1
|
Sun Y, Zhang X, Yang X, Ma J. Clinical Utility of Circulating Tumor DNA for Detecting Lung Cancer Mutations by Targeted Next-Generation Sequencing With Insufficient Tumor Samples. J Clin Lab Anal 2024; 38:e25099. [PMID: 39315762 PMCID: PMC11520943 DOI: 10.1002/jcla.25099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Circulating tumor deoxyribonucleic acid (ctDNA) is increasingly applied in clinical practice. This study aimed to explore clinical utility of a minimal invasive and sensitive way of ctDNA for next-generation sequencing in non-small cell lung cancer (NSCLC) with inadequate tumor samples. METHODS Targeted DNA sequencing was performed on tissue biopsies and matched plasma samples from 60 patients with NSCLC. RESULTS A total of 13 driving genes were detected in 60 matched tissue DNA (tDNA) and ctDNA samples. Overall concordance rate was 75.47%, with 77.55% sensitivity and 50% specificity. Epidermal growth factor receptor (EGFR) mutations were the most common in both tDNA and ctDNA samples. Among other mutated genes were tumor protein p53 (TP53), erb-b2 receptor tyrosine kinase 2 (ERBB2), anaplastic lymphoma kinase (ALK), cyclin-dependent kinase inhibitor 2A (CDKN2A), ros proto-oncogene 1, and receptor tyrosine kinase (ROS1). Mutations in b-raf proto-oncogene, serine/threonine kinase (BRAF), cluster of differentiation 274 (CD274), neurotrophin receptor tyrosine kinase 1 (NTRK1), and rearranged during transfection (RET) occurred only in plasma. The majority of mutations in both samples were single-nucleotide variants. Deletions were found in EGFR, BRAF, and TP53 in ctDNA, whereas in tDNA, deletions were only found in EGFR. In ALK, single nucleic acid-site amplification occurred simultaneously in tissue and plasma, but insertions and copy number variations were detected only in plasma. CONCLUSIONS Identifying ctDNA mutations by targeted sequencing in plasma is feasible, showing the clinical value of ctDNA-targeted sequencing in NSCLC patients when tumor tissue sampling is insufficient or even impossible.
Collapse
Affiliation(s)
- Yi Sun
- Pediatric, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina
| | - Xu Zhang
- Department of Molecular Diagnostics, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐Sen University Cancer CenterGuangzhouGuangdong ProvinceChina
| | - Xinhua Yang
- Department of Molecular Diagnostics, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐Sen University Cancer CenterGuangzhouGuangdong ProvinceChina
| | - Jiangjun Ma
- Department of Molecular Diagnostics, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐Sen University Cancer CenterGuangzhouGuangdong ProvinceChina
| |
Collapse
|
2
|
Chen C, Douglas MP, Ragavan MV, Phillips KA, Jansen JP. Clinical Validity and Utility of Circulating Tumor DNA (ctDNA) Testing in Advanced Non-small Cell Lung Cancer (aNSCLC): A Systematic Literature Review and Meta-analysis. Mol Diagn Ther 2024; 28:525-536. [PMID: 39093546 PMCID: PMC11349784 DOI: 10.1007/s40291-024-00725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE Circulating tumor DNA (ctDNA) testing has become a promising tool to guide first-line (1L) targeted treatment for advanced non-small cell lung cancer (aNSCLC). This study aims to estimate the clinical validity (CV) and clinical utility (CU) of ctDNA-based next-generation sequencing (NGS) for oncogenic driver mutations to inform 1L treatment decisions in aNSCLC through a systematic literature review and meta-analysis. METHODS A systematic literature search was conducted in PubMed/MEDLINE and Embase to identify randomized control trials or observational studies reporting CV/CU on ctDNA testing in patients with aNSCLC. Meta-analyses were performed using bivariate random-effects models to estimate pooled sensitivity and specificity. Progression-free/overall survival (PFS/OS) was summarized for CU studies. RESULTS A total of 20 studies were identified: 17 CV only, 2 CU only, and 1 both, and 13 studies were included for the meta-analysis on multi-gene detection. The overall sensitivity and specificity for ctDNA detection of any mutation were 0.69 (95% CI 0.63-0.74) and 0.99 (95% CI 0.97-1.00), respectively. However, sensitivity varied greatly by driver gene, ranging from 0.29 (95% CI 0.13-0.53) for ROS1 to 0.77 (95% CI 0.63-0.86) for KRAS. Two studies that compared PFS with ctDNA versus tissue-based testing followed by 1L targeted therapy found no significant differences. One study reported OS curves on ctDNA-matched and tissue-matched therapies but no hazard ratios were provided. CONCLUSIONS ctDNA testing demonstrated an overall acceptable diagnostic accuracy in patients with aNSCLC, however, sensitivity varied greatly by driver mutation. Further research is needed, especially for uncommon driver mutations, to better understand the CU of ctDNA testing in guiding targeted treatments for aNSCLC.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Clinical Pharmacy, UCSF Center for Translational and Policy Research on Precision Medicine (TRANSPERS), San Francisco, CA, USA
| | - Michael P Douglas
- Department of Clinical Pharmacy, UCSF Center for Translational and Policy Research on Precision Medicine (TRANSPERS), San Francisco, CA, USA
| | - Meera V Ragavan
- Division of Hematology and Oncology, UCSF Department of Medicine, San Francisco, CA, USA
| | - Kathryn A Phillips
- Department of Clinical Pharmacy, UCSF Center for Translational and Policy Research on Precision Medicine (TRANSPERS), San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
- UCSF Philip R. Lee Institute for Health Policy, San Francisco, CA, USA
| | - Jeroen P Jansen
- Department of Clinical Pharmacy, UCSF Center for Translational and Policy Research on Precision Medicine (TRANSPERS), San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA.
- UCSF Philip R. Lee Institute for Health Policy, San Francisco, CA, USA.
- Department of Clinical Pharmacy, School of Pharmacy, University of California San Francisco, 490 Illinois St. Valley Tower, 3rd Floor, Box 0613, San Francisco, CA, 94143, USA.
| |
Collapse
|
3
|
Chen C, Douglas MP, Ragavan MV, Phillips KA, Jansen JP. Clinical validity and utility of circulating tumor DNA (ctDNA) testing in advanced non-small cell lung cancer (aNSCLC): a systematic literature review and meta-analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.27.23297657. [PMID: 37961510 PMCID: PMC10635208 DOI: 10.1101/2023.10.27.23297657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Purpose Circulating tumor DNA (ctDNA) testing has become a promising tool to guide first-line (1L) targeted treatment for advanced non-small cell lung cancer (aNSCLC). This study aims to estimate the clinical validity (CV) and clinical utility (CU) of ctDNA-based next-generation sequencing (NGS) for oncogenic driver mutations to inform 1L treatment decisions in aNSCLC through a systematic literature review and meta-analysis. Methods A systematic literature search was conducted in PubMed/MEDLINE and Embase to identify randomized control trials or observational studies reporting CV/CU on ctDNA testing in patients with aNSCLC. Meta-analyses were performed using bivariate random-effects models to estimate pooled sensitivity and specificity. Progression-free/overall survival (PFS/OS) was summarized for CU studies. Results Eighteen studies were identified: 17 CV only, 2 CU only, and 1 both. Thirteen studies were included for the meta-analysis on multi-gene detection. The overall sensitivity and specificity for ctDNA detection of any mutation were 0.69 (95% CI, 0.63-0.74) and 0.99 (95% CI, 0.97-1.00) respectively. However, sensitivity varied greatly by driver gene, ranging from 0.29 (95% CI, 0.13-0.53) for ROS 1 to 0.77 (95% CI, 0.63-0.86) for KRAS . Two studies compared PFS with ctDNA versus tissue-based testing followed by 1L targeted therapy found no significant differences. One study reported OS curves on ctDNA-matched and tissue-matched therapies but no hazard ratios were provided. Conclusion ctDNA testing demonstrated an overall acceptable diagnostic accuracy in aNSCLC patients, however, sensitivity varied greatly by driver mutation. Further research is needed, especially for uncommon driver mutations, to better understand the CU of ctDNA testing in guiding targeted treatments for aNSCLC.
Collapse
|
4
|
Cai P, Yang B, Zhao J, Ye P, Yang D. Detection of KRAS mutation using plasma samples in non-small-cell lung cancer: a systematic review and meta-analysis. Front Oncol 2023; 13:1207892. [PMID: 37483491 PMCID: PMC10357383 DOI: 10.3389/fonc.2023.1207892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Background The aim of this study was to investigate the diagnostic accuracy of KRAS mutation detection using plasma sample of patients with non-small cell lung cancer (NSCLC). Methods Databases of Pubmed, Embase, Cochrane Library, and Web of Science were searched for studies detecting KRAS mutation in paired tissue and plasma samples of patients with NSCLC. Data were extracted from each eligible study and analyzed using MetaDiSc and STATA. Results After database searching and screening of the studies with pre-defined criteria, 43 eligible studies were identified and relevant data were extracted. After pooling the accuracy data from 3341 patients, the pooled sensitivity, specificity and diagnostic odds ratio were 71%, 94%, and 59.28, respectively. Area under curve of summary receiver operating characteristic curve was 0.8883. Subgroup analysis revealed that next-generation sequencing outperformed PCR-based techniques in detecting KRAS mutation using plasma sample of patients with NSCLC, with sensitivity, specificity, and diagnostic odds ratio of 73%, 94%, and 82.60, respectively. Conclusion Compared to paired tumor tissue sample, plasma sample showed overall good performance in detecting KRAS mutation in patients with NSCLC, which could serve as good surrogate when tissue samples are not available.
Collapse
Affiliation(s)
- Peiling Cai
- Department of Anatomy and Histology, School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Bofan Yang
- School of Clinical Medicine, Chengdu University, Chengdu, China
| | - Jiahui Zhao
- School of Clinical Medicine, Chengdu University, Chengdu, China
| | - Peng Ye
- Department of Anatomy and Histology, School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Dongmei Yang
- Clinical Laboratory & Clinical Research and Translational Center, Second People’s Hospital of Yibin City-West China Yibin Hospital, Sichuan University, Yibin, China
| |
Collapse
|
5
|
Sestokaite A, Gedvilaite V, Cicenas S, Sabaliauskaite R, Jarmalaite S. Surveillance of cfDNA Hot Spot Mutations in NSCLC Patients during Disease Progression. Int J Mol Sci 2023; 24:ijms24086958. [PMID: 37108122 PMCID: PMC10138687 DOI: 10.3390/ijms24086958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Non-small cell cancer (NSCLC) has been identified with a great variation of mutations that can be surveyed during disease progression. The aim of the study was to identify and monitor lung cancer-specific mutations incidence in cell-free DNA as well as overall plasma cell-free DNA load by means of targeted next-generation sequencing. Sequencing libraries were prepared from cell-free DNA (cfDNA) isolated from 72 plasma samples of 41 patients using the Oncomine Lung cfDNA panel covering hot spot regions of 11 genes. Sequencing was performed with the Ion Torrent™ Ion S5™ system. Four genes were detected with highest mutation incidence: KRAS (43.9% of all cases), followed by ALK (36.6%), TP53 (31.7%), and PIK3CA (29.3%). Seven patients had co-occurring KRAS + TP53 (6/41, 14.6%) or KRAS + PIK3CA (7/41, 17.1%) mutations. Moreover, the mutational status of TP53 as well an overall cell-free DNA load were confirmed to be predictors of poor progression-free survival (HR = 2.5 [0.8-7.7]; p = 0.029 and HR = 2.3 [0.9-5.5]; p = 0.029, respectively) in NSCLC patients. In addition, TP53 mutation status significantly predicts shorter overall survival (HR = 3.4 [1.2-9.7]; p < 0.001). We demonstrated that TP53 mutation incidence as well as a cell-free DNA load can be used as biomarkers for NSCLC monitoring and can help to detect the disease progression prior to radiological confirmation of the status.
Collapse
Affiliation(s)
- Agne Sestokaite
- National Cancer Institute, Santariskiu 1, 08406 Vilnius, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, 10257 Vilnius, Lithuania
| | - Vaida Gedvilaite
- National Cancer Institute, Santariskiu 1, 08406 Vilnius, Lithuania
| | - Saulius Cicenas
- National Cancer Institute, Santariskiu 1, 08406 Vilnius, Lithuania
| | | | - Sonata Jarmalaite
- National Cancer Institute, Santariskiu 1, 08406 Vilnius, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, 10257 Vilnius, Lithuania
| |
Collapse
|
6
|
Aran V, Zogbi VM, Miranda RL, Andreiuolo F, Silva Canedo NH, Nazaré CV, Niemeyer Filho P, Neto VM. The Use of Liquid Biopsy in the Molecular Analysis of Plasma Compared to the Tumour Tissue from a Patient with Brain Metastasis: A Case Report. Medicina (B Aires) 2023; 59:medicina59030459. [PMID: 36984460 PMCID: PMC10055748 DOI: 10.3390/medicina59030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Different cancers have multiple genetic mutations, which vary depending on the affected tumour tissue. Small biopsies may not always represent all the genetic landscape of the tumour. To improve the chances of identifying mutations at different disease stages (early, during the disease course, and refractory stage), liquid biopsies offer an advantage to traditional tissue biopsy. In addition, it is possible to detect mutations related to metastatic events depending on the cancer types analysed as will be discussed in this case report, which describes a patient with brain metastasis and lung cancer that harboured K-RAS mutations both in the brain tumour and in the ctDNA present in the bloodstream.
Collapse
Affiliation(s)
- Veronica Aran
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende156-Centro, Rio de Janeiro 20231-092, Brazil
- Correspondence: ; Tel.: +55-2-19-7208-8811
| | - Vinicius Mansur Zogbi
- Neurosurgery Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende156-Centro, Rio de Janeiro 20231-092, Brazil
| | - Renan Lyra Miranda
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual Do Cérebro Paulo Niemeyer, Rua do Rezende156-Centro, Rio de Janeiro 20231-092, Brazil
| | - Felipe Andreiuolo
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual Do Cérebro Paulo Niemeyer, Rua do Rezende156-Centro, Rio de Janeiro 20231-092, Brazil
| | - Nathalie Henriques Silva Canedo
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual Do Cérebro Paulo Niemeyer, Rua do Rezende156-Centro, Rio de Janeiro 20231-092, Brazil
| | - Carolina Victor Nazaré
- Neurosurgery Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende156-Centro, Rio de Janeiro 20231-092, Brazil
| | - Paulo Niemeyer Filho
- Neurosurgery Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende156-Centro, Rio de Janeiro 20231-092, Brazil
| | - Vivaldo Moura Neto
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende156-Centro, Rio de Janeiro 20231-092, Brazil
| |
Collapse
|
7
|
Palmieri M, Zulato E, Wahl SGF, Guibert N, Frullanti E. Diagnostic accuracy of circulating free DNA testing for the detection of KRAS mutations in non-small cell lung cancer: A systematic review and meta-analysis. Front Genet 2022; 13:1015161. [PMID: 36386815 PMCID: PMC9640997 DOI: 10.3389/fgene.2022.1015161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) gene encodes a GTPase that acts as a molecular switch for intracellular signal transduction, promoting cell growth and proliferation. Mutations in the KRAS gene represent important biomarkers for NSCLC targeted therapy. However, detection of KRAS mutations in tissues has shown some limitations. During the last years, analyses of circulating free DNA (cfDNA) has emerged as an alternative and minimally invasive, approach to investigate tumor molecular changes. Here, we assessed the diagnostic performance of cfDNA analysis, compared to tissues through a meta-analysis and systematic review of existing literature. From 561 candidate papers, we finally identified 40 studies, including 2,805 NSCLC patients. We extracted values relating to the number of true-positive, false-positive, false-negative, and true-negative. Pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio, each with 95% CI, were calculated. A summary receiver operating characteristic curve and the area under curve (AUC) were used to evaluate the overall diagnostic performance. The pooled sensitivity was 0.71 (95% CI 0.68–0.74) and the specificity was 0.93 (95% CI 0.92–0.94). The diagnostic odds ratio was 35.24 (95% CI 24.88–49.91) and the area under the curve was 0.92 (SE = 0.094). These results provide evidence that detection of KRAS mutation using cfDNA testing is of adequate diagnostic accuracy thus offering to the clinicians a new promising screening test for NSCLC patients.
Collapse
Affiliation(s)
- Maria Palmieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisabetta Zulato
- Basic and Translational Oncology Unit, Istituto Oncologico Veneto IOV—IRCCS, Padova, Italy
| | - Sissel Gyrid Freim Wahl
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Technology and Science, Trondheim, Norway
| | - Nicolas Guibert
- Thoracic Oncology Department, Larrey Hospital, University Hospital of Toulouse, Toulouse, France
- Inserm, Centre de Recherche en Cancérologie de Toulouse, CRCT UMR-1037, Toulouse, France
- University of Toulouse III (Paul Sabatier), Toulouse, France
| | - Elisa Frullanti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- *Correspondence: Elisa Frullanti,
| |
Collapse
|
8
|
Roosan MR, Mambetsariev I, Pharaon R, Fricke J, Husain H, Reckamp KL, Koczywas M, Massarelli E, Bild AH, Salgia R. Usefulness of Circulating Tumor DNA in Identifying Somatic Mutations and Tracking Tumor Evolution in Patients With Non-small Cell Lung Cancer. Chest 2021; 160:1095-1107. [PMID: 33878340 PMCID: PMC8449001 DOI: 10.1016/j.chest.2021.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/21/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The usefulness of circulating tumor DNA (ctDNA) in detecting mutations and monitoring treatment response has not been well studied beyond a few actionable biomarkers in non-small cell lung cancer (NSCLC). RESEARCH QUESTION How does the usefulness of ctDNA analysis compare with that of solid tumor biopsy analysis in patients with NSCLC? METHODS We retrospectively evaluated 370 adult patients with NSCLC treated at the City of Hope between November 2015 and August 2019 to assess the usefulness of ctDNA in mutation identification, survival, concordance with matched tissue samples in 32 genes, and tumor evolution. RESULTS A total of 1,688 somatic mutations were detected in 473 ctDNA samples from 370 patients with NSCLC. Of the 473 samples, 177 showed at least one actionable mutation with currently available Food and Drug Administration-approved NSCLC therapies. MET and CDK6 amplifications co-occurred with BRAF amplifications (false discovery rate [FDR], < 0.01), and gene-level mutations were mutually exclusive in KRAS and EGFR (FDR, 0.0009). Low cumulative percent ctDNA levels were associated with longer progression-free survival (hazard ratio [HR], 0.56; 95% CI, 0.37-0.85; P = .006). Overall survival was shorter in patients harboring BRAF mutations (HR, 2.35; 95% CI, 1.24-4.6; P = .009), PIK3CA mutations (HR, 2.77; 95% CI, 1.56-4.9; P < .001) and KRAS mutations (HR, 2.32; 95% CI, 1.30-4.1; P = .004). Gene-level concordance was 93.8%, whereas the positive concordance rate was 41.6%. More mutations in targetable genes were found in ctDNA than in tissue biopsy samples. Treatment response and tumor evolution over time were detected in repeated ctDNA samples. INTERPRETATION Although ctDNA analysis exhibited similar usefulness to tissue biopsy analysis, more mutations in targetable genes were missed in tissue biopsy analyses. Therefore, the evaluation of ctDNA in conjunction with tissue biopsy samples may help to detect additional targetable mutations to improve clinical outcomes in advanced NSCLC.
Collapse
Affiliation(s)
| | | | | | - Jeremy Fricke
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Hatim Husain
- UC San Diego Health Moores Cancer Center, La Jolla, CA
| | - Karen L Reckamp
- City of Hope Comprehensive Cancer Center, Duarte, CA; Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | | | - Andrea H Bild
- Division of Molecular Pharmacology, Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA
| | - Ravi Salgia
- City of Hope Comprehensive Cancer Center, Duarte, CA.
| |
Collapse
|
9
|
Underhill HR. Leveraging the Fragment Length of Circulating Tumour DNA to Improve Molecular Profiling of Solid Tumour Malignancies with Next-Generation Sequencing: A Pathway to Advanced Non-invasive Diagnostics in Precision Oncology? Mol Diagn Ther 2021; 25:389-408. [PMID: 34018157 PMCID: PMC8249304 DOI: 10.1007/s40291-021-00534-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
Circulating cell-free DNA (ccfDNA) has emerged as a promising diagnostic tool in oncology. Identification of tumour-derived ccfDNA (i.e. circulating tumour DNA [ctDNA]) provides non-invasive access to a malignancy’s molecular landscape to diagnose, inform therapeutic strategies, and monitor treatment efficacy. Current applications of ccfDNA to detect somatic mutations, however, have been largely constrained to tumour-informed searches and identification of common mutations because of the interaction between ctDNA signal and next-generation sequencing (NGS) noise. Specifically, the low allele frequency of ctDNA associated with non-metastatic and early-stage lesions may be indistinguishable from artifacts that accrue during sample preparation and NGS. Thus, using ccfDNA to achieve non-invasive and personalized molecular profiling to optimize individual patient care is a highly sought goal that remains limited in clinical practice. There is growing evidence, however, that further advances in the field of ccfDNA diagnostics may be achieved by improving detection of somatic mutations through leveraging the inherently shorter fragment lengths of ctDNA compared to non-neoplastic ccfDNA. Here, the origins and rationale for seeking to improve the mutation-based detection of ctDNA by using ccfDNA size profiling are reviewed. Subsequently, in vitro and in silico methods to enrich for a target ccfDNA fragment length are detailed to identify current practices and provide perspective into the potential of using ccfDNA size profiling to impact clinical applications in oncology.
Collapse
Affiliation(s)
- Hunter R Underhill
- Division of Medical Genetics, Department of Pediatrics, University of Utah, 295 Chipeta Way, Salt Lake City, UT, 84108, USA. .,Department of Radiology, University of Utah, Salt Lake City, UT, USA. .,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
10
|
Sebastião MM, Ho RS, de Carvalho JPV, Nussbaum M. Diagnostic Accuracy of Next Generation Sequencing Panel using Circulating Tumor DNA in Patients with Advanced Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. JOURNAL OF HEALTH ECONOMICS AND OUTCOMES RESEARCH 2020; 7:158-163. [PMID: 33043062 PMCID: PMC7539761 DOI: 10.36469/jheor.2020.17088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND/OBJECTIVES Until now, no meta-analysis has been published to evaluate the diagnostic performance of next-generation sequencing (NGS) panel using circulating tumor (ctDNA) in patients with advanced non-small cell lung cancer (aNSCLC). The aim of the study was to carry out a systematic review and a meta-analysis in order to determine the accuracy of NGS of ctDNA to detect six oncogenic driver alterations: epidermal growth factor receptor (EGFR); anaplastic lymphoma kinase (ALK); ROS proto-oncogene 1, receptor tyrosine kinase (ROS-1); serine/threonine-protein kinase B-RAF (BRAF); RET proto-oncogene (RET); and MET proto-oncogene, receptor tyrosine kinase (MET) exon 14 in patients with aNSCLC. METHODS MEDLINE/PubMed, Cochrane Library, Latin American and Caribbean Health Sciences Literature (LILACS), and Centre for Reviews and Dissemination databases and articles obtained from other sources were searched for relevant studies that evaluate the accuracy (sensitivity and specificity) of NGS using ctDNA in patients with aNSCLC. The studies were eligible when NGS of ctDNA was compared with tissue tests to detect at least one of the six oncogenic driver alterations. Diagnostic measures (sensitivity and specificity) were pooled with a bivariate diagnostic random effect. All statistical analyses were performed with software R, v.4.0.0. RESULTS Ten studies were eligible for data extraction. The overall pooled estimates of sensitivity and specificity were 0.766 (95% CI: 0.678-0.835); 0.999 (95% CI: 0.990-1.000), respectively. CONCLUSIONS The analysis has demonstrated that the NGS panel using ctDNA has a high accuracy to identify the six actionable oncogenic driver alterations in patients with aNSCLC. Therefore, it can be considered a reliable alternative to guide the patients with aNSCLC to the right treatment who cannot undergo an invasive procedure or have insufficient tissue material for molecular tests.
Collapse
|
11
|
Esagian SM, Grigoriadou GΙ, Nikas IP, Boikou V, Sadow PM, Won JK, Economopoulos KP. Comparison of liquid-based to tissue-based biopsy analysis by targeted next generation sequencing in advanced non-small cell lung cancer: a comprehensive systematic review. J Cancer Res Clin Oncol 2020; 146:2051-2066. [PMID: 32462295 PMCID: PMC7456570 DOI: 10.1007/s00432-020-03267-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To explore whether targeted next generation sequencing (NGS) of liquid biopsy in advanced non-small cell lung cancer (NSCLC) could potentially overcome the innate problems that arise with standard tissue biopsy, like intratumoral heterogeneity and the inability to obtain adequate samples for analysis. METHODS The Scopus, Cochrane Library, and MEDLINE (via PubMed) databases were searched for studies with matched tissue and liquid biopsies from advanced NSCLC patients, analyzed with targeted NGS. The number of mutations detected in tissue biopsy only, liquid biopsy only, or both was assessed and the positive percent agreement (PPA) of the two methods was calculated for every clinically relevant gene. RESULTS A total of 644 unique relevant articles were retrieved and data were extracted from 38 studies fulfilling the inclusion criteria. The sample size was composed of 2000 mutations tested in matched tissue and liquid biopsies derived from 1141 patients. No studies analyzed circulating tumor cells. The calculated PPA rates were 53.6% (45/84) for ALK, 53.9% (14/26) for BRAF, 56.5% (13/23) for ERBB2, 67.8% (428/631) for EGFR, 64.2% (122/190) for KRAS, 58.6% (17/29) for MET, 54.6% (12/22) for RET, and 53.3% (8/15) for ROS1. We additionally recorded data for 65 genes that are not recommended by current guidelines for mutational testing. An extra category containing results of unspecified genes was added, with a PPA rate of 55.7% (122/219). CONCLUSION Despite many advantages, liquid biopsy might be unable to fully substitute its tissue counterpart in detecting clinically relevant mutations in advanced NSCLC patients. However, it may serve as a helpful tool when making therapeutic decisions. More studies are needed to evaluate its role in everyday clinical practice.
Collapse
Affiliation(s)
- Stepan M Esagian
- Oncology Working Group, Society of Junior Doctors, Athens, Greece
| | - Georgia Ι Grigoriadou
- Oncology Working Group, Society of Junior Doctors, Athens, Greece
- 1st Department of Medical Oncology, Theageneio Anticancer Hospital, Thessaloníki, Greece
| | - Ilias P Nikas
- School of Medicine, European University of Cyprus, Nicosia, Cyprus
| | - Vasileios Boikou
- Oncology Working Group, Society of Junior Doctors, Athens, Greece
- Athens University of Economics and Business, Athens, Greece
| | - Peter M Sadow
- Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Jae-Kyung Won
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Konstantinos P Economopoulos
- Oncology Working Group, Society of Junior Doctors, Athens, Greece.
- Department of Surgery, Duke University Medical Center, 2301 Erwin Rd, Durham, NC, 27710, USA.
| |
Collapse
|
12
|
Chen L, Chen Y, Feng YL, Zhu Y, Wang LQ, Hu S, Cheng P. Tumor circulome in the liquid biopsies for digestive tract cancer diagnosis and prognosis. World J Clin Cases 2020; 8:2066-2080. [PMID: 32548136 PMCID: PMC7281040 DOI: 10.12998/wjcc.v8.i11.2066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/10/2020] [Accepted: 04/28/2020] [Indexed: 02/05/2023] Open
Abstract
Digestive tract cancer is one of the main diseases that endanger human health. At present, the early diagnosis of digestive tract tumors mainly depends on serology, imaging, endoscopy, and so on. Although tissue specimens are the gold standard for cancer diagnosis, with the rapid development of precision medicine in cancer, the demand for dynamic monitoring of tumor molecular characteristics has increased. Liquid biopsy involves the collection of body fluids via non-invasive approaches, and analyzes biological markers such as circulating tumor cells, circulating tumor DNA, circulating cell-free DNA, microRNAs, and exosomes. In recent years, liquid biopsy has become more and more important in the diagnosis and prognosis of cancer in clinical practice due to its convenience, non-invasiveness, high specificity and it overcomes temporal-spatial heterogeneity. Therefore, this review summarizes the current evidence on liquid biopsies in digestive tract cancers in relation to diagnosis and prognosis.
Collapse
Affiliation(s)
- Long Chen
- Department of Radiotherapy, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Yu Chen
- Department of Pediatric Surgery, Guangdong Women and Children Hospital, Guangzhou 511400, Guangdong Province, China
| | - Yuan-Ling Feng
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Yan Zhu
- Department of Respiratory, Shulan Hospital, Hangzhou 310004, Zhejiang Province, China
| | - Li-Quan Wang
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Shen Hu
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Pu Cheng
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou 310052, Zhejiang Province, China
| |
Collapse
|
13
|
The Validity and Predictive Value of Blood-Based Biomarkers in Prediction of Response in the Treatment of Metastatic Non-Small Cell Lung Cancer: A Systematic Review. Cancers (Basel) 2020; 12:cancers12051120. [PMID: 32365836 PMCID: PMC7280996 DOI: 10.3390/cancers12051120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
With the introduction of targeted therapies and immunotherapy, molecular diagnostics gained a more profound role in the management of non-small cell lung cancer (NSCLC). This study aimed to systematically search for studies reporting on the use of liquid biopsies (LB), the correlation between LBs and tissue biopsies, and finally the predictive value in the management of NSCLC. A systematic literature search was performed, including results published after 1 January 2014. Articles studying the predictive value or validity of a LB were included. The search (up to 1 September 2019) retrieved 1704 articles, 1323 articles were excluded after title and abstract screening. Remaining articles were assessed for eligibility by full-text review. After full-text review, 64 articles investigating the predictive value and 78 articles describing the validity were included. The majority of studies investigated the predictive value of LBs in relation to therapies targeting the epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) receptor (n = 38). Of studies describing the validity of a biomarker, 55 articles report on one or more EGFR mutations. Although a variety of blood-based biomarkers are currently under investigation, most studies evaluated the validity of LBs to determine EGFR mutation status and the subsequent targeting of EGFR tyrosine kinase inhibitors based on the mutation status found in LBs of NSCLC patients.
Collapse
|
14
|
Said R, Guibert N, Oxnard GR, Tsimberidou AM. Circulating tumor DNA analysis in the era of precision oncology. Oncotarget 2020; 11:188-211. [PMID: 32010431 PMCID: PMC6968778 DOI: 10.18632/oncotarget.27418] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
The spatial and temporal genomic heterogeneity of various tumor types and advances in technology have stimulated the development of circulating tumor DNA (ctDNA) genotyping. ctDNA was developed as a non-invasive, cost-effective alternative to tumor biopsy when such biopsy is associated with significant risk, when tumor tissue is insufficient or inaccessible, and/or when repeated assessment of tumor molecular abnormalities is needed to optimize treatment. The role of ctDNA is now well established in the clinical decision in certain alterations and tumors, such as the epidermal growth factor receptor (EGFR) mutation in non-small cell lung cancer and the v-Ki-ras2 kirsten rat sarcoma viral oncogene homolog (KRAS) mutation in colorectal cancer. The role of ctDNA analysis in other tumor types remains to be validated. Evolving data indicate the association of ctDNA level with tumor burden, and the usefulness of ctDNA analysis in assessing minimal residual disease, in understanding mechanisms of resistance to treatment, and in dynamically guiding therapy. ctDNA analysis is increasingly used to select therapy. Carefully designed clinical trials that use ctDNA analysis will increase the rate of patients who receive targeted therapy, will elucidate our understanding of evolution of tumor biology and will accelerate drug development and implementation of precision medicine. In this article we provide a critical overview of clinical trials and evolving data of ctDNA analysis in specific tumors and across tumor types.
Collapse
Affiliation(s)
- Rabih Said
- Department of Investigational Cancer Therapeutics, Phase I Clinical Trials Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Oncology, St. George Hospital University Medical Center, University of Balamand, Beirut, Lebanon
- Co-authorship
| | - Nicolas Guibert
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Thoracic Oncology, Toulouse University Hospital, Toulouse, France
- Co-authorship
| | - Geoffrey R. Oxnard
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Apostolia M. Tsimberidou
- Department of Investigational Cancer Therapeutics, Phase I Clinical Trials Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
15
|
Nicoś M, Wojas-Krawczyk K, Krawczyk P, Chmielewska I, Wojcik-Superczyńska M, Reszka K, Kieszko R, Góra-Florek A, Dudek M, Świniuch D, Papiewski W, Całka P, Ciesielka M, Ramlau R, Milanowski J. Assessment of EGFR gene mutations in circulating free DNA in monitoring of response to EGFR tyrosine kinase inhibitors in patients with lung adenocarcinoma. Arch Med Sci 2020; 16:1496-1500. [PMID: 33224359 PMCID: PMC7667428 DOI: 10.5114/aoms.2019.89217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/14/2018] [Indexed: 11/18/2022] Open
Affiliation(s)
- Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kamila Wojas-Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
- Lublin Foundation for Cancer Patients “JestemnaTak”, Poland
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
- Polish Society of Clinical Oncology, Warsaw, Poland
| | - Izabela Chmielewska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | | | - Katarzyna Reszka
- Lublin Foundation for Cancer Patients “JestemnaTak”, Poland
- GENIM LCC, Institute of Genetics and Immunology, Lublin, Poland
| | - Robert Kieszko
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Anna Góra-Florek
- Independent Public Provincial Hospital named Jan Boży, Lublin, Poland
| | - Małgorzata Dudek
- Independent Public Provincial Hospital named Jan Boży, Lublin, Poland
| | - Daria Świniuch
- Department of Oncology, Poznan University of Medical Science, Poznan, Poland
| | - Wojciech Papiewski
- Department of Pulmonology and Pulmonary Oncology of Mazovian Specialist Hospital, Radom, Poland
| | - Paulina Całka
- Department of Forensic Medicine, Medical University of Lublin, Lublin, Poland
| | - Marzanna Ciesielka
- Department of Forensic Medicine, Medical University of Lublin, Lublin, Poland
| | - Rodryg Ramlau
- Department of Oncology, Poznan University of Medical Science, Poznan, Poland
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
16
|
Jahangiri L, Hurst T. Assessing the Concordance of Genomic Alterations between Circulating-Free DNA and Tumour Tissue in Cancer Patients. Cancers (Basel) 2019; 11:cancers11121938. [PMID: 31817150 PMCID: PMC6966532 DOI: 10.3390/cancers11121938] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/23/2022] Open
Abstract
Somatic alterations to the genomes of solid tumours, which in some cases represent actionable drivers, provide diagnostic and prognostic insight into these complex diseases. Spatial and longitudinal tracking of somatic genomic alterations (SGAs) in patient tumours has emerged as a new avenue of investigation, not only as a disease monitoring strategy, but also to improve our understanding of heterogeneity and clonal evolution from diagnosis through disease progression. Furthermore, analysis of circulating-free DNA (cfDNA) in the so-called "liquid biopsy" has emerged as a non-invasive method to identify genomic information to inform targeted therapy and may also capture the heterogeneity of the primary and metastatic tumours. Considering the potential of cfDNA analysis as a translational laboratory tool in clinical practice, establishing the extent to which cfDNA represents the SGAs of tumours, particularly actionable driver alterations, becomes a matter of importance, warranting standardisation of methods and practices. Here, we assess the utilisation of cfDNA for molecular profiling of SGAs in tumour tissue across a broad range of solid tumours. Moreover, we examine the underlying factors contributing to discordance of detected SGAs between cfDNA and tumour tissue.
Collapse
Affiliation(s)
- Leila Jahangiri
- Department of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK;
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Lab blocks level 3, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Correspondence:
| | - Tara Hurst
- Department of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK;
| |
Collapse
|
17
|
Bai Y, Wang Z, Liu Z, Liang G, Gu W, Ge Q. Technical progress in circulating tumor DNA analysis using next generation sequencing. Mol Cell Probes 2019; 49:101480. [PMID: 31711827 DOI: 10.1016/j.mcp.2019.101480] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022]
Abstract
Circulating tumor DNA (ctDNA) is tumor-derived, fragmented DNA that circulates freely in body fluids, predominantly in the peripheral blood. Recently, ctDNA analysis has been suggested as a complement to tissue biopsy in the detection and treatment of cancer. Genetic and epigenetic information specific to tumor cells, including single nucleotide variations, copy number variations, and modified methylation patterns, can be detected in ctDNA. Importantly, mutations in heterogenous tumors that could impart therapeutic resistance could be identified in ctDNA, which would aid in cancer diagnosis, prognosis, and real-time monitoring, and inform treatment with targeted therapies. However, ctDNA is still not a routinely used method for this purpose, because its detection techniques lack adequate sensitivity for reliable use in scientific studies and clinical trials. This review provides an up-to-date summary of ctDNA mutation detection methods based on next generation sequencing, highlighting their advantages and limitations, and focusing in particular on several optimized library preparation methods for improved sensitivity and specificity of ctDNA detection.
Collapse
Affiliation(s)
- Yunfei Bai
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Zexin Wang
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Zhiyu Liu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Wanjun Gu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Qinyu Ge
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
18
|
Lyu M, Zhou J, Ning K, Ying B. The diagnostic value of circulating tumor cells and ctDNA for gene mutations in lung cancer. Onco Targets Ther 2019; 12:2539-2552. [PMID: 31040697 PMCID: PMC6454989 DOI: 10.2147/ott.s195342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Detecting gene mutations by two competing biomarkers, circulating tumor cells (CTCs) and ctDNA has gradually paved a new diagnostic avenue for personalized medicine. We performed a comprehensive analysis to compare the diagnostic value of CTCs and ctDNA for gene mutations in lung cancer. METHODS Publications were electronically searched in PubMed, Embase, and Web of Science as of July 2018. Pooled sensitivity, specificity, and AUC, each with a 95% CI, were yielded. Subgroup analyses and sensitivity analyses were conducted. Quality assessment of included studies was also performed. RESULTS From 4,283 candidate articles, we identified 47 articles with a total of 7,244 patients for qualitative review and meta-analysis. When detecting EGFR, the CTC and ctDNA groups had pooled sensitivity of 75.4% (95% CI 0.683-0.817) and 67.1% (95% CI 0.647-0.695), respectively. When testing KRAS, pooled sensitivity was 38.7% (95% CI 0.266-0.519) in the CTC group and 65.1% (95% CI 0.558-0.736) in the ctDNA group. The diagnostic performance of ctDNA in testing ALK and BRAF was also evaluated. Heterogeneity among the 47 articles was acceptable. CONCLUSION ctDNA might be a more promising biomarker with equivalent performance to CTCs when detecting EGFR and its detailed subtypes, and superior diagnostic capacity when testing KRAS and ALK. In addition, the diagnostic performance of ctDNA and CTCs depends on the detection methods greatly, and this warrants further studies to explore more sensitive methods.
Collapse
Affiliation(s)
- Mengyuan Lyu
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China,
| | - Jian Zhou
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Kang Ning
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China,
| |
Collapse
|
19
|
Global DNA demethylation as an epigenetic marker of human brain metastases. Biosci Rep 2018; 38:BSR20180731. [PMID: 30254100 PMCID: PMC6200709 DOI: 10.1042/bsr20180731] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/20/2018] [Accepted: 08/24/2018] [Indexed: 12/29/2022] Open
Abstract
Brain metastases are the most common intracranial tumors in adults. They usually originate from: lung, breast, renal cell and gastrointestinal cancers, as well as melanoma. Prognosis for brain metastases is still poor and classical treatment combining surgery and radiation therapy should be strongly supported with molecular approaches. However, their successful application depends on a deep understanding of not only genetic, but also epigenetic background of the disease. That will result in an earlier and more precise diagnosis, successful treatment, as well as individualized estimation of clinical outcomes and prognosis. It has already been shown that the epigenetic machinery plays a crucial role in cancer biology, development, and progression. Therefore, we decided to look for metastasis through changes in the most studied epigenetic mark, 5-methylcytosine (m5C) in DNA. We performed global analysis of the m5C contents in DNA isolated from the brain metastatic tumor tissue and peripheral blood samples of the same patients, using thin layer chromatography separation of radioactively labeled nucleotides. We found that the m5C level in DNA from brain metastases: changes in the broad range, overlaps with that of blood, and negatively correlates with the increasing tumor grade. Because the amount of m5C in tumor tissue and blood is almost identical, the genomic DNA methylation can be a useful marker for brain metastases detection and differentiation. Our research creates a scope for future studies on epigenetic mechanisms in neuro-oncology and can lead to development of new diagnostic methods in clinical practice.
Collapse
|
20
|
Sim WC, Loh CH, Toh GLX, Lim CW, Chopra A, Chang AYC, Goh LL. Non-invasive detection of actionable mutations in advanced non-small-cell lung cancer using targeted sequencing of circulating tumor DNA. Lung Cancer 2018; 124:154-159. [DOI: 10.1016/j.lungcan.2018.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/05/2018] [Accepted: 08/07/2018] [Indexed: 01/14/2023]
|
21
|
Cross-platform comparison for the detection of RAS mutations in cfDNA (ddPCR Biorad detection assay, BEAMing assay, and NGS strategy). Oncotarget 2018; 9:21122-21131. [PMID: 29765524 PMCID: PMC5940402 DOI: 10.18632/oncotarget.24950] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/27/2018] [Indexed: 01/05/2023] Open
Abstract
CfDNA samples from colon (mCRC) and non-small cell lung cancers (NSCLC) (CIRCAN cohort) were compared using three platforms: droplet digital PCR (ddPCR, Biorad); BEAMing/OncoBEAM™-RAS-CRC (Sysmex Inostics); next-generation sequencing (NGS, Illumina), utilizing the 56G oncology panel (Swift Biosciences). Tissue biopsy and time matched cfDNA samples were collected at diagnosis in the mCRC cohort and during 1st progression in the NSCLC cohort. Excellent matches between cfDNA/FFPE mutation profiles were observed. Detection thresholds were between 0.5-1% for cfDNA samples examined using ddPCR and NGS, and 0.03% with BEAMing. This high level of sensitivity enabled the detection of KRAS mutations in 5/19 CRC patients with negative FFPE profiles. In the mCRC cohort, comparison of mutation results obtained by testing FFPE to those obtained by testing cfDNA by ddPCR resulted in 47% sensitivity, 77% specificity, 70% positive predictive value (PPV) and 55% negative predictive value (NPV). For BEAMing, we observed 93% sensitivity, 69% specificity, 78% PPV and 90% NPV. Finally, sensitivity of NGS was 73%, specificity was 77%, PPV 79% and NPV 71%. Our study highlights the complementarity of different diagnostic approaches and variability of results between OncoBEAM™-RAS-CRC and NGS assays. While the NGS assay provided a larger breadth of coverage of the major targetable alterations of 56 genes in one run, its performance for specific alterations was frequently confirmed by ddPCR results.
Collapse
|
22
|
Shen H, Che K, Cong L, Dong W, Zhang T, Liu Q, Du J. Diagnostic and prognostic value of blood samples for KRAS mutation identification in lung cancer: a meta-analysis. Oncotarget 2018; 8:36812-36823. [PMID: 28415658 PMCID: PMC5482700 DOI: 10.18632/oncotarget.15972] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/28/2017] [Indexed: 12/20/2022] Open
Abstract
Circulating tumor DNA (ctDNA) and tumor cells (CTC) are novel approaches for identifying genomic alterations. Thus, we designed a meta-analysis to evaluate the diagnostic value and prognostic significance of a KRAS proto-oncogene, GTPase (KRAS) mutation for lung cancer patients. All included articles were from PubMed, EMBASE, Web of Science and Cochrane Library. Twelve articles that described 1,131 patients were reviewed. True positives (TP), false positives (FP), true negatives (TN), and false negatives (FN) were used to calculate pooled sensitivity, specificity, the positive likelihood ratio (PLR), the negative likelihood ratio (NLR), a diagnostic odds ratio (DOR), the area under the curve (AUC) and corresponding 95% confidence intervals (95% CI). PLR is calculated as sensitivity/(1-specificity) and NLR is (1– sensitivity)/specificity. DOR is a measured of diagnostic effectiveness (PLR/NLR). A survival analysis subgroup was also designed to evaluate prognostic significance. Pooled sensitivity, specificity, PLR, NLR, DOR and AUC were 0.79 (95% CI, 0.63-0.89), 0.93 (95% CI, 0.89-0.96), 12.13 (92% CI, 7.11-20.67), 0.22 (95% CI, 0.12-0.41), 54.82 (95% CI, 23.11-130.09), and 0.95 (95% CI, 0.93–0.96), respectively. KRAS mutation and wild-type hazard ratios for overall survival and progression-free survival were 1.37 (95% CI, 1.08–1.66), 1.46 (95% CI, 1.15-1.77) in blood samples, and 1.16 (95% CI, 1.03–1.28), 1.28 (95% CI, 1.09–1.46) in tumor tissue.
Collapse
Affiliation(s)
- Hongchang Shen
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Keying Che
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Lei Cong
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Wei Dong
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Tiehong Zhang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Qi Liu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| |
Collapse
|
23
|
Yang N, Li Y, Liu Z, Qin H, Du D, Cao X, Cao X, Li J, Li D, Jiang B, Duan L, Yang H, Zhang Z, Lin H, Li J, Yang Z, Xiong L, Shen H, Lin L, Li F. The characteristics of ctDNA reveal the high complexity in matching the corresponding tumor tissues. BMC Cancer 2018; 18:319. [PMID: 29566644 PMCID: PMC5865353 DOI: 10.1186/s12885-018-4199-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/08/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) is an efficient and sensitive method to detect mutations from ctDNA. Many features and clinical conditions could significantly affect the concordance between ctDNA and corresponding tumor tissues. Our goal was to systematically investigate the critical factors contributing to different concordance between ctDNA and corresponding tumor tissues. METHODS We recruited two groups of IIIB or IV lung cancer patients: The standard group to evaluate the accuracy of our method and the concordance between ctDNA and tumor tissues, and the study group with various clinical conditions. We applied our unique identification (UID) indexed capturing-based sequencing (UC-Seq) to ctDNA samples, and confirm the results by Droplet digital PCR (ddPCR). RESULTS Considering mutations detected from NGS of tumor tissues as golden standard, UC-Seq achieved overall 93.6% sensitivity for SNVs and Indels, and 0.8 Pearson correlation between tumor TMB and bTMB. Efficacious treatments, long sampling date (more than 2 weeks) between tumor tissues and ctDNA and low concentrations of cfDNA (less than 9 ng/ml) could significantly decrease the concordance between ctDNA and tumor tissues. About 84% mutations showed shorter mutant fragment length than that of wild-type fragments, and the AFs of mutations could be significantly enriched in small-size ctDNA. CONCLUSIONS In late-stage lung cancer patients, ctDNA generally has high concordance with tumor tissues. However it could be significantly affected by three clinical conditions which could dynamically change the content of ctDNA. Moreover, the detection limit could be further extended by enriching small-size ctDNA in the preparation of samples.
Collapse
Affiliation(s)
- Nong Yang
- Lung Cancer and Gastrointestinal Unit, Department of Medical Oncology, Hunan Cancer Hospital, Changsha, China
| | - Yi Li
- Department of Oncology, Yunnan Province Traditional Chinese Medicine Hospital, Kunming, China
| | - Zhidong Liu
- Second Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hao Qin
- The Research and Development Institute of Precision Medicine, 3D Medicine Inc, Shanghai, China
| | - Duanming Du
- Department of Interventional Radiology, Shenzhen Second People’s Hospital (First Hospital of Shenzhen University), Shenzhen, China
| | - Xinkai Cao
- The Research and Development Institute of Precision Medicine, 3D Medicine Inc, Shanghai, China
| | - Xiaoqing Cao
- Second Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jun Li
- Department of Oncology, Yunnan Province Traditional Chinese Medicine Hospital, Kunming, China
| | - Dongge Li
- Department of Oncology, Yunnan Province Traditional Chinese Medicine Hospital, Kunming, China
| | - Bo Jiang
- Department of Cadre’s Medical Oncology, The Third Affiliated Hospital of Kunming Medical University(Yunnan Cancer Hospital), Kunming, China
| | - Lincan Duan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Haiyan Yang
- Lung Cancer and Gastrointestinal Unit, Department of Medical Oncology, Hunan Cancer Hospital, Changsha, China
| | - Zhenghua Zhang
- Department of oncology, Jing’An District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing’An Branch), Shanghai, China
| | - Hao Lin
- Department of Oncology, Huashan Hospital north, Fudan University, Shanghai, China
| | - Jianying Li
- Department of Oncology, Nantong Tumor Hospital, Nantong, China
| | - Zhenhua Yang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lei Xiong
- The Research and Development Institute of Precision Medicine, 3D Medicine Inc, Shanghai, China
| | - Hua Shen
- Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Lizhu Lin
- Department of Oncology, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Fugen Li
- The Research and Development Institute of Precision Medicine, 3D Medicine Inc, Shanghai, China
| |
Collapse
|
24
|
Furuki H, Yamada T, Takahashi G, Iwai T, Koizumi M, Shinji S, Yokoyama Y, Takeda K, Taniai N, Uchida E. Evaluation of liquid biopsies for detection of emerging mutated genes in metastatic colorectal cancer. Eur J Surg Oncol 2018; 44:975-982. [PMID: 29452859 DOI: 10.1016/j.ejso.2018.01.224] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Detection of gene mutations is important for planning molecular targeted therapy. Although most gene mutations are concordant between primary colon cancers and their liver metastases, new mutations can emerge in metastases. The liquid biopsy is a newly developed, gene analytic method to detect mutations in metastatic tumors. In this prospective study, we evaluated the applicability of liquid biopsies in the detection of mutations in primary and metastatic tumors. METHODS We included 22 patients with liver metastases from colorectal cancer and extracted DNA from primary colorectal tumors, metastatic liver tumors, and peripheral blood (liquid biopsy). Next-generation sequencing (NGS) and digital PCR were performed to detect mutations in these three sample types. RESULTS We found a total of 36 different mutations in samples from primary tumors, liver metastases, and liquid biopsies using NGS. Twenty-eight of these mutations were found in all three types of samples, whereas liquid biopsy did not identify four mutations that had been found in both primary tumors and liver metastases, but did identify four mutations that were found in liver tumors but not in primary tumors. The sensitivity of liquid biopsies for detecting mutations in liver metastases was 64% (23/36) using NGS and 89% (32/36, P = 0.02) using dPCR. The specificities of NGS and dPCR were 100% (23/23) and 100% (32/32), respectively. CONCLUSIONS Emerging mutations, which are not found in primary tumors, can be detected in their metastases and liquid biopsies.
Collapse
Affiliation(s)
- Hiroyasu Furuki
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Japan
| | - Takeshi Yamada
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Japan.
| | - Goro Takahashi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Japan
| | - Takuma Iwai
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Japan
| | - Michihiro Koizumi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Japan
| | - Seiichi Shinji
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Japan
| | - Yasuyuki Yokoyama
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Japan
| | - Kohki Takeda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Japan
| | - Nobuhiko Taniai
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Japan
| | - Eiji Uchida
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Japan
| |
Collapse
|
25
|
Hench IB, Hench J, Tolnay M. Liquid Biopsy in Clinical Management of Breast, Lung, and Colorectal Cancer. Front Med (Lausanne) 2018; 5:9. [PMID: 29441349 PMCID: PMC5797586 DOI: 10.3389/fmed.2018.00009] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022] Open
Abstract
Examination of tumor molecular characteristics by liquid biopsy is likely to greatly influence personalized cancer patient management. Analysis of circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and tumor-derived exosomes, all collectively referred to as “liquid biopsies,” are not only a modality to monitor treatment efficacy, disease progression, and emerging therapy resistance mechanisms, but they also assess tumor heterogeneity and evolution in real time. We review the literature concerning the examination of ctDNA and CTC in a diagnostic setting, evaluating their prognostic, predictive, and monitoring capabilities. We discuss the advantages and limitations of various leading ctDNA/CTC analysis technologies. Finally, guided by the results of clinical trials, we discuss the readiness of cell-free DNA and CTC as routine biomarkers in the context of various common types of neoplastic disease. At this moment, one cannot conclude whether or not liquid biopsy will become a mainstay in oncology practice.
Collapse
Affiliation(s)
- Ivana Bratić Hench
- Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Jürgen Hench
- Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Markus Tolnay
- Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
26
|
Feng Q, Gai F, Sang Y, Zhang J, Wang P, Wang Y, Liu B, Lin D, Yu Y, Fang J. A comparison of QuantStudio™ 3D Digital PCR and ARMS-PCR for measuring plasma EGFR T790M mutations of NSCLC patients. Cancer Manag Res 2018; 10:115-121. [PMID: 29403309 PMCID: PMC5783148 DOI: 10.2147/cmar.s148134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background The AURA3 clinical trial has shown that advanced non-small cell lung cancer (NSCLC) patients with EGFR T790M mutations in circulating tumor DNA (ctDNA) could benefit from osimertinib. Purpose The aim of this study was to assess the usefulness of QuantStudio™ 3D Digital PCR System platform for the detection of plasma EGFR T790M mutations in NSCLC patients, and compare the performances of 3D Digital PCR and ARMS-PCR. Patients and methods A total of 119 Chinese patients were enrolled in this study. Mutant allele frequency of plasma EGFR T790M was detected by 3D Digital PCR, then 25 selected samples were verified by ARMS-PCR and four of them were verified by next generation sequencing (NGS). Results In total, 52.94% (69/119) had EGFR T790M mutations detected by 3D Digital PCR. In 69 positive samples, the median mutant allele frequency (AF) was 1.09% and three cases presented low concentration (AF <0.1%). Limited by the amount of plasma DNA, 17 samples (AF <2.5%) and eight samples (T790M-) were selected for verification by ARMS-PCR. Four of those samples were verified by NGS as a third verification method. Among the selected 17 positive cases, ten samples presented mutant allele frequency <0.5%, and seven samples presented intermediate mutant allele frequency (0.5% AF 2.5%). However, only three samples (3/17) were identified as positive by ARMS-PCR, namely, P6 (AF =1.09%), P7 (AF =2.09%), and P8 (AF =2.21%). It is worth mentioning that sample P9 (AF =2.05%, analyzed by 3D Digital PCR) was identified as T790M- by ARMS-PCR. Four samples were identified as T790M+ by both NGS and 3D Digital PCR, and typically three samples (3/4) presented at a low ratio (AF <0.5%). Conclusion Our study demonstrated that 3D Digital PCR is a novel method with high sensitivity and specificity to detect EGFR T790M mutation in plasma.
Collapse
Affiliation(s)
- Qin Feng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute
| | - Fei Gai
- Oncology Business Division, Beijing Novogene Bioinformatics Technology Co., Ltd
| | - Yaxiong Sang
- Oncology Business Division, Beijing Novogene Bioinformatics Technology Co., Ltd
| | - Jie Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Oncology II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ping Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute
| | - Yue Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute
| | - Bing Liu
- Oncology Business Division, Beijing Novogene Bioinformatics Technology Co., Ltd
| | - Dongmei Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute
| | - Yang Yu
- Oncology Business Division, Beijing Novogene Bioinformatics Technology Co., Ltd
| | - Jian Fang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Oncology II, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
27
|
Sung JS, Chong HY, Kwon NJ, Kim HM, Lee JW, Kim B, Lee SB, Park CW, Choi JY, Chang WJ, Choi YJ, Lee SY, Kang EJ, Park KH, Kim YH. Detection of somatic variants and EGFR mutations in cell-free DNA from non-small cell lung cancer patients by ultra-deep sequencing using the ion ampliseq cancer hotspot panel and droplet digital polymerase chain reaction. Oncotarget 2017; 8:106901-106912. [PMID: 29290998 PMCID: PMC5739783 DOI: 10.18632/oncotarget.22456] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/17/2017] [Indexed: 12/18/2022] Open
Abstract
Highly sensitive genotyping assays can detect mutations in cell-free DNA (cfDNA) from cancer patients, reflecting the biology of each patient’s cancer. Because circulating tumor DNA comprises a small, variable fraction of DNA circulating in the blood, sensitive parallel multiplexing tests are required to determine mutation profiles. We prospectively examined the clinical utility of ultra-deep sequencing analysis of cfDNA from 126 non-small cell lung cancer (NSCLC) patients using the Ion AmpliSeq Cancer Hotspot Panel v2 (ICP) and validated these findings with droplet digital polymerase chain reaction (ddPCR). ICP results were compared with tumor tissue genotyping (TTG) results and clinical outcomes. A total of 853 variants were detected, with a median of four variants per patient. Overall concordance of ICP and TTG analyses was 90% for EGFR exon 19 deletion and 88% for the L858R mutation. Of 34 patients with a well-defined EGFR activating mutation defined based on the results of ICP and TTG, 31 (81.6%) showed long-term disease control with EGFR TKI treatment. Of 56 patients treated with an EGFR tyrosine kinase inhibitor (TKI), the presence of the de novo T790M mutation was confirmed in 28 (50%). Presence of this de novo mutation did not have a negative effect on EGFR TKI treatment. Ultra-deep sequencing analysis of cfDNA using ICP combined with confirmatory ddPCR was effective at defining driver genetic changes in NSCLC patients. Comprehensive analysis of tumor DNA and cfDNA can increase the specificity of molecular diagnosis, which could translate into tailored treatment.
Collapse
Affiliation(s)
- Jae Sook Sung
- Cancer Research Institute, Korea University, Seoul, Republic of Korea
| | | | | | | | - Jong Won Lee
- Cancer Research Institute, Korea University, Seoul, Republic of Korea
| | - Boyeon Kim
- Cancer Research Institute, Korea University, Seoul, Republic of Korea
| | - Saet Byeol Lee
- Cancer Research Institute, Korea University, Seoul, Republic of Korea
| | | | - Jung Yoon Choi
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Won Jin Chang
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yoon Ji Choi
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sung Yong Lee
- Department of Internal Medicine, Guro Hospital, Korea University, Seoul, Republic of Korea
| | - Eun Joo Kang
- Department of Internal Medicine, Guro Hospital, Korea University, Seoul, Republic of Korea
| | - Kyong Hwa Park
- Cancer Research Institute, Korea University, Seoul, Republic of Korea.,Division of Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yeul Hong Kim
- Cancer Research Institute, Korea University, Seoul, Republic of Korea.,Division of Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
28
|
Pi C, Zhang MF, Peng XX, Zhang YC, Xu CR, Zhou Q. Liquid biopsy in non-small cell lung cancer: a key role in the future of personalized medicine? Expert Rev Mol Diagn 2017; 17:1089-1096. [PMID: 29057681 DOI: 10.1080/14737159.2017.1395701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Liquid biopsies, especially the analysis of circulating tumor DNA (ctDNA), as a novel and non-invasive method for the diagnosis and monitoring of non-small cell lung cancer (NSCLC) have already been implemented in clinical settings. The majority of ctDNA is released from apoptotic or necrotic tumor cells, thus reflecting the genetic profile of a tumor. Numerous studies have reported a high concordance in mutation profiles derived from liquid biopsy and tissue biopsy, especially in driver genes. Liquid biopsy could overcome the clonal heterogeneity of tumour biopsy, as it provides a single snapshot of a tumour tissue. Moreover, non-invasiveness is the biggest advantage for liquid biopsy, and the procedure can be repeatedly performed during the treatment for the purpose of monitoring. Therefore, ctDNA could act as a potential complementary method for tissue biopsies in diagnosis, prognostic, treatment response and resistance. Areas covered: This review summarizes the recent advancements in liquid biopsy with a focus on NSCLC, including its applications and technologies associated with assessing ctDNA. The authors conclude the review by discussing the challenges associated with liquid biopsy. Expert commentary: The analysis of ctDNA represents a promising method for liquid biopsy, which will be a novel and potentially complementary method in diagnosis, treatment and prognostic in NSCLC at all stages.
Collapse
Affiliation(s)
- Can Pi
- a Guangdong Lung Cancer Institute , Guangdong General Hospital and Guangdong Academy of Medical Sciences , Guangdong , PR China.,b The Second School of Clinical Medicine , Southern Medical University , Guangdong , PR China
| | - Ming-Feng Zhang
- a Guangdong Lung Cancer Institute , Guangdong General Hospital and Guangdong Academy of Medical Sciences , Guangdong , PR China.,b The Second School of Clinical Medicine , Southern Medical University , Guangdong , PR China
| | - Xiao-Xiao Peng
- a Guangdong Lung Cancer Institute , Guangdong General Hospital and Guangdong Academy of Medical Sciences , Guangdong , PR China.,c School of Medicine , South China University of Technology , Guangzhou , China
| | - Yi-Chen Zhang
- a Guangdong Lung Cancer Institute , Guangdong General Hospital and Guangdong Academy of Medical Sciences , Guangdong , PR China.,b The Second School of Clinical Medicine , Southern Medical University , Guangdong , PR China
| | - Chong-Rui Xu
- a Guangdong Lung Cancer Institute , Guangdong General Hospital and Guangdong Academy of Medical Sciences , Guangdong , PR China
| | - Qing Zhou
- a Guangdong Lung Cancer Institute , Guangdong General Hospital and Guangdong Academy of Medical Sciences , Guangdong , PR China.,b The Second School of Clinical Medicine , Southern Medical University , Guangdong , PR China
| |
Collapse
|
29
|
Xu H, Chen L, Shao Y, Zhu D, Zhi X, Zhang Q, Li F, Xu J, Liu X, Xu Z. Clinical Application of Circulating Tumor DNA in the Genetic Analysis of Patients with Advanced GIST. Mol Cancer Ther 2017; 17:290-296. [PMID: 29133619 DOI: 10.1158/1535-7163.mct-17-0436] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/15/2017] [Accepted: 10/11/2017] [Indexed: 11/16/2022]
Abstract
Gastrointestinal stromal tumors (GIST) are the most common mesenchymal tumor of digestive tract. In the past, tissue biopsy was the main method for the diagnosis of GISTs. Although, circulating tumor DNA (ctDNA) detection by next-generation sequencing (NGS) may be a feasible and replaceable method for diagnosis of GISTs. We retrospectively analyzed the data for ctDNA and tissue DNA detection from 32 advanced GIST patients. We found that NGS obviously increased the positive rate of ctDNA detection. ctDNA detection identified rare mutations that were not detected in tissue DNA detection. Tumor size and Ki-67 were significant influencing factors of the positive rate of ctDNA detection and concordance between ctDNA and tissue DNA detection. In all patients, the concordance rate between ctDNA and tissue DNA detection was 71.9%, with moderate concordance, but the concordance was strong for patients with tumor size > 10 cm or Ki-67 > 5%. Tumor size, mitotic figure, Ki-67, and ctDNA mutation type were the significant influencing factors of prognosis, but only tumor size and ctDNA mutation type, were the independent prognostic factors for advanced GIST patients. We confirmed that ctDNA detection by NGS is a feasible and promising method for the diagnosis and prognosis of advanced GIST patients. Mol Cancer Ther; 17(1); 290-6. ©2017 AACR.
Collapse
Affiliation(s)
- Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Liang Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Yang Shao
- Nanjing Geneseeq Biotechnology Inc., Nanjing, Jiangsu Province
| | - Dongqin Zhu
- Nanjing Geneseeq Biotechnology Inc., Nanjing, Jiangsu Province
| | - Xiaofei Zhi
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Qiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Fengyuan Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Jianghao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Xisheng Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Nanjing, Jiangsu Province, China.
| |
Collapse
|
30
|
Huang G, Pan J, Ye Z, Fang B, Cheng W, Cao Z. Overexpression of miR-216b sensitizes NSCLC cells to cisplatin-induced apoptosis by targeting c-Jun. Oncotarget 2017; 8:104206-104215. [PMID: 29262633 PMCID: PMC5732799 DOI: 10.18632/oncotarget.22171] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/23/2017] [Indexed: 12/14/2022] Open
Abstract
Platinum-based chemotherapy is still be the standard treatment for non-small cell lung cancer (NSCLC). Recently, studies demonstrate that some kinds of microRNAs (miRNAs) are associated with chemosensitivity of NSCLC cells to platinum-based treatment. Unfortunately, cancer cells usually change their expression profile of miRNAs to form drug resistance against chemotherapy. In the present study, we focused on miR-216b to investigate whether miR-216b determined sensitivity of NSCLC cells to cisplatin. We observed that expression level of miR-216b was significantly decreased in NSCLC cell lines when they were under the cisplatin treatment. However, restore of miR-216b by transfecting with its mimics was found to increase the cytotoxicity of cisplatin to NSCLC cells. Studies on mechanisms elucidated that miR-216b targeted c-Jun in NSCLC. Overexpression of miR-216b can suppress the cisplatin-induced upregulation of c-Jun. As the downstream, overexpression of Bcl-xl induced by c-Jun/ATF2 heterodimers was inhibited in miR-216b transfected NSCLC cells. Since Bcl-xl is a key anti-apoptotic protein, we found that sensitivity of NSCLC cells to cisplatin-induced apoptosis was significantly increased because of the overexpression of miR-216b.
Collapse
Affiliation(s)
- Gang Huang
- Department of Traditional Chinese Medicine, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, 323000, China
| | - Jiongwei Pan
- Department of Respiratory, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, 323000, China
| | - Zaiting Ye
- Department of Radiology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, China, 323000
| | - Bingmu Fang
- Department of Hematology and Oncology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, 323000, China
| | - Wei Cheng
- Affiliated Hospital of Xuzhou Medical University, Jiangsu Province Key Laboratory of Anesthesiology and Center for Pain Research and Treatment, Xuzhou, 221000, China
| | - Zhuo Cao
- Department of Respiratory, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, 323000, China
| |
Collapse
|
31
|
Zhang YC, Zhou Q, Wu YL. The emerging roles of NGS-based liquid biopsy in non-small cell lung cancer. J Hematol Oncol 2017; 10:167. [PMID: 29061113 PMCID: PMC5654124 DOI: 10.1186/s13045-017-0536-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/17/2017] [Indexed: 12/25/2022] Open
Abstract
The treatment paradigm of non-small cell lung cancer (NSCLC) has evolved into oncogene-directed precision medicine. Identifying actionable genomic alterations is the initial step towards precision medicine. An important scientific progress in molecular profiling of NSCLC over the past decade is the shift from the traditional piecemeal fashion to massively parallel sequencing with the use of next-generation sequencing (NGS). Another technical advance is the development of liquid biopsy with great potential in providing a dynamic and comprehensive genomic profiling of NSCLC in a minimally invasive manner. The integration of NGS with liquid biopsy has been demonstrated to play emerging roles in genomic profiling of NSCLC by increasing evidences. This review summarized the potential applications of NGS-based liquid biopsy in the diagnosis and treatment of NSCLC including identifying actionable genomic alterations, tracking spatiotemporal tumor evolution, dynamically monitoring response and resistance to targeted therapies, and diagnostic value in early-stage NSCLC, and discussed emerging challenges to overcome in order to facilitate clinical translation in future.
Collapse
Affiliation(s)
- Yi-Chen Zhang
- Guangdong Lung Cancer Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
32
|
Normanno N, Denis MG, Thress KS, Ratcliffe M, Reck M. Guide to detecting epidermal growth factor receptor (EGFR) mutations in ctDNA of patients with advanced non-small-cell lung cancer. Oncotarget 2017; 8:12501-12516. [PMID: 27980215 PMCID: PMC5355360 DOI: 10.18632/oncotarget.13915] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/24/2016] [Indexed: 12/31/2022] Open
Abstract
Cancer treatment is evolving towards therapies targeted at specific molecular abnormalities that drive tumor growth. Consequently, to determine which patients are eligible, accurate assessment of molecular aberrations within tumors is required. Obtaining sufficient tumor tissue for molecular testing can present challenges; therefore, circulating free tumor-derived DNA (ctDNA) found in blood plasma has been proposed as an alternative source of tumor DNA. The diagnostic utility of ctDNA for the detection of epidermal growth factor receptor (EGFR) mutations harbored in tumors of patients with advanced non-small-cell lung cancer (NSCLC) is supported by the results of several large studies/meta-analyses. However, recent real-world studies suggest that the performance of ctDNA testing varies between geographic regions/laboratories, demonstrating the need for standardized guidance. In this review, we outline recommendations for obtaining an accurate result using ctDNA, relating to pre-analytical plasma processing, ctDNA extraction, and appropriate EGFR mutation detection methods, based on clinical trial results. We conclude that there are several advantages associated with ctDNA, including the potential for repeated sampling - particularly following progression after first-line tyrosine kinase inhibitor (TKI) therapy, as TKIs targeting resistance mutations (eg T790M) are now approved for use in the USA/EU/Japan (at time of writing). However, evidence suggests that ctDNA does not allow detection of EGFR mutations in all patients with known mutation-positive NSCLC. Therefore, although tumor tissue should be the first sample choice for EGFR testing at diagnosis, ctDNA is a promising alternative diagnostic approach.
Collapse
Affiliation(s)
- Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori Fondazione Giovanni Pascale, IRCCS, Napoli, Italy
| | - Marc G. Denis
- Department of Biochemistry, Nantes University Hospital, Nantes, France
| | | | | | - Martin Reck
- Department of Thoracic Oncology, LungenClinic Grosshansdorf, Grosshansdorf, Airway Research Center North (ARCN), Member of the German Centre for Lung Research (DZL), Germany
| |
Collapse
|
33
|
Malapelle U, Sirera R, Jantus-Lewintre E, Reclusa P, Calabuig-Fariñas S, Blasco A, Pisapia P, Rolfo C, Camps C. Profile of the Roche cobas® EGFR mutation test v2 for non-small cell lung cancer. Expert Rev Mol Diagn 2017; 17:209-215. [PMID: 28129709 DOI: 10.1080/14737159.2017.1288568] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION The discovery of driver mutations in non-small cell lung cancer (NSCLC) has led to the development of genome-based personalized medicine. Fifteen to 20% of adenocarcinomas harbor an epidermal growth factor receptor (EGFR) activating mutation associated with responses to EGFR tyrosine kinase inhibitors (TKIs). Individual laboratories' expertise and the availability of appropriate equipment are valuable assets in predictive molecular pathology, although the choice of methods should be determined by the nature of the samples to be tested and whether the detection of only well-characterized EGFR mutations or rather, of all detectable mutations, is required. Areas covered: The EGFR mutation testing landscape is manifold and includes both screening and targeted methods, each with their own pros and cons. Here we review one of these companion tests, the Roche cobas® EGFR mutation test v2, from a methodological point of view, also exploring its liquid-biopsy applications. Expert commentary: The Roche cobas® EGFR mutation test v2, based on real time RT-PCR, is a reliable option for testing EGFR mutations in clinical practice, either using tissue-derived DNA or plasma-derived cfDNA. This application will be valuable for laboratories with whose purpose is purely diagnostic and lacking high-throughput technologies.
Collapse
Affiliation(s)
- Umberto Malapelle
- a Department of Public Health , University of Naples Federico II , Naples , Italy
| | - Rafael Sirera
- b Department of Biotechnology , Universitat Politècnica de València , Valencia , Spain.,c Department of Medical Oncology , Hospital General Universitario de Valencia , Valencia , Spain.,d Molecular Oncology Laboratory , Fundación Hospital General Universitario de Valencia , Valencia , Spain
| | - Eloísa Jantus-Lewintre
- b Department of Biotechnology , Universitat Politècnica de València , Valencia , Spain.,c Department of Medical Oncology , Hospital General Universitario de Valencia , Valencia , Spain.,d Molecular Oncology Laboratory , Fundación Hospital General Universitario de Valencia , Valencia , Spain
| | - Pablo Reclusa
- e Phase I-Early Clinical Trials Unit, Oncology Department , Antwerp University Hospital , Antwerp , Belgium.,f Center for Oncological Research (CORE) , Antwerp University , Antwerp , Belgium
| | - Silvia Calabuig-Fariñas
- c Department of Medical Oncology , Hospital General Universitario de Valencia , Valencia , Spain.,d Molecular Oncology Laboratory , Fundación Hospital General Universitario de Valencia , Valencia , Spain.,g Department of Pathology , Universitat de València , Valencia , Spain
| | - Ana Blasco
- c Department of Medical Oncology , Hospital General Universitario de Valencia , Valencia , Spain
| | - Pasquale Pisapia
- a Department of Public Health , University of Naples Federico II , Naples , Italy
| | - Christian Rolfo
- e Phase I-Early Clinical Trials Unit, Oncology Department , Antwerp University Hospital , Antwerp , Belgium.,f Center for Oncological Research (CORE) , Antwerp University , Antwerp , Belgium
| | - Carlos Camps
- c Department of Medical Oncology , Hospital General Universitario de Valencia , Valencia , Spain.,d Molecular Oncology Laboratory , Fundación Hospital General Universitario de Valencia , Valencia , Spain.,h Department of Medicine , Universitat de València , Valencia , Spain.,i CIBERONC , Valencia , Spain
| |
Collapse
|
34
|
Circulating Cell Free Tumor DNA Detection as a Routine Tool forLung Cancer Patient Management. Int J Mol Sci 2017; 18:ijms18020264. [PMID: 28146051 PMCID: PMC5343800 DOI: 10.3390/ijms18020264] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/10/2017] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
Circulating tumoral DNA (ctDNA), commonly named “liquid biopsy”, has emerged as a new promising noninvasive tool to detect biomarker in several cancers including lung cancer. Applications involving molecular analysis of ctDNA in lung cancer have increased and encompass diagnosis, response to treatment, acquired resistance and prognosis prediction, while bypassing the problem of tumor heterogeneity. ctDNA may then help perform dynamic genetic surveillance in the era of precision medicine through indirect tumoral genomic information determination. The aims of this review were to examine the recent technical developments that allowed the detection of genetic alterations of ctDNA in lung cancer. Furthermore, we explored clinical applications in patients with lung cancer including treatment efficiency monitoring, acquired therapy resistance mechanisms and prognosis value.
Collapse
|