1
|
Hassan A, Bagu ET, Patten SA, Molidperee S, Parent S, Barchi S, Villemure I, Tremblay A, Moldovan F. Differential Regulation of POC5 by ERα in Human Normal and Scoliotic Cells. Genes (Basel) 2023; 14:genes14051111. [PMID: 37239471 DOI: 10.3390/genes14051111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a complex three-dimensional spinal deformity. The incidence of AIS in females is 8.4 times higher than in males. Several hypotheses on the role of estrogen have been postulated for the progression of AIS. Recently, Centriolar protein gene POC5 (POC5) was identified as a causative gene of AIS. POC5 is a centriolar protein that is important for cell cycle progression and centriole elongation. However, the hormonal regulation of POC5 remains to be determined. Here, we identify POC5 as an estrogen-responsive gene under the regulation of estrogen receptor ERα in normal osteoblasts (NOBs) and other ERα-positive cells. Using promoter activity, gene, and protein expression assays, we found that the POC5 gene was upregulated by the treatment of osteoblasts with estradiol (E2) through direct genomic signaling. We observed different effects of E2 in NOBs and mutant POC5A429V AIS osteoblasts. Using promoter assays, we identified an estrogen response element (ERE) in the proximal promoter of POC5, which conferred estrogen responsiveness through ERα. The recruitment of ERα to the ERE of the POC5 promoter was also potentiated by estrogen. Collectively, these findings suggest that estrogen is an etiological factor in scoliosis through the deregulation of POC5.
Collapse
Affiliation(s)
- Amani Hassan
- Research Center CHU Sainte-Justine, 3175 Chemin de la Cote-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Edward T Bagu
- Department of Basic Biomedical Sciences, Sanford Medical School, University of South Dakota, Vermillion, SD 57069, USA
| | - Shunmoogum A Patten
- INRS Center Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Sirinart Molidperee
- Research Center CHU Sainte-Justine, 3175 Chemin de la Cote-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Stefan Parent
- Research Center CHU Sainte-Justine, 3175 Chemin de la Cote-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Soraya Barchi
- Research Center CHU Sainte-Justine, 3175 Chemin de la Cote-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Isabelle Villemure
- Department of Mechanical Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, QC H3T 1J4, Canada
| | - André Tremblay
- Research Center CHU Sainte-Justine, 3175 Chemin de la Cote-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
- Department of Obstetrics & Gynecology, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Florina Moldovan
- Research Center CHU Sainte-Justine, 3175 Chemin de la Cote-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, 2900 Edouard Monpetit Boulevard, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
2
|
The effects of female sexual hormones on the endothelial glycocalyx. CURRENT TOPICS IN MEMBRANES 2023; 91:89-137. [PMID: 37080682 DOI: 10.1016/bs.ctm.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The glycocalyx is a layer composed of carbohydrate side chains bound to core proteins that lines the vascular endothelium. The integrity of the glycocalyx is essential for endothelial cells' performance and vascular homeostasis. The neuroendocrine and immune systems influence the composition, maintenance, activity and degradation of the endothelial glycocalyx. The female organism has unique characteristics, and estrogen and progesterone, the main female hormones are essential to the development and physiology of the reproductive system and to the ability to develop a fetus. Female sex hormones also exert a wide variety of effects on other organs, including the vascular endothelium. They upregulate nitric oxide synthase expression and activity, decrease oxidative stress, increase vasodilation, and protect from vascular injury. This review will discuss how female hormones and pregnancy, which prompts to high levels of estrogen and progesterone, modulate the endothelial glycocalyx. Diseases prevalent in women that alter the glycocalyx, and therapeutic forms to prevent glycocalyx degradation and potential treatments that can reconstitute its structure and function will also be discussed.
Collapse
|
3
|
Gagnon J, Caron V, Gyenizse L, Tremblay A. Atypic SUMOylation of Nor1/NR4A3 regulates neural cell viability and redox sensitivity. FASEB J 2021; 35:e21827. [PMID: 34383980 DOI: 10.1096/fj.202100395r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/30/2021] [Accepted: 07/15/2021] [Indexed: 11/11/2022]
Abstract
Neuron-derived orphan receptor 1, NR4A3 (Nor1)/NR4A3 is an orphan nuclear receptor involved in the transcriptional control of developmental and neurological functions. Oxidative stress-induced conditions are primarily associated with neurological defects in humans, yet the impact on Nor1-mediated transcription of neuronal genes remains with unknown mechanism. Here, we demonstrate that Nor1 is a non-conventional target of SUMO2/3 conjugation at Lys-137 contained in an atypic ψKxSP motif referred to as the pSuM. Nor1 pSuM SUMOylation differs from the canonical process with the obligate phosphorylation of Ser-139 by Ras signaling to create the required negatively charged interface for SUMOylation. Additional phosphorylation at sites flanking the pSuM is also mediated by the coordinated action of protein kinase casein kinase 2 to function as a small ubiquitin-like modifier enhancer, regulating Nor1-mediated transcription and proteasomal degradation. Nor1 responsive genes involved in cell proliferation and metabolism, such as activating transcription factor 3, cyclin D1, CASP8 and FADD-like apoptosis regulator, and enolase 3 were upregulated in response to pSuM disruption in mouse HT-22 hippocampal neuronal cells and human neuroblastoma SH-SY5Y cells. We also identified critical antioxidant genes, such as catalase, superoxide dismutase 1, and microsomal glutathione S-transferase 2, as responsive targets of Nor1 under pSuM regulation. Nor1 SUMOylation impaired gene transcription through less effective Nor1 chromatin binding and reduced enrichment of histone H3K27ac marks to gene promoters. These effects resulted in decreased neuronal cell growth, increased apoptosis, and reduced survival to oxidative stress damage, underlying the role of pSuM-modified Nor1 in redox homeostasis. Our findings uncover a hierarchical post-translational mechanism that dictates Nor1 non-canonical SUMOylation, disrupting Nor1 transcriptional competence, and neuroprotective redox sensitivity.
Collapse
Affiliation(s)
- Jonathan Gagnon
- Research Center, CHU Sainte-Justine, Montréal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montréal, Québec, Canada
| | - Véronique Caron
- Research Center, CHU Sainte-Justine, Montréal, Québec, Canada
| | - Laurent Gyenizse
- Research Center, CHU Sainte-Justine, Montréal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montréal, Québec, Canada
| | - André Tremblay
- Research Center, CHU Sainte-Justine, Montréal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montréal, Québec, Canada.,Centre de Recherche en Reproduction et Fertilité, University of Montreal, Saint-Hyacinthe, Québec, Canada.,Department of Obstetrics & Gynecology, Faculty of Medicine, University of Montreal, Montréal, Québec, Canada
| |
Collapse
|
4
|
Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. J Control Release 2021; 333:188-245. [DOI: 10.1016/j.jconrel.2021.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022]
|
5
|
Piperigkou Z, Kyriakopoulou K, Koutsakis C, Mastronikolis S, Karamanos NK. Key Matrix Remodeling Enzymes: Functions and Targeting in Cancer. Cancers (Basel) 2021; 13:1441. [PMID: 33809973 PMCID: PMC8005147 DOI: 10.3390/cancers13061441] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue functionality and integrity demand continuous changes in distribution of major components in the extracellular matrices (ECMs) under normal conditions aiming tissue homeostasis. Major matrix degrading proteolytic enzymes are matrix metalloproteinases (MMPs), plasminogen activators, atypical proteases such as intracellular cathepsins and glycolytic enzymes including heparanase and hyaluronidases. Matrix proteases evoke epithelial-to-mesenchymal transition (EMT) and regulate ECM turnover under normal procedures as well as cancer cell phenotype, motility, invasion, autophagy, angiogenesis and exosome formation through vital signaling cascades. ECM remodeling is also achieved by glycolytic enzymes that are essential for cancer cell survival, proliferation and tumor progression. In this article, the types of major matrix remodeling enzymes, their effects in cancer initiation, propagation and progression as well as their pharmacological targeting and ongoing clinical trials are presented and critically discussed.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 265 04 Patras, Greece
| | - Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
| | | | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 265 04 Patras, Greece
| |
Collapse
|
6
|
Yin Q, Yang X, Li L, Xu T, Zhou W, Gu W, Ma F, Yang R. The Association Between Breast Cancer and Blood-Based Methylation of S100P and HYAL2 in the Chinese Population. Front Genet 2020; 11:977. [PMID: 33005177 PMCID: PMC7485126 DOI: 10.3389/fgene.2020.00977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/03/2020] [Indexed: 02/05/2023] Open
Abstract
Previous work has shown that DNA methylation in peripheral blood may be associated with malignancy; however, these studies have mainly been conducted within Caucasian populations. Here, we investigated the association between blood-based methylation of S100 calcium-binding protein P gene (S100P) and hyaluronoglucosaminidase 2 gene (HYAL2) and breast cancer (BC) via mass spectrometry in two independent case-control studies of the Chinese population with a total of 351 BC cases and 427 cancer-free female controls. In Study I, in which subjects had an average of 45 years, hypomethylation of S100P showed a protective effect for women ≤45 years (six out of nine CpG sites, p < 0.05) but not for women >45 years. In contrast, hypomethylation of HAYL2 was not correlated with BC in women ≤45 years but was a risk factor for women >45 years (three out of four CpG sites, p < 0.05). We proposed an age-dependent correlation between BC and methylation of S100P and HYAL2 and performed further validation in Study II with older subjects (average age = 52.5 years), where hypomethylation of both S100P and HYAL2 was a risk factor for BC (p < 0.05 for 10 CpG sites) as reported in Caucasians who develop BC around 55 years old. Together with the observation that Chinese cancer-free females having variant basal methylation levels comparing to Caucasians, we assumed that blood-based methylation might be modified by ethnic background, hormone status, and lifestyle. Here, we highlighted that the epigenetic biomarkers warrant validations when its application in variant ethnic groups is considered.
Collapse
Affiliation(s)
- Qiming Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaoqin Yang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lixi Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tian Xu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Wenjie Zhou
- Chengdu Shang Jin Nan Fu Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Wanjian Gu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rongxi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Dziobek K, Opławski M, Grabarek B, Zmarzły N, Kiełbasiński R, Leśniak E, Januszyk P, Januszyk K, Adwent I, Dąbruś D, Kieszkowski P, Kiełbasiński K, Kuś-Kierach A, Boroń D. Changes in Expression Pattern of SEMA3F Depending on Endometrial Cancer Grade - Pilot Study. Curr Pharm Biotechnol 2020; 20:727-732. [PMID: 31215376 PMCID: PMC7046987 DOI: 10.2174/1389201020666190619145655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/24/2019] [Accepted: 05/08/2019] [Indexed: 01/18/2023]
Abstract
Background: In the course of neoplastic diseases, a reduction in SEMA3F expression is observed, which translates into an increase in the proliferative and proangiogenic potential of cells forming the tumor and the surrounding microenvironment. Objective: The aim of this study was to determine the changes in SEMA3F level in endometrial cancer depending on its grade. Methods: The study material consisted of tissue samples: 15 without neoplastic changes (control group) and 45 with endometrial cancer (G1, 17; G2, 15; G3, 13; study group). SEMA3F expression was assessed using the immune-histochemical method. Results: The expression of SEMA3F was observed in the control group (Me = 159.38) and in the study group (G1, Me = 121.32; G2, Me = 0; G3, Me = 130.37). Differences between each grade and control and between individual grades were statistically significant. There were no significant correlations between SEMA3F expression and weight and Body Mass Index (BMI). The reduced SEMA3F expression in tumor tissue compared to healthy tissue indicates that this protein plays key roles in proliferation and angiogenesis. Conclusion: We found that depending on the severity of the disease, cancer adopts different survival strategies, where SEMA3F plays an important role. As a molecular marker, SEMA3F is not sensitive to weight and BMI.
Collapse
Affiliation(s)
- Konrad Dziobek
- Center of Oncology, M. Sklodowska-Curie Memorial Institute, Cracow Branch, Cracow, Poland
| | - Marcin Opławski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| | - Beniamin Grabarek
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Nikola Zmarzły
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Robert Kiełbasiński
- Department of Obstetrics and Gynaecology ward, Health Center in Mikolow, Mikolow, Poland
| | - Ewa Leśniak
- Department of Obstetrics and Gynaecology ward, Health Center in Mikolow, Mikolow, Poland
| | - Piotr Januszyk
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | - Krzysztof Januszyk
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | - Iwona Adwent
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | - Dariusz Dąbruś
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | | | | | - Agnieszka Kuś-Kierach
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | - Dariusz Boroń
- Center of Oncology, M. Sklodowska-Curie Memorial Institute, Cracow Branch, Cracow, Poland.,Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland.,Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland.,Department of Histology and Cell Pathology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland.,Katowice School of Technology, The University of Science and Art in Katowice, Katowice, Poland
| |
Collapse
|
8
|
Kieszkowski P, Dąbruś D, Grabarek BO, Boroń D. Differences in the Expression Pattern of mRNA Protein SEMA3F in Endometrial Cancer in vitro under Cisplatin Treatment. Curr Pharm Biotechnol 2020; 21:1119-1128. [PMID: 32297576 PMCID: PMC7536788 DOI: 10.2174/1389201021666200416102540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/04/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Semaphorin 3F (SEMA3F) plays a substantial role in carcinogenesis, because of its role in inducing angiogenesis, and creating a microenvironment for the developing tumor. OBJECTIVE The purpose of this work was to assess the impact of cisplatin, depending on the concentration and exposure time on the expression pattern of SEMA3F in an endometrial cancer cell line. MATERIALS AND METHODS Cultures of the Ishikawa endometrial cancer cells were incubated with cisplatin with the following concentrations: 2.5μM; 5μM; and 10μM and for the following periods of time: 12; 24; and 48 hours. Cells not incubated with the drug constituted the control in the experiment. To determine the effect of cisplatin on the expression of SEMA3F, the real-time quantitative reverse transcription reaction (RtqPCR; mRNA) was used, as well as the ELISA assay (protein). The statistical analysis was done with the admission of p<0.05. RESULTS The silencing of SEMA3F expression on the transcriptome and proteome levels in a culture unexposed to the effects of cisplatin in comparison to endometrial cancer cells under the influence of cisplatin (p<0.05) were noted. Along with an increase in the concentration of the drug used, the number of copies of the gene transcript, during the shortest incubation period had a gradual increase. Only for the highest concentration of the drug, substantial statistical differences in the expression of the SEMA3F protein between 24 and 48 hour incubation periods (p<0.05) were determined. CONCLUSION Using cisplatin in an endometrial cancer cell culture results in an increased expression of SEMA3F, which advantageously affects the normalization of the neoplastic angiogenic process and lowers the proliferation of the cells making up the mass of the tumor.
Collapse
Affiliation(s)
- Przemysław Kieszkowski
- Address correspondence to this author at the Voivodeship Specialist Hospital in Wloclawek, Wloclawek. Poland; E-mail:
| | | | | | | |
Collapse
|
9
|
Baker AEG, Bahlmann LC, Tam RY, Liu JC, Ganesh AN, Mitrousis N, Marcellus R, Spears M, Bartlett JMS, Cescon DW, Bader GD, Shoichet MS. Benchmarking to the Gold Standard: Hyaluronan-Oxime Hydrogels Recapitulate Xenograft Models with In Vitro Breast Cancer Spheroid Culture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901166. [PMID: 31322299 DOI: 10.1002/adma.201901166] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Many 3D in vitro models induce breast cancer spheroid formation; however, this alone does not recapitulate the complex in vivo phenotype. To effectively screen therapeutics, it is urgently needed to validate in vitro cancer spheroid models against the gold standard of xenografts. A new oxime-crosslinked hyaluronan (HA) hydrogel is designed, manipulating gelation rate and mechanical properties to grow breast cancer spheroids in 3D. This HA-oxime breast cancer model maintains the gene expression profile most similar to that of tumor xenografts based on a pan-cancer gene expression profile (comprising 730 genes) of three different human breast cancer subtypes compared to Matrigel or conventional 2D culture. Differences in gene expression between breast cancer cultures in HA-oxime versus Matrigel or 2D are confirmed for 12 canonical pathways by gene set variation analysis. Importantly, drug response is dependent on the culture method. Breast cancer cells respond better to the Rac inhibitor (EHT-1864) and the PI3K inhibitor (AZD6482) when cultured in HA-oxime versus Matrigel. This study demonstrates the superiority of an HA-based hydrogel as a platform for in vitro breast cancer culture of both primary, patient-derived cells and cell lines, and provides a hydrogel culture model that closely matches that in vivo.
Collapse
Affiliation(s)
- Alexander E G Baker
- The Donnelly Centre, University of Toronto, Toronto, 160 College St, Ontario, M5S 3E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Laura C Bahlmann
- The Donnelly Centre, University of Toronto, Toronto, 160 College St, Ontario, M5S 3E1, Canada
- Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Roger Y Tam
- The Donnelly Centre, University of Toronto, Toronto, 160 College St, Ontario, M5S 3E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Jeffrey C Liu
- The Donnelly Centre, University of Toronto, Toronto, 160 College St, Ontario, M5S 3E1, Canada
- Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Ahil N Ganesh
- The Donnelly Centre, University of Toronto, Toronto, 160 College St, Ontario, M5S 3E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Nikolaos Mitrousis
- The Donnelly Centre, University of Toronto, Toronto, 160 College St, Ontario, M5S 3E1, Canada
- Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Richard Marcellus
- Ontario Institute for Cancer Research, MaRS Centre, 661 University Avenue, Toronto, Ontario, M5G 0A3, Canada
| | - Melanie Spears
- Ontario Institute for Cancer Research, MaRS Centre, 661 University Avenue, Toronto, Ontario, M5G 0A3, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - John M S Bartlett
- Ontario Institute for Cancer Research, MaRS Centre, 661 University Avenue, Toronto, Ontario, M5G 0A3, Canada
| | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, 610 University Ave., Toronto, Ontario, M5G 2C1, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, 160 College St, Ontario, M5S 3E1, Canada
| | - Molly S Shoichet
- The Donnelly Centre, University of Toronto, Toronto, 160 College St, Ontario, M5S 3E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
10
|
Tumor-suppressive functions of 4-MU on breast cancer cells of different ER status: Regulation of hyaluronan/HAS2/CD44 and specific matrix effectors. Matrix Biol 2019; 78-79:118-138. [DOI: 10.1016/j.matbio.2018.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/16/2018] [Accepted: 04/11/2018] [Indexed: 12/18/2022]
|
11
|
Hassan A, Bagu ET, Levesque M, Patten SA, Benhadjeba S, Edjekouane L, Villemure I, Tremblay A, Moldovan F. The 17β-estradiol induced upregulation of the adhesion G-protein coupled receptor (ADGRG7) is modulated by ESRα and SP1 complex. Biol Open 2019; 8:bio037390. [PMID: 30598481 PMCID: PMC6361214 DOI: 10.1242/bio.037390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/29/2018] [Indexed: 12/26/2022] Open
Abstract
The physiological role and the regulation of ADGRG7 are not yet elucidated. The functional involvement of this receptor was linked with different physiological process such as reduced body weight, gastrointestinal function and recently, a gene variant in ADGRG7 was observed in patients with adolescent idiopathic scoliosis. Here, we identify the ADGRG7 as an estrogen-responsive gene under the regulation of estrogen receptor ERα in scoliotic osteoblasts and other cells lines. We found that ADGRG7 expression was upregulated in response to estrogen (E2) in adolescent idiopathic scoliosis (AIS) cells. ADGRG7 promoter studies indicate the presence of an ERα response half site in close vicinity of a specificity protein 1 (SP1) binding site. Mutation of the SP1 site completely abrogated the response to E2, indicating its essential requirement. ChIP confirmed the binding of SP1 and ERα to the ADGRG7 promoter. Our results identify the ADGRG7 gene as an estrogen-responsive gene under the control of ERα and SP1 tethered actions, suggesting a possible role of estrogens in the regulation of ADGRG7 This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Amani Hassan
- CHU Sainte Justine Research Center, Montréal H3T 1C5, Canada
| | - Edward T Bagu
- Department of Basic Biomedical Sciences, Sanford Medical School, University of South Dakota, Vermillion, SD 57069, USA
| | | | | | | | | | - Isabelle Villemure
- Department of Mechanical Engineering, Ecole Polytechnique de Montréal, Montréal H3T 1J4, Canada
| | - André Tremblay
- CHU Sainte Justine Research Center, Montréal H3T 1C5, Canada
| | - Florina Moldovan
- CHU Sainte Justine Research Center, Montréal H3T 1C5, Canada
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal H3C 3J7, Canada
| |
Collapse
|
12
|
Benhadjeba S, Edjekouane L, Sauvé K, Carmona E, Tremblay A. Feedback control of the CXCR7/CXCL11 chemokine axis by estrogen receptor α in ovarian cancer. Mol Oncol 2018; 12:1689-1705. [PMID: 30051594 PMCID: PMC6165996 DOI: 10.1002/1878-0261.12362] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/04/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is one of the most intractable diseases, exhibiting tremendous molecular heterogeneity and lacking reliable methods for screening, resulting in late diagnosis and widespread peritoneal dissemination. Menopausal estrogen replacement therapy is a well‐recognized risk factor for OC, but little is known about how estrogen might contribute to this disease at the cellular level. This study identifies chemokine receptor CXCR7/ACKR3 as an estrogen‐responsive gene, whose expression is markedly enhanced by estrogen through direct recruitment of ERα and transcriptional active histone modifications in OC cells. The gene encoding CXCR7 chemokine ligand I‐TAC/CXCL11 was also upregulated by estrogen, resulting in Ser‐118 phosphorylation, activation, and recruitment of estrogen receptor ERα at the CXCR7 promoter locus for positive feedback regulation. Both CXCR7 and CXCL11, but not CXCR3 (also recognized to interact with CXCL11), were found to be significantly increased in stromal sections of microdissected tumors and positively correlated in mesenchymal subtype of OC. Estrogenic induction of mesenchymal markers SNAI1, SNAI2, and CDH2 expression, with a consequent increase in cancer cell migration, was shown to depend on CXCR7, indicating a key role for CXCR7 in mediating estrogen upregulation of mesenchymal markers to induce invasion of OC cells. These findings identify a feed‐forward mechanism that sustains activation of the CXCR7/CXCL11 axis under ERα control to induce the epithelial–mesenchymal transition pathway and metastatic behavior of OC cells. Such interplay underlies the complex gene profile heterogeneity of OC that promotes changes in tumor microenvironment and metastatic acquisition.
Collapse
Affiliation(s)
- Samira Benhadjeba
- Research Center, CHU Sainte-Justine, Montréal, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Canada
| | - Lydia Edjekouane
- Research Center, CHU Sainte-Justine, Montréal, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Canada
| | - Karine Sauvé
- Research Center, CHU Sainte-Justine, Montréal, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Canada
| | | | - André Tremblay
- Research Center, CHU Sainte-Justine, Montréal, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Canada.,Centre de Recherche en Reproduction et Fertilité, University of Montreal, Saint Hyacinthe, Canada.,Department of Obstetrics & Gynecology, Faculty of Medicine, University of Montreal, Canada
| |
Collapse
|