1
|
Schorr K, Chen X, Sasaki T, Arias-Loza AP, Lang J, Higuchi T, Goepferich A. Rethinking Thin-Layer Chromatography for Screening Technetium-99m Radiolabeled Polymer Nanoparticles. ACS Pharmacol Transl Sci 2024; 7:2604-2611. [PMID: 39296255 PMCID: PMC11406700 DOI: 10.1021/acsptsci.4c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024]
Abstract
Thin-layer chromatography (TLC) is commonly employed to screen technetium-99m labeled polymer nanoparticle batches for unreduced pertechnetate and radio-colloidal impurities. Although this method is widely accepted, our findings applying radiolabeled PLGA/PLA-PEG nanoparticles underscore its lack of transferability between different settings and its limitations as a standalone quality control tool. While TLC profiles may appear similar for purified and radiocolloid containing nanoparticle formulations, their in vivo behavior can vary significantly, as demonstrated by discrepancies between TLC results and single-photon emission computed tomography (SPECT) and biodistribution data. This highlights the urgent need for a case-by-case evaluation of TLC methods for each specific nanoparticle type. Our study revealed that polymeric nanoparticles cannot be considered analytically uniform entities in the context of TLC analysis, emphasizing the complex interplay between nanoparticle composition, radiolabeling conditions, and subsequent biological behavior.
Collapse
Affiliation(s)
- Kathrin Schorr
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany
| | - Xinyu Chen
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Bavaria 86156, Germany
| | - Takanori Sasaki
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Bavaria 97080, Germany
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-0082, Japan
| | - Anahi Paula Arias-Loza
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Bavaria 97080, Germany
| | - Johannes Lang
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Bavaria 97080, Germany
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-0082, Japan
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany
| |
Collapse
|
2
|
Ekinci M, Alencar LMR, Lopes AM, Santos-Oliveira R, İlem-Özdemir D. Radiolabeled Human Serum Albumin Nanoparticles Co-Loaded with Methotrexate and Decorated with Trastuzumab for Breast Cancer Diagnosis. J Funct Biomater 2023; 14:477. [PMID: 37754891 PMCID: PMC10532481 DOI: 10.3390/jfb14090477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/02/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Breast cancer is a leading cause of cancer-related mortality among women worldwide, with millions of new cases diagnosed yearly. Addressing the burden of breast cancer mortality requires a comprehensive approach involving early detection, accurate diagnosis, effective treatment, and equitable access to healthcare services. In this direction, nano-radiopharmaceuticals have shown potential for enhancing breast cancer diagnosis by combining the benefits of nanoparticles and radiopharmaceutical agents. These nanoscale formulations can provide improved imaging capabilities, increased targeting specificity, and enhanced sensitivity for detecting breast cancer lesions. In this study, we developed and evaluated a novel nano-radio radiopharmaceutical, technetium-99m ([99mTc]Tc)-labeled trastuzumab (TRZ)-decorated methotrexate (MTX)-loaded human serum albumin (HSA) nanoparticles ([99mTc]-TRZ-MTX-HSA), for the diagnosis of breast cancer. In this context, HSA and MTX-HSA nanoparticles were prepared. Conjugation of MTX-HSA nanoparticles with TRZ was performed using adsorption and covalent bonding methods. The prepared formulations were evaluated for particle size, PDI value, zeta (ζ) potential, scanning electron microscopy analysis, encapsulation efficiency, and loading capacity and cytotoxicity on MCF-7, 4T1, and MCF-10A cells. Finally, the nanoparticles were radiolabeled with [99mTc]Tc using the direct radiolabeling method, and cellular uptake was performed with the nano-radiopharmaceutical. The results showed the formation of spherical nanoparticles, with a particle size of 224.1 ± 2.46 nm, a PDI value of 0.09 ± 0.07, and a ζ potential value of -16.4 ± 0.53 mV. The encapsulation efficiency of MTX was found to be 32.46 ± 1.12%, and the amount of TRZ was 80.26 ± 1.96%. The labeling with [99mTc]Tc showed a high labeling efficiency (>99%). The cytotoxicity studies showed no effect, and the cellular uptake studies showed 97.54 ± 2.16% uptake in MCF-7 cells at the 120th min and were found to have a 3-fold higher uptake in cancer cells than in healthy cells. In conclusion, [99mTc]Tc-TRZ-MTX-HSA nanoparticles are promising for diagnosing breast cancer and evaluating the response to treatment in breast cancer patients.
Collapse
Affiliation(s)
- Meliha Ekinci
- Faculty of Pharmacy, Department of Radiopharmacy, Ege University, Bornova, Izmir 35040, Turkey;
| | | | - André Moreni Lopes
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL/USP), São Paulo 12612-550, Brazil;
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmacy and Synthesis of Novel Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil;
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, State University of Rio de Janeiro, Rio de Janeiro 23070-200, Brazil
| | - Derya İlem-Özdemir
- Faculty of Pharmacy, Department of Radiopharmacy, Ege University, Bornova, Izmir 35040, Turkey;
| |
Collapse
|
3
|
Kumar M, Kulkarni P, Liu S, Chemuturi N, Shah DK. Nanoparticle biodistribution coefficients: A quantitative approach for understanding the tissue distribution of nanoparticles. Adv Drug Deliv Rev 2023; 194:114708. [PMID: 36682420 DOI: 10.1016/j.addr.2023.114708] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/26/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The objective of this manuscript is to provide quantitative insights into the tissue distribution of nanoparticles. Published pharmacokinetics of nanoparticles in plasma, tumor and 13 different tissues of mice were collected from literature. A total of 2018 datasets were analyzed and biodistribution of graphene oxide, lipid, polymeric, silica, iron oxide and gold nanoparticles in different tissues was quantitatively characterized using Nanoparticle Biodistribution Coefficients (NBC). It was observed that typically after intravenous administration most of the nanoparticles are accumulated in the liver (NBC = 17.56 %ID/g) and spleen (NBC = 12.1 %ID/g), while other tissues received less than 5 %ID/g. NBC values for kidney, lungs, heart, bones, brain, stomach, intestine, pancreas, skin, muscle and tumor were found to be 3.1 %ID/g, 2.8 %ID/g, 1.8 %ID/g, 0.9 %ID/g, 0.3 %ID/g, 1.2 %ID/g, 1.8 %ID/g, 1.2 %ID/g, 1.0 %ID/g, 0.6 %ID/g and 3.4 %ID/g, respectively. Significant variability in nanoparticle distribution was observed in certain organs such as liver, spleen and lungs. A large fraction of this variability could be explained by accounting for the differences in nanoparticle physicochemical properties such as size and material. A critical overview of published nanoparticle physiologically-based pharmacokinetic (PBPK) models is provided, and limitations in our current knowledge about in vitro and in vivo pharmacokinetics of nanoparticles that restrict the development of robust PBPK models is also discussed. It is hypothesized that robust quantitative assessment of whole-body pharmacokinetics of nanoparticles and development of mathematical models that can predict their disposition can improve the probability of successful clinical translation of these modalities.
Collapse
Affiliation(s)
- Mokshada Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, United States
| | - Priyanka Kulkarni
- Drug Metabolism and Pharmacokinetics, R&D, Takeda Pharmaceuticals, Cambridge, MA, United States
| | - Shufang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, United States
| | - Nagendra Chemuturi
- Drug Metabolism and Pharmacokinetics, R&D, Takeda Pharmaceuticals, Cambridge, MA, United States.
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, United States.
| |
Collapse
|
4
|
Biber Muftuler FZ. A perspective on PLGA encapsulated radio agents. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
5
|
Ekinci M, Çalışkan EE, Çakar B, İlem-Özdemir D, Uyanıkgil Y, Çetin Uyanıkgil EÖ. [ 99mTc]Technetium-Labeled Niosomes: Radiolabeling, Quality Control, and In Vitro Evaluation. ACS OMEGA 2023; 8:6279-6288. [PMID: 36844604 PMCID: PMC9948160 DOI: 10.1021/acsomega.2c06179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The aim of this research was to develop technetium-99m ([99mTc]Tc)-radiolabeled niosomes and evaluate the cancer cell incorporation capacity of radiolabeled niosomes. For this purpose, niosome formulations were developed by film hydration method, and prepared niosomes were characterized to particle size, polydispersity index (PdI), ζ-potential value, and image profile. Then, niosomes were radiolabeled with [99mTc]Tc using stannous salts (chloride) as a reducing agent. The radiochemical purity (RP) and stability in different mediums of the niosomes were assessed by ascending radioactive thin-layer chromatography (RTLC) and radioactive ultrahigh-performance liquid chromatography (R-UPLC) methods. Also, the partition coefficient value of radiolabeled niosomes was determined. The cell incorporation of [99mTc]Tc-labeled niosome formulations, as well as reduced/hydrolyzed (R/H)-[99mTc]NaTcO4 in the HT-29 (human colorectal adenocarcinoma) cells, was then assessed. According to the obtained results, the spherical niosomes had a particle size of 130.5 ± 1.364 nm, a PdI value of 0.250 ± 0.023, and a negative charge of -35.4 ± 1.06 mV. The niosome formulations were effectively radiolabeled with [99mTc]Tc using 500 μg mL-1 stannous chloride for 15 min, and RP was found to be over 95%. [99mTc]Tc-niosomes showed good in vitro stability in every system for up to 6 h. The log P value of radiolabeled niosomes was found as -0.66 ± 0.02. Compared to R/H-[99mTc]NaTcO4 (34.18 ± 1.56%), the incorporation percentages of [99mTc]Tc-niosomes (88.45 ± 2.54%) were shown to be higher in cancer cells. In conclusion, the newly developed [99mTc]Tc-niosomes showed good prototype for potential use in nuclear medicine imaging in the near future. However, further investigations, such as drug encapsulation and biodistribution studies, should be performed, and our studies are continuing.
Collapse
Affiliation(s)
- Meliha Ekinci
- Faculty
of Pharmacy, Department of Radiopharmacy, Ege University, Bornova, 35040 Izmir, Türkiye
| | - Emine Esin Çalışkan
- Faculty
of Pharmacy, Department of Pharmaceutical Technology, Department of
Biopharmaceutics and Pharmacokinetics, Ege
University, 35100 Izmir, Türkiye
| | - Burak Çakar
- Faculty
of Medicine, Department of Histology and Embryology, Ege University, 35040 Izmir, Türkiye
| | - Derya İlem-Özdemir
- Faculty
of Pharmacy, Department of Radiopharmacy, Ege University, Bornova, 35040 Izmir, Türkiye
| | - Yiğit Uyanıkgil
- Faculty
of Medicine, Department of Histology and Embryology, Ege University, 35040 Izmir, Türkiye
- Health
Science Institute, Department of Stem Cell, Ege University, 35040 Izmir, Türkiye
- Cord
Blood, Cell and Tissue Research and Application Centre, Ege University, 35040 Izmir, Türkiye
| | - Emel Öykü Çetin Uyanıkgil
- Faculty
of Pharmacy, Department of Pharmaceutical Technology, Department of
Biopharmaceutics and Pharmacokinetics, Ege
University, 35100 Izmir, Türkiye
| |
Collapse
|
6
|
Ma G, Xu X, Qi M, Zhang Y, Xu X. Radioactive polymeric microspheres as a novel embolic agent for radiological interventional therapy: A preliminary evaluation. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
7
|
Nanoparticles and Radioisotopes: A Long Story in a Nutshell. Pharmaceutics 2022; 14:pharmaceutics14102024. [DOI: 10.3390/pharmaceutics14102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this narrative review was to assess the use of nanoparticles (NPs) to deliver radionuclides to targets, focusing on systems that have been tested in pre-clinical and, when available, clinical settings. A literature search was conducted in PubMed and Web of Science databases using the following terms: “radionuclides” AND “liposomes” or “PLGA nanoparticles” or “gold nanoparticles” or “iron oxide nanoparticles” or “silica nanoparticles” or “micelles” or “dendrimers”. No filters were applied, apart from a minimum limit of 10 patients enrolled for clinical studies. Data from some significant studies from pre-clinical and clinical settings were retrieved, and we briefly describe the information available. All the selected seven classes of nanoparticles were highly tested in clinical trials, but they all present many drawbacks. Liposomes are the only ones that have been tested for clinical applications, though they have never been commercialized. In conclusion, the application of NPs for imaging has been the object of much interest over the years, albeit mainly in pre-clinical settings. Thus, we think that, based on the current state, radiolabeled NPs must be investigated longer before finding their place in nuclear medicine.
Collapse
|
8
|
Collantes M, Vairo C, Erhard Á, Navas C, Villullas S, Ecay M, Pareja F, Quincoces G, Gainza G, Peñuelas I. Preclinical safety of negatively charged microspheres (NCMs): optimization of radiolabeling for in vivo and ex vivo biodistribution studies after topical administration on full-thickness wounds in a rat model. Eur J Pharm Biopharm 2022; 177:61-67. [PMID: 35697288 DOI: 10.1016/j.ejpb.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/15/2022]
Abstract
Negatively charged microspheres (NCMs) are postulated as a new form of treatment for chronic wounds. Despite the efficacy shown at clinical level, more studies are required to demonstrate their safety and local effect. The objective of the work was to confirm the lack of NCM systemic absorption performing a biodistribution study of the NCMs in an open wound rat animal model. To this end, radiolabeling of NCMs with technetium-99m was optimized and biodistribution studies were performed by in vivo SPEC/CT imaging and ex vivo counting during 24 h after topical administration. The studies were performed on animals treated with a single or repeated dose to study the effect of macrophages during a prolonged treatment. NCM radiolabeling was achieved in a simple, efficient and stable manner with high yield. SPECT/CT images showed that almost all NCMs (about 85 %) remained on the wound for 24 h either after single or multiple administrations. Ex vivo biodistribution studies confirmed that there was no accumulation of NCMs in any organ or tissue except in the wound area, suggesting a lack of absorption. In conclusion, NCMs can be considered safe as local wound treatment since they remain at the administration area.
Collapse
Affiliation(s)
- María Collantes
- Translational Molecular Imaging Unit (UNIMTRA), Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain; RADIOMIN Research Group, Radiopharmacy Unit, Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain; Nuclear Medicine Department, Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Spain
| | - Claudia Vairo
- BioKeralty Research Institute AIE, Albert Einstein, 25-E3, 01510, Miñano, Spain
| | - Álvaro Erhard
- Translational Molecular Imaging Unit (UNIMTRA), Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain; RADIOMIN Research Group, Radiopharmacy Unit, Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain; Nuclear Medicine Department, Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain
| | - Cristina Navas
- Translational Molecular Imaging Unit (UNIMTRA), Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain
| | - Silvia Villullas
- BioKeralty Research Institute AIE, Albert Einstein, 25-E3, 01510, Miñano, Spain
| | - Margarita Ecay
- Translational Molecular Imaging Unit (UNIMTRA), Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain; RADIOMIN Research Group, Radiopharmacy Unit, Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain; Nuclear Medicine Department, Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain
| | - Félix Pareja
- Nuclear Medicine Department, Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain
| | - Gemma Quincoces
- RADIOMIN Research Group, Radiopharmacy Unit, Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain; Nuclear Medicine Department, Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Spain
| | - Garazi Gainza
- BioKeralty Research Institute AIE, Albert Einstein, 25-E3, 01510, Miñano, Spain.
| | - Iván Peñuelas
- Translational Molecular Imaging Unit (UNIMTRA), Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain; RADIOMIN Research Group, Radiopharmacy Unit, Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain; Nuclear Medicine Department, Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Spain
| |
Collapse
|
9
|
El-Hammadi MM, Arias JL. Recent Advances in the Surface Functionalization of PLGA-Based Nanomedicines. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:354. [PMID: 35159698 PMCID: PMC8840194 DOI: 10.3390/nano12030354] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/30/2022]
Abstract
Therapeutics are habitually characterized by short plasma half-lives and little affinity for targeted cells. To overcome these challenges, nanoparticulate systems have entered into the disease arena. Poly(d,l-lactide-co-glycolide) (PLGA) is one of the most relevant biocompatible materials to construct drug nanocarriers. Understanding the physical chemistry of this copolymer and current knowledge of its biological fate will help in engineering efficient PLGA-based nanomedicines. Surface modification of the nanoparticle structure has been proposed as a required functionalization to optimize the performance in biological systems and to localize the PLGA colloid into the site of action. In this review, a background is provided on the properties and biodegradation of the copolymer. Methods to formulate PLGA nanoparticles, as well as their in vitro performance and in vivo fate, are briefly discussed. In addition, a special focus is placed on the analysis of current research in the use of surface modification strategies to engineer PLGA nanoparticles, i.e., PEGylation and the use of PEG alternatives, surfactants and lipids to improve in vitro and in vivo stability and to create hydrophilic shells or stealth protection for the nanoparticle. Finally, an update on the use of ligands to decorate the surface of PLGA nanomedicines is included in the review.
Collapse
Affiliation(s)
- Mazen M. El-Hammadi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - José L. Arias
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, 18071 Granada, Spain
| |
Collapse
|
10
|
Recent Progress in Technetium-99m-Labeled Nanoparticles for Molecular Imaging and Cancer Therapy. NANOMATERIALS 2021; 11:nano11113022. [PMID: 34835786 PMCID: PMC8618883 DOI: 10.3390/nano11113022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022]
Abstract
Nanotechnology has played a tremendous role in molecular imaging and cancer therapy. Over the last decade, scientists have worked exceptionally to translate nanomedicine into clinical practice. However, although several nanoparticle-based drugs are now clinically available, there is still a vast difference between preclinical products and clinically approved drugs. An efficient translation of preclinical results to clinical settings requires several critical studies, including a detailed, highly sensitive, pharmacokinetics and biodistribution study, and selective and efficient drug delivery to the target organ or tissue. In this context, technetium-99m (99mTc)-based radiolabeling of nanoparticles allows easy, economical, non-invasive, and whole-body in vivo tracking by the sensitive clinical imaging technique single-photon emission computed tomography (SPECT). Hence, a critical analysis of the radiolabeling strategies of potential drug delivery and therapeutic systems used to monitor results and therapeutic outcomes at the preclinical and clinical levels remains indispensable to provide maximum benefit to the patient. This review discusses up-to-date 99mTc radiolabeling strategies of a variety of important inorganic and organic nanoparticles and their application to preclinical imaging studies.
Collapse
|
11
|
Wu S, Helal-Neto E, Matos APDS, Jafari A, Kozempel J, Silva YJDA, Serrano-Larrea C, Alves Junior S, Ricci-Junior E, Alexis F, Santos-Oliveira R. Radioactive polymeric nanoparticles for biomedical application. Drug Deliv 2021; 27:1544-1561. [PMID: 33118416 PMCID: PMC7599028 DOI: 10.1080/10717544.2020.1837296] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nowadays, emerging radiolabeled nanosystems are revolutionizing medicine in terms of diagnostics, treatment, and theranostics. These radionuclides include polymeric nanoparticles (NPs), liposomal carriers, dendrimers, magnetic iron oxide NPs, silica NPs, carbon nanotubes, and inorganic metal-based nanoformulations. Between these nano-platforms, polymeric NPs have gained attention in the biomedical field due to their excellent properties, such as their surface to mass ratio, quantum properties, biodegradability, low toxicity, and ability to absorb and carry other molecules. In addition, NPs are capable of carrying high payloads of radionuclides which can be used for diagnostic, treatment, and theranostics depending on the radioactive material linked. The radiolabeling process of nanoparticles can be performed by direct or indirect labeling process. In both cases, the most appropriate must be selected in order to keep the targeting properties as preserved as possible. In addition, radionuclide therapy has the advantage of delivering a highly concentrated absorbed dose to the targeted tissue while sparing the surrounding healthy tissues. Said another way, radioactive polymeric NPs represent a promising prospect in the treatment and diagnostics of cardiovascular diseases such as cardiac ischemia, infectious diseases such as tuberculosis, and other type of cancer cells or tumors.
Collapse
Affiliation(s)
- Shentian Wu
- Department of Radiotherapy Center, Maoming People's Hospital, Maoming City, China
| | - Edward Helal-Neto
- Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro, Brazil
| | | | - Amir Jafari
- Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro, Brazil.,Department of Medical Nanotechnology in the Faculty of Advanced Technology in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ján Kozempel
- Faculty of Nuclear Sciences and Physical Engineering (FJFI), Czech Technical University in Prague (ČVUT), Prague, Czech Republic
| | | | | | - Severino Alves Junior
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, Brazil
| | - Eduardo Ricci-Junior
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Frank Alexis
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
| | - Ralph Santos-Oliveira
- Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro, Brazil.,Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Zona Oeste State University, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
|
13
|
Pellico J, Gawne PJ, T M de Rosales R. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 2021; 50:3355-3423. [PMID: 33491714 DOI: 10.1039/d0cs00384k] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanomaterials offer unique physical, chemical and biological properties of interest for medical imaging and therapy. Over the last two decades, there has been an increasing effort to translate nanomaterial-based medicinal products (so-called nanomedicines) into clinical practice and, although multiple nanoparticle-based formulations are clinically available, there is still a disparity between the number of pre-clinical products and those that reach clinical approval. To facilitate the efficient clinical translation of nanomedicinal-drugs, it is important to study their whole-body biodistribution and pharmacokinetics from the early stages of their development. Integrating this knowledge with that of their therapeutic profile and/or toxicity should provide a powerful combination to efficiently inform nanomedicine trials and allow early selection of the most promising candidates. In this context, radiolabelling nanomaterials allows whole-body and non-invasive in vivo tracking by the sensitive clinical imaging techniques positron emission tomography (PET), and single photon emission computed tomography (SPECT). Furthermore, certain radionuclides with specific nuclear emissions can elicit therapeutic effects by themselves, leading to radionuclide-based therapy. To ensure robust information during the development of nanomaterials for PET/SPECT imaging and/or radionuclide therapy, selection of the most appropriate radiolabelling method and knowledge of its limitations are critical. Different radiolabelling strategies are available depending on the type of material, the radionuclide and/or the final application. In this review we describe the different radiolabelling strategies currently available, with a critical vision over their advantages and disadvantages. The final aim is to review the most relevant and up-to-date knowledge available in this field, and support the efficient clinical translation of future nanomedicinal products for in vivo imaging and/or therapy.
Collapse
Affiliation(s)
- Juan Pellico
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK.
| | | | | |
Collapse
|
14
|
Aranda-Lara L, García BEO, Isaac-Olivé K, Ferro-Flores G, Meléndez-Alafort L, Morales-Avila E. Drug Delivery Systems-Based Dendrimers and Polymer Micelles for Nuclear Diagnosis and Therapy. Macromol Biosci 2021; 21:e2000362. [PMID: 33458936 DOI: 10.1002/mabi.202000362] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/02/2020] [Indexed: 12/23/2022]
Abstract
Polymeric nanoparticles encompass micelles and dendrimers. They are used for improving or controlling the action of the loaded therapy or imaging agent, including radionuclides. Some radionuclides possess properties appropriate for simultaneous imaging and therapy of a disease and are therefore called theranostic. The diversity in core materials and surface modification, as well as radiolabeling strategies, offers multiples possibilities for preparing polymeric nanoparticles using radionuclides. The present review describes different strategies in the preparation of such nanoparticles and their applications in nuclear nanomedicine.
Collapse
Affiliation(s)
- Liliana Aranda-Lara
- Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan S/N, Toluca, Estado de México, 50180, Mexico
| | - Blanca Eli Ocampo García
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México, 52750, Mexico
| | - Keila Isaac-Olivé
- Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan S/N, Toluca, Estado de México, 50180, Mexico
| | - Guillermina Ferro-Flores
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México, 52750, Mexico
| | | | - Enrique Morales-Avila
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Tollocan S/N, Toluca, Estado de México, 50180, Mexico
| |
Collapse
|
15
|
Adityan S, Tran M, Bhavsar C, Wu SY. Nano-therapeutics for modulating the tumour microenvironment: Design, development, and clinical translation. J Control Release 2020; 327:512-532. [DOI: 10.1016/j.jconrel.2020.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
|
16
|
Pandey V, Haider T, Chandak AR, Chakraborty A, Banerjee S, Soni V. Technetium labeled doxorubicin loaded silk fibroin nanoparticles: Optimization, characterization and in vitro evaluation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Chung HJ, Kim HJ, Hong ST. Tumor-specific delivery of a paclitaxel-loading HSA-haemin nanoparticle for cancer treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 23:102089. [PMID: 31487550 DOI: 10.1016/j.nano.2019.102089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 06/27/2019] [Accepted: 08/24/2019] [Indexed: 12/19/2022]
Abstract
A cancer-targeted chemotherapy could potentially eradicate cancers if anticancer drugs are delivered precisely to the cancers. Although various types of nanoparticles have been developed for cancer-specific delivery of anticancer drugs, the drug delivery capabilities of these nanoparticles were not specific enough to eradicate cancer. Here, we developed a targeting-enhancing nanoparticle of paclitaxel, in which paclitaxel was encapsulated with a human serum albumin-haemin complex through non-covalent bonding. The average diameter of TENPA was approximately 140 nm with a zeta potential of +29 mV. TENPA maintained its structural integrity and stability without forming protein coronas in the blood for optimal passive targeting. These characteristics of TENPA resulted in paclitaxel accumulation that was 4.1 times greater than that of Abraxane, an albumin-bound paclitaxel, in cancer tissue. The dramatic improvement in cancer targeting of TENPA led to reduced systemic toxicity of paclitaxel and eradication of end-stage cancer in a xenografted mouse experiment.
Collapse
Affiliation(s)
- Hea-Jong Chung
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk, South Korea
| | - Hyeon-Jin Kim
- JINIS BDRD institute, JINIS Biopharmaceuticals Co., Wanju, Chonbuk, South Korea.
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk, South Korea.
| |
Collapse
|
18
|
De Silva L, Fu JY, Htar TT, Muniyandy S, Kasbollah A, Wan Kamal WHB, Chuah LH. Characterization, optimization, and in vitro evaluation of Technetium-99m-labeled niosomes. Int J Nanomedicine 2019; 14:1101-1117. [PMID: 30863048 PMCID: PMC6391155 DOI: 10.2147/ijn.s184912] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background and purpose Niosomes are nonionic surfactant-based vesicles that exhibit certain unique features which make them favorable nanocarriers for sustained drug delivery in cancer therapy. Biodistribution studies are critical in assessing if a nanocarrier system has preferential accumulation in a tumor by enhanced permeability and retention effect. Radiolabeling of nanocarriers with radioisotopes such as Technetium-99m (99mTc) will allow for the tracking of the nanocarrier noninvasively via nuclear imaging. The purpose of this study was to formulate, characterize, and optimize 99mTc-labeled niosomes. Methods Niosomes were prepared from a mixture of sorbitan monostearate 60, cholesterol, and synthesized D-α-tocopherol polyethylene glycol 1000 succinate-diethylenetriaminepentaacetic acid (synthesis confirmed by 1H and 13C nuclear magnetic resonance spectroscopy). Niosomes were radiolabeled by surface chelation with reduced 99mTc. Parameters affecting the radiolabeling efficiency such as concentration of stannous chloride (SnCl2·H2O), pH, and incubation time were evaluated. In vitro stability of radiolabeled niosomes was studied in 0.9% saline and human serum at 37°C for up to 8 hours. Results Niosomes had an average particle size of 110.2±0.7 nm, polydispersity index of 0.229±0.008, and zeta potential of −64.8±1.2 mV. Experimental data revealed that 30 µg/mL of SnCl2·H2O was the optimal concentration of reducing agent required for the radiolabeling process. The pH and incubation time required to obtain high radiolabeling efficiency was pH 5 and 15 minutes, respectively. 99mTc-labeled niosomes exhibited high radiolabeling efficiency (>90%) and showed good in vitro stability for up to 8 hours. Conclusion To our knowledge, this is the first study published on the surface chelation of niosomes with 99mTc. The formulated 99mTc-labeled niosomes possessed high radiolabeling efficacy, good stability in vitro, and show good promise for potential use in nuclear imaging in the future.
Collapse
Affiliation(s)
- Leanne De Silva
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia,
| | - Ju-Yen Fu
- Nutrition Unit, Malaysian Palm Oil Board, Bandar Baru Bangi, Selangor, Malaysia,
| | - Thet Thet Htar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia,
| | - Saravanan Muniyandy
- Department of Pharmacy, Fatima College of Health Sciences, Al Ain, United Arab Emirates
| | - Azahari Kasbollah
- Medical Technology Division, Malaysian Nuclear Agency, Bangi, Selangor, Malaysia
| | | | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia, .,Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia,
| |
Collapse
|