wang Z. Mechanisms Underlying the Action and Synergism of Trastuzumab and Pertuzumab in Targeting HER2-Positive Breast Cancer. Cancers (Basel) 2018; 10:cancers10100342. [PMID: 30241301 PMCID: PMC6210751 DOI: 10.3390/cancers10100342] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023] Open
Abstract
Human epidermal growth factor receptor (HER) 2 (HER2) is overexpressed in 20⁻30% of breast cancers. HER2 is a preferred target for treating HER2-positive breast cancer. Trastuzumab and pertuzumab are two HER2-targeted monoclonal antibodies approved by the Food and Drug Administration (FDA) to use as adjuvant therapy in combination with docetaxel to treat metastatic HER2-positive breast cancer. Adding the monoclonal antibodies to treatment regimen has changed the paradigm for treatment of HER2-positive breast cancer. Despite improving outcomes, the percentage of the patients who benefit from the treatment is still low. Continued research and development of novel agents and strategies of drug combinations is needed. A thorough understanding of the molecular mechanisms underlying the action and synergism of trastuzumab and pertuzumab is essential for moving forward to achieve high efficacy in treating HER2-positive breast cancer. This review examined and analyzed findings and hypotheses regarding the action and synergism of trastuzumab and pertuzumab and proposed a model of synergism based on available information.
Collapse
Affiliation(s)
- Babak Nami
- Signal Transduction Research Group, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Hamid Maadi
- Signal Transduction Research Group, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Signal Transduction Research Group, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
17
|
Sun Y, Yao Z, Zhao Z, Xiao H, Xia M, Zhu X, Jiang X, Sun C. Natural killer cells inhibit metastasis of ovarian carcinoma cells and show therapeutic effects in a murine model of ovarian cancer. Exp Ther Med 2018; 16:1071-1078. [PMID: 30116358 PMCID: PMC6090205 DOI: 10.3892/etm.2018.6342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 11/17/2017] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer has the highest mortality rate and is the most common of all gynecologic malignancies. Novel treatments for ovarian cancer are urgently required to improve outcomes and the overall survival of patients. The present study investigated whether immunotherapy with natural killer (NK) cells affected the survival of mice with ovarian cancer. Results analysis identified adjunctive NK cells as a potential therapeutic method in ovarian cancer. Patient-derived ovarian cells were isolated, cultured and subsequently injected subcutaneously into immune deficient BALB/c-nude mice. Human NK cells were isolated from peripheral blood mononuclear cells and cultured for expansion in vitro. The present results demonstrated that ovarian cells in BALB/c-nude mice did not induce spontaneous ovarian cancer cell metastasis in the NK-treated group. In addition, NK cells activated immune cells in the immune system, which resulted in inhibition of ovarian tumor growth in vitro and in a murine xenograft model of ovarian cancer. The data also indicated that cytotoxic activity of NK cells prevented migration and invasion of ovarian cancer cells, which contributed to prevention of systemic metastasis and suggested that NK cells could be effective cells for therapy against ovarian cancer. Furthermore, NK cells induced apoptosis and increased the number of cluster of differentiation (CD)4+, CD8+ as well as cytotoxic T lymphocyte responses by intravenous injection in a murine xenograft model of ovarian cancer. These results suggested that NK cells inhibited the systemic metastasis for ovarian cancer cells. In conclusion, the present study suggested that NK cell immunotherapy inhibited systemic metastasis of ovarian cancer cells and improved the survival rate of mice. Sufficient supplementation of NK cells may serve as a promising immunotherapeutic strategy for ovarian cancer.
Collapse
Affiliation(s)
- Yanming Sun
- Department of Interventional Radiology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Zhitao Yao
- Department of Nuclear Medicine, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Zhihua Zhao
- Department of Nuclear Medicine, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Haifeng Xiao
- Department of Medical Oncology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Mengting Xia
- Department of Gynecology, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaojun Zhu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xuelu Jiang
- Department of Gynecology, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Chuntao Sun
- Department of Interventional Radiology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
18
|
Pirpour Tazehkand A, Akbarzadeh M, Velaie K, Sadeghi MR, Samadi N. The role of Her2-Nrf2 axis in induction of oxaliplatin resistance in colon cancer cells. Biomed Pharmacother 2018; 103:755-766. [PMID: 29684854 DOI: 10.1016/j.biopha.2018.04.105] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/21/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in promoting chemoresistance by regulation of antioxidants and detoxification enzymes. Her2 is a member of tyrosine kinase receptor family with a key function in resistance of cancer cells to chemotherapeutics. The aim of this study was to investigate the possible cross talk between Nrf2 and Her2 mediated signaling pathways in development of oxaliplatin resistance in colon cancer cells. We first generated oxaliplatin-resistant LS174T and SW480 colon cancer cells with different Her2 expression levels by employing IC50 concentrations followed by a resting period. We evaluated the viability and apoptosis of the cells by MTT and flow cytometry assays, respectively. Nrf2 and Her2 gene expression levels were examined by qRT-PCR. The morphology analysis and combination index calculation were performed using the ImagJ and CompuSyn softwares, respectively. Development of resistant cells revealed a marked increase in half maximal inhibitory concentration (IC50) value from 3.95 ± 0.92 μM to 29.27 ± 3.13 μM in SW480 cells and 377 ± 46 nM to 9.59 ± 0.76 μM in LS174T cells with a significant change in morphology of the cells from elongated to small round shape (p < 0.05). Her2 expression level was increased in both types of resistant cells, but the Nrf2 expression was increased in LS174T resistant (LS174T/Res) cells and decreased in SW480/Res cells which were consistent with the level of resistance in these cells (25 fold increase in IC50 value in LS174T/Res cells versus 7 fold increase in this value in SW480/Res cells). Inhibition of either Nrf2 or Her2 alone and in combination caused a significant increase in oxaliplatin-induced cytotoxicity and apoptosis with maximum effects in SW480/Res cells with low Her2 and Nrf2 expression levels. Altogether, our results suggest that inhibition of Nrf2 signaling in colon cancer patients with Her2 overexpression can be considered as an important strategy to overcome oxaliplatin resistance.
Collapse
Affiliation(s)
- Abbas Pirpour Tazehkand
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Golgasht Street, Imam Reza Hospital, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, Iran; Students' Research Committee, Golgasht Street, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Akbarzadeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Golbad Street, Shahid Madani Hospital, Tabriz, Iran.
| | - Kobra Velaie
- Department of Anatomical Science, Faculty of Medicine, Golgasht Street, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Golgasht Street, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nasser Samadi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Golgasht Street, Imam Reza Hospital, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, Iran; Immunology Research Center, Golgasht Street, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
NRF2 Regulates HER1 Signaling Pathway to Modulate the Sensitivity of Ovarian Cancer Cells to Lapatinib and Erlotinib. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1864578. [PMID: 29410730 PMCID: PMC5749283 DOI: 10.1155/2017/1864578] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 09/09/2017] [Accepted: 10/16/2017] [Indexed: 12/24/2022]
Abstract
NF-E2-related factor 2 (NRF2) regulates the transcription of a battery of metabolic and cytoprotective genes. NRF2 and epidermal growth factor receptors (EGFRs/HERs) are regulators of cellular proliferation and determinants of cancer initiation and progression. NRF2 and HERs confer cancers with resistance to several therapeutic agents. Nevertheless, there is limited understanding of the regulation of HER expression and activation and the link between NRF2 and HER signalling pathways. We show that NRF2 regulates both basal and inducible expression of HER1, as treatment of ovarian cancer cells (PEO1, OVCAR3, and SKOV3) with NRF2 activator tBHQ inducing HER1, while inhibition of NRF2 by siRNA knockdown or with retinoid represses HER1. Furthermore, treatment of cells with tBHQ increased total and phosphorylated NRF2, HER1, and AKT levels and compromised the cytotoxic effect of lapatinib or erlotinib. Treatment with siRNA or retinoid antagonised the effect of tBHQ on NRF2 and HER1 levels and enhanced the sensitivity of ovarian cancer cells to lapatinib or erlotinib. Pharmacological or genetic inhibition of NRF2 and/or treatment with lapatinib or erlotinib elevated cellular ROS and depleted glutathione. This extends the understanding of NRF2 and its regulation of HER family receptors and opens a strategic target for improving cancer therapy.
Collapse
|
20
|
Zhang L, Wang H. FTY720 inhibits the Nrf2/ARE pathway in human glioblastoma cell lines and sensitizes glioblastoma cells to temozolomide. Pharmacol Rep 2017; 69:1186-1193. [DOI: 10.1016/j.pharep.2017.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/16/2017] [Accepted: 07/03/2017] [Indexed: 12/30/2022]
|
21
|
Reactive Oxygen Species-Mediated Mechanisms of Action of Targeted Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017. [PMID: 28698765 DOI: 10.1155/2017/1485283,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Targeted cancer therapies, involving tyrosine kinase inhibitors and monoclonal antibodies, for example, have recently led to substantial prolongation of survival in many metastatic cancers. Compared with traditional chemotherapy and radiotherapy, where reactive oxygen species (ROS) have been directly linked to the mediation of cytotoxic effects and adverse events, the field of oxidative stress regulation is still emerging in targeted cancer therapies. Here, we provide a comprehensive review regarding the current evidence of ROS-mediated effects of antibodies and tyrosine kinase inhibitors, use of which has been indicated in the treatment of solid malignancies and lymphomas. It can be concluded that there is rapidly emerging evidence of ROS-mediated effects of some of these compounds, which is also relevant in the context of drug resistance and how to overcome it.
Collapse
|
22
|
Teppo HR, Soini Y, Karihtala P. Reactive Oxygen Species-Mediated Mechanisms of Action of Targeted Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1485283. [PMID: 28698765 PMCID: PMC5494102 DOI: 10.1155/2017/1485283] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/15/2017] [Accepted: 05/21/2017] [Indexed: 01/21/2023]
Abstract
Targeted cancer therapies, involving tyrosine kinase inhibitors and monoclonal antibodies, for example, have recently led to substantial prolongation of survival in many metastatic cancers. Compared with traditional chemotherapy and radiotherapy, where reactive oxygen species (ROS) have been directly linked to the mediation of cytotoxic effects and adverse events, the field of oxidative stress regulation is still emerging in targeted cancer therapies. Here, we provide a comprehensive review regarding the current evidence of ROS-mediated effects of antibodies and tyrosine kinase inhibitors, use of which has been indicated in the treatment of solid malignancies and lymphomas. It can be concluded that there is rapidly emerging evidence of ROS-mediated effects of some of these compounds, which is also relevant in the context of drug resistance and how to overcome it.
Collapse
Affiliation(s)
- Hanna-Riikka Teppo
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Ylermi Soini
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Peeter Karihtala
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
23
|
|
24
|
Yang Y, Guo R, Tian X, Zhang Z, Zhang P, Li C, Feng Z. Synergistic anti-tumor activity of Nimotuzumab in combination with Trastuzumab in HER2-positive breast cancer. Biochem Biophys Res Commun 2017; 489:523-527. [PMID: 28579432 DOI: 10.1016/j.bbrc.2017.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022]
Abstract
Breast cancer is characterized with poor prognosis and high recurrence. HER2 is highly expressed in breast cancer and is a target for cancer therapy and prevention. Here, we investigated the anti-tumor activity of the combination of an HER2 inhibitor, trastuzumab with an EGFR-inhibitor, nimotuzumab in HER2-overexpressing breast cancer. Our data showed that a greater anti-tumor activity from the combination of trastuzumab and nimotuzumab than any alone usage of above antibody both in vitro and in vivo. Based on the combination index value, our data demonstrated that nimotuzumab synergistically enhanced trastuzumab-induced cell growth inhibition. Furthermore, we investigated the possible mechanism of this synergistic efficacy induced by trastuzumab plus nimotuzumab. Data showed that the combination was more potent in reducing the phosphorylation of HER2 and ERK1/2. We also found that the synergistic inhibition was partly attributed to the ROS generation and repression of NRF2 pathway that is known to promote cell growth. These results support the clinical development of this two-drug regimen for the treatment of HER2-amplified breast cancer.
Collapse
Affiliation(s)
- Yun Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Rui Guo
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Xiaoting Tian
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Ziheng Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Pengfei Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Changzheng Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
25
|
Strange Bedfellows: Nuclear Factor, Erythroid 2-Like 2 (Nrf2) and Hypoxia-Inducible Factor 1 (HIF-1) in Tumor Hypoxia. Antioxidants (Basel) 2017; 6:antiox6020027. [PMID: 28383481 PMCID: PMC5488007 DOI: 10.3390/antiox6020027] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022] Open
Abstract
The importance of the tumor microenvironment for cancer progression and therapeutic resistance is an emerging focus of cancer biology. Hypoxia, or low oxygen, is a hallmark of solid tumors that promotes metastasis and represents a significant obstacle to successful cancer therapy. In response to hypoxia, cancer cells activate a transcriptional program that allows them to survive and thrive in this harsh microenvironment. Hypoxia-inducible factor 1 (HIF-1) is considered the main effector of the cellular response to hypoxia, stimulating the transcription of genes involved in promoting angiogenesis and altering cellular metabolism. However, growing evidence suggests that the cellular response to hypoxia is much more complex, involving coordinated signaling through stress response pathways. One key signaling molecule that is activated in response to hypoxia is nuclear factor, erythroid 2 like-2 (Nrf2). Nrf2 is a transcription factor that controls the expression of antioxidant-response genes, allowing the cell to regulate reactive oxygen species. Nrf2 is also activated in various cancer types due to genetic and epigenetic alterations, and is associated with poor survival and resistance to therapy. Emerging evidence suggests that coordinated signaling through Nrf2 and HIF-1 is critical for tumor survival and progression. In this review, we discuss the distinct and overlapping roles of HIF-1 and Nrf2 in the cellular response to hypoxia, with a focus on how targeting Nrf2 could provide novel chemotherapeutic modalities for treating solid tumors.
Collapse
|