1
|
Wang X, Li H, Qu D. Dihydromyricetin protects sevoflurane-induced mitochondrial dysfunction in HT22 hippocampal cells. Clin Exp Pharmacol Physiol 2024; 51:e13912. [PMID: 39103220 DOI: 10.1111/1440-1681.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Sevoflurane (Sev) is a commonly used inhalation anaesthetic that has been shown to cause hippocampus dysfunction through multiple underlying molecular processes, including mitochondrial malfunction, oxidative stress and inflammation. Dihydromyricetin (DHM) is a 2,3-dihydroflavonoid with various biological properties, such as anti-inflammation and anti-oxidative stress. The purpose of this study was to investigate the effect of DHM on Sev-induced neuronal dysfunction. HT22 cells were incubated with 10, 20 and 30 μM of DHM for 24 h, and then stimulated with 4% Sev for 6 h. The effects and mechanism of DHM on inflammation, oxidative stress and mitochondrial dysfunction were explored in Sev-induced HT22 cells by Cell Counting Kit-8, flow cytometry, enzyme-linked immunosorbent assay, reverse transcription-quantitative polymerase chain reaction, colorimetric detections, detection of the level of reactive oxygen species (ROS), mitochondrial ROS and mitochondrial membrane potential (MMP), immunofluorescence and western blotting. Our results showed that DHM increased Sev-induced cell viability of HT22 cells. Pretreatment with DHM attenuated apoptosis, inflammation, oxidative stress and mitochondrial dysfunction in Sev-elicited HT22 cells by remedying the abnormality of the indicators involved in these progresses, including apoptosis rate, the cleaved-caspase 3 expression, as well as the level of tumour necrosis factor α, interleukin (IL)-1β, IL-6, malondialdehyde, superoxide dismutase, catalase, ROS, mitochondrial ROS and MMP. Mechanically, pretreatment with DHM restored the Sev-induced the expression of SIRT1/FOXO3a pathway in HT22 cells. Blocking of SIRT1 counteracted the mitigatory effect of DHM on apoptosis, inflammation, oxidative stress and mitochondrial dysfunction in Sev-elicited HT22 cells. Collectively, pretreatment with DHM improved inflammation, oxidative stress and mitochondrial dysfunction via SIRT1/FOXO3a pathway in Sev-induced HT22 cells.
Collapse
Affiliation(s)
- Xinyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haoyi Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dongchao Qu
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Luo S, Luo R, Deng G, Huang F, Lei Z. Programmed cell death, from liver Ischemia-Reperfusion injury perspective: An overview. Heliyon 2024; 10:e32480. [PMID: 39040334 PMCID: PMC11260932 DOI: 10.1016/j.heliyon.2024.e32480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 07/24/2024] Open
Abstract
Liver ischemia-reperfusion injury (LIRI) commonly occurs in liver resection, liver transplantation, shock, and other hemorrhagic conditions, resulting in profound local and systemic effects via associated inflammatory responses and hepatic cell death. Hepatocyte death is a significant component of LIRI and its mechanism was previously thought to be limited to apoptosis and necrosis. With the discovery of novel types of programmed cell death (PCD), necroptosis, ferroptosis, pyroptosis, autophagy, NETosis, and parthanatos have been shown to be involved in LIRI. Understanding the mechanisms underlying cell death following LIRI is indispensable to mitigating the widespread effects of LIRI. Here, we review the roles of different PCD and discuss potential therapy in LIRI.
Collapse
Affiliation(s)
- Shaobin Luo
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Rongkun Luo
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
| | - Gang Deng
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
| | - Feizhou Huang
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
| | - Zhao Lei
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
| |
Collapse
|
3
|
Yang JW, Zou Y, Chen J, Cui C, Song J, Yang MM, Gao J, Hu HQ, Xia LQ, Wang LM, Lv XY, Chen L, Hou XG. Didymin alleviates metabolic dysfunction-associated fatty liver disease (MAFLD) via the stimulation of Sirt1-mediated lipophagy and mitochondrial biogenesis. J Transl Med 2023; 21:921. [PMID: 38115075 PMCID: PMC10731721 DOI: 10.1186/s12967-023-04790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is one of the most prevalent metabolic syndromes worldwide. However, no approved pharmacological treatments are available for MAFLD. Chenpi, one kind of dried peel of citrus fruits, has traditionally been utilized as a medicinal herb for liver diseases. Didymin is a newly identified oral bioactive dietary flavonoid glycoside derived from Chenpi. In this study, we investigated the therapeutic potential of Didymin as an anti-MAFLD drug and elucidated its underlying mechanisms. METHODS High-fat diet (HFD)-induced MAFLD mice and alpha mouse liver 12 (AML12) cells were utilized to evaluate the effects and mechanisms of Didymin in the treatment of MAFLD. Liver weight, serum biochemical parameters, and liver morphology were examined to demonstrate the therapeutic efficacy of Didymin in MAFLD treatment. RNA-seq analysis was performed to identify potential pathways that could be affected by Didymin. The impact of Didymin on Sirt1 was corroborated through western blot, molecular docking analysis, microscale thermophoresis (MST), and deacetylase activity assay. Then, a Sirt1 inhibitor (EX-527) was utilized to confirm that Didymin alleviates MAFLD via Sirt1. Western blot and additional assays were used to investigate the underlying mechanisms. RESULTS Our results suggested that Didymin may possess therapeutic potential against MAFLD in vitro and in vivo. By promoting Sirt1 expression as well as directly binding to and activating Sirt1, Didymin triggers downstream pathways that enhance mitochondrial biogenesis and function while reducing apoptosis and enhancing lipophagy. CONCLUSIONS These suggest that Didymin could be a promising medication for MAFLD treatment. Furthermore, its therapeutic effects are mediated by Sirt1.
Collapse
Affiliation(s)
- Jing-Wen Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ying Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jun Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chen Cui
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Meng-Meng Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jing Gao
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hui-Qing Hu
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Long-Qing Xia
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Li-Ming Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiao-Yu Lv
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
| | - Xin-Guo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, China.
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Jinan, China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
4
|
Abstract
Studies have found that intermittent fasting (IF) can prevent diabetes, cancer, heart disease, and neuropathy, while in humans it has helped to alleviate metabolic syndrome, asthma, rheumatoid arthritis, Alzheimer's disease, and many other disorders. IF involves a series of coordinated metabolic and hormonal changes to maintain the organism's metabolic balance and cellular homeostasis. More importantly, IF can activate hepatic autophagy, which is important for maintaining cellular homeostasis and energy balance, quality control, cell and tissue remodeling, and defense against extracellular damage and pathogens. IF affects hepatic autophagy through multiple interacting pathways and molecular mechanisms, including adenosine monophosphate (AMP)-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), silent mating-type information regulatory 2 homolog-1 (SIRT1), peroxisomal proliferator-activated receptor alpha (PPARα) and farnesoid X receptor (FXR), as well as signaling pathways and molecular mechanisms such as glucagon and fibroblast growth factor 21 (FGF21). These pathways can stimulate the pro-inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α), play a cytoprotective role, downregulate the expression of aging-related molecules, and prevent the development of steatosis-associated liver tumors. By influencing the metabolism of energy and oxygen radicals as well as cellular stress response systems, IF protects hepatocytes from genetic and environmental factors. By activating hepatic autophagy, IF has a potential role in treating a variety of liver diseases, including non-alcoholic fatty liver disease, drug-induced liver injury, viral hepatitis, hepatic fibrosis, and hepatocellular carcinoma. A better understanding of the effects of IF on liver autophagy may lead to new approaches for the prevention and treatment of liver disease.
Collapse
Affiliation(s)
- Ya-Nan Ma
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Xuemei Jiang
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wei Tang
- International Health Care Center, National Center for Global Health and Medicine, Tokyo, Japan
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Peipei Song
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Ding H, Cheng Q, Fang X, Wang Z, Fang J, Liu H, Zhang J, Chen C, Zhang W. Dihydromyricetin Alleviates Ischemic Brain Injury by Antagonizing Pyroptosis in Rats. Neurotherapeutics 2023; 20:1847-1858. [PMID: 37603215 PMCID: PMC10684453 DOI: 10.1007/s13311-023-01425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 08/22/2023] Open
Abstract
Ischemic stroke is a worldwide disease that seriously threatens human health, and there are few effective drugs to treat it. Dihydromyricetin (DHM) has anti-inflammatory, antioxidant, and antiapoptotic functions. We identified pyroptosis following ischemic stroke. Here, we investigated the effect of DHM on ischemic stroke and pyroptosis. In the first part of the experiment, Sprague-Dawley rats were randomly divided into the sham group and MCAO group. The MCAO model was established by occlusion of the middle cerebral artery for 90 min using a silica gel suture. The ischemic penumbra was used for mRNA sequencing 1 day after reperfusion. In the second part, rats were divided into the sham group, MCAO group, and DHM group. DHM was injected intraperitoneally at the same time as reperfusion starting 90 min after embolization for 7 consecutive days. The changes in pyroptosis were observed by morphological and molecular methods. The transcriptomics results suggested the presence of NLRP3-mediated pyroptotic death pathway activation after modeling. The Longa score was increased after MCAO and decreased after DHM treatment. 2,3,5-Triphenyltetrazolium chloride (TTC) staining showed that DHM could reduce the infarct volume induced by MCAO. Nissl staining showed disordered neuronal arrangement and few Nissl bodies in the MCAO group, but this effect was reversed by DHM treatment. Analysis of pyroptosis-related molecules showed that the MCAO group had serious pyroptosis, and DHM effectively reduced pyroptosis. Our results demonstrate that DHM has a neuroprotective effect on ischemic stroke that is at least partly achieved by reducing pyroptosis.
Collapse
Affiliation(s)
- Huiru Ding
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Quancheng Cheng
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xuan Fang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ziyuan Wang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jinyu Fang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Huaicun Liu
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Junwei Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chunhua Chen
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Weiguang Zhang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
6
|
Omorou M, Huang Y, Gao M, Mu C, Xu W, Han Y, Xu H. The forkhead box O3 (FOXO3): a key player in the regulation of ischemia and reperfusion injury. Cell Mol Life Sci 2023; 80:102. [PMID: 36939886 PMCID: PMC11072419 DOI: 10.1007/s00018-023-04755-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 03/21/2023]
Abstract
Forkhead box O3 is a protein encoded by the FOXO3 gene expressed throughout the body. FOXO3 could play a crucial role in longevity and many other pathologies, such as Alzheimer's disease, glioblastoma, and stroke. This study is a comprehensive review of the expression of FOXO3 under ischemia and reperfusion (IR) and the molecular mechanisms of its regulation and function. We found that the expression level of FOXO3 under ischemia and IR is tissue-specific. Specifically, the expression level of FOXO3 is increased in the lung and intestinal epithelial cells after IR. However, FOXO3 is downregulated in the kidney after IR and in the skeletal muscles following ischemia. Interestingly, both increased and decreased FOXO3 expression have been reported in the brain, liver, and heart following IR. Nevertheless, these contribute to stimulating ischemia and reperfusion injury via the induction of inflammatory response, apoptosis, autophagy, mitophagy, pyroptosis, and oxidative damage. These results suggest that FOXO3 could play protective effects in some organs and detrimental effects in others against IR injury. Most importantly, these findings indicate that controlling FOXO3 expression, genetically or pharmacologically, could contribute to preventing or treating ischemia and reperfusion damage.
Collapse
Affiliation(s)
- Moussa Omorou
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Yiwei Huang
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Meng Gao
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Chenxi Mu
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Weijing Xu
- Department Epidemiology and Health Statistics, Jiamusi University School of Public Health, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Yuchun Han
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Hui Xu
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, 154000, Heilongjiang, People's Republic of China.
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, 154000, Heilongjiang, People's Republic of China.
| |
Collapse
|
7
|
Paik S, Kim KT, Kim IS, Kim YJ, Kim HJ, Choi S, Kim HJ, Jo EK. Mycobacterial acyl carrier protein suppresses TFEB activation and upregulates miR-155 to inhibit host defense. Front Immunol 2022; 13:946929. [PMID: 36248815 PMCID: PMC9559204 DOI: 10.3389/fimmu.2022.946929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Mycobacterial acyl carrier protein (AcpM; Rv2244), a key protein involved in Mycobacterium tuberculosis (Mtb) mycolic acid production, has been shown to suppress host cell death during mycobacterial infection. This study reports that mycobacterial AcpM works as an effector to subvert host defense and promote bacterial growth by increasing microRNA (miRNA)-155-5p expression. In murine bone marrow-derived macrophages (BMDMs), AcpM protein prevented transcription factor EB (TFEB) from translocating to the nucleus in BMDMs, which likely inhibited transcriptional activation of several autophagy and lysosomal genes. Although AcpM did not suppress autophagic flux in BMDMs, AcpM reduced Mtb and LAMP1 co-localization indicating that AcpM inhibits phagolysosomal fusion during Mtb infection. Mechanistically, AcpM boosted the Akt-mTOR pathway in BMDMs by upregulating miRNA-155-5p, a SHIP1-targeting miRNA. When miRNA-155-5p expression was inhibited in BMDMs, AcpM-induced increased intracellular survival of Mtb was suppressed. In addition, AcpM overexpression significantly reduced mycobacterial clearance in C3HeB/FeJ mice infected with recombinant M. smegmatis strains. Collectively, our findings point to AcpM as a novel mycobacterial effector to regulate antimicrobial host defense and a potential new therapeutic target for Mtb infection.
Collapse
Affiliation(s)
- Seungwha Paik
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- *Correspondence: Seungwha Paik, ; Eun-Kyeong Jo,
| | - Kyeong Tae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - In Soo Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hyeon Ji Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Seunga Choi
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hwa-Jung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
- *Correspondence: Seungwha Paik, ; Eun-Kyeong Jo,
| |
Collapse
|
8
|
Asong-Fontem N, Panisello-Rosello A, Beghdadi N, Lopez A, Rosello-Catafau J, Adam R. Pre-Ischemic Hypothermic Oxygenated Perfusion Alleviates Protective Molecular Markers of Ischemia-Reperfusion Injury in Rat Liver. Transplant Proc 2022; 54:1954-1969. [PMID: 35961798 DOI: 10.1016/j.transproceed.2022.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/26/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022]
Abstract
To expand the pool of organs, hypothermic oxygenated perfusion (HOPE), one of the most promising perfusion protocols, is currently performed after cold storage (CS) at transplant centers (HOPE-END). We investigated a new timing for HOPE, hypothesizing that performing HOPE before CS (HOPE-PRE) could boost mitochondrial protection allowing the graft to better cope with the accumulation of oxidative stress during CS. We analyzed liver injuries at 3 different levels. Histologic analysis demonstrated that, compared to classical CS (CTRL), the HOPE-PRE group showed significantly less ischemic necrosis compared to CTRL vs HOPE-END. From a biochemical standpoint, transaminases were lower after 2 hours of reperfusion in the CTRL vs HOPE-PRE group, which marked decreased liver injury. qPCR analysis on 37 genes involved in ischemia-reperfusion injury revealed protection in HOPE-PRE and HOPE-END compared to CTRL mediated through similar pathways. However, the CTRL vs HOPE-PRE group demonstrated an increased transcriptional level for protective genes compared to the CTRL vs HOPE-END group. This study provides insights on novel biomarkers that could be used in the clinic to better characterize graft quality improving transplantation outcomes.
Collapse
Affiliation(s)
- Njikem Asong-Fontem
- Université Paris-Saclay, Faculté de Médecine, Unité Chronothérapie, Cancers et Transplantation, Kremlin-Bicêtre, France.
| | - Arnau Panisello-Rosello
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - Nassiba Beghdadi
- Université Paris-Saclay, Faculté de Médecine, Unité Chronothérapie, Cancers et Transplantation, Kremlin-Bicêtre, France; Center Hépato-Biliaire, APHP Hôpital Universitaire Paul Brousse, Villejuif, France
| | - Alexandre Lopez
- Université Paris-Saclay, Faculté de Médecine, Unité Chronothérapie, Cancers et Transplantation, Kremlin-Bicêtre, France
| | - Joan Rosello-Catafau
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - René Adam
- Université Paris-Saclay, Faculté de Médecine, Unité Chronothérapie, Cancers et Transplantation, Kremlin-Bicêtre, France; Center Hépato-Biliaire, APHP Hôpital Universitaire Paul Brousse, Villejuif, France
| |
Collapse
|
9
|
Tao X, Jiang Y, Zheng X, Ji X, Peng F. Dihydromyricetin ameliorates oxygen‑glucose deprivation and re‑oxygenation‑induced injury in HT22 cells by activating the Wnt/β‑catenin signaling pathway. Mol Med Rep 2022; 25:103. [PMID: 35088876 PMCID: PMC8822877 DOI: 10.3892/mmr.2022.12619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/20/2021] [Indexed: 11/06/2022] Open
Abstract
Dihydromyricetin (DMY) is a natural flavonoid that possesses a wide range of pharmacological properties. The aim of the present study was to determine whether DMY could protect against nerve cell injury following ischemic stroke through antioxidant and neuroprotective effects. The effects of DMY on the viability, oxidative stress and apoptosis of HT22 cells following oxygen‑glucose deprivation and re‑oxygenation (OGD/R) were examined using MTT, lactate dehydrogenase (LDH), superoxide (SOD), malondialdehyde (MDA), western blot and TUNEL assays. Furthermore, Wnt/β‑catenin signaling proteins in OGD/R‑stimulated HT22 cells were detected in the presence or absence of DMY. In a separate experiment, the effect of DMY on OGD/R‑induced HT22 cell injury was also observed in the presence of the Wnt/β‑catenin inhibitor, XAV939. The results demonstrated that DMY had no impact on the survival of untreated HT22 cells, although DMY treatment significantly increased cell viability and inhibited cytotoxicity, oxidative stress and apoptosis following OGD/R. In addition, DMY upregulated the expression of Wnt/β‑catenin in OGD/R‑stimulated HT22 cells. In conclusion, DMY protected HT22 cells from OGD/R‑induced oxidative stress and apoptosis, and its effects may be mediated by the activation of the Wnt/β‑catenin signaling pathway.
Collapse
Affiliation(s)
- Xiaoxiao Tao
- Department of Neurology, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, P.R. China
| | - Yaping Jiang
- Department of Clinical Laboratory, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, P.R. China
| | - Xian Zheng
- Department of Neurology, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, P.R. China
| | - Xiaoxiao Ji
- Department of Neurology, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, P.R. China
| | - Feifei Peng
- Department of Neurology, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, P.R. China
| |
Collapse
|
10
|
Zhang Q, Zhao Y, Zhang M, Zhang Y, Ji H, Shen L. Recent advances in research on vine tea, a potential and functional herbal tea with dihydromyricetin and myricetin as major bioactive compounds. J Pharm Anal 2021; 11:555-563. [PMID: 34765268 PMCID: PMC8572699 DOI: 10.1016/j.jpha.2020.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Vine tea has been used as an herbal tea by several ethnic minorities for hundreds of years in China. Flavonoids, a kind of indispensable component in a variety of nutraceutical, pharmaceutical and cosmetic applications, are identified to be the major metabolites and bioactive ingredients in vine tea. Interestingly, vine tea exhibits a wide range of significant bioactivities including anti-oxidant, anti-inflammatory, anti-tumor, antidiabetic, neuroprotective and other activities, but no toxicity. These bioactivities, to some extent, enrich the understanding about the role of vine tea in disease prevention and therapy. The health benefits of vine tea, particularly dihydromyricetin and myricetin, are widely investigated. However, there is currently no comprehensive review available on vine tea. Therefore, this report summarizes the most recent studies investigating bioactive constituents, pharmacological effects and possible mechanisms of vine tea, which will provide a better understanding about the health benefits and preclinical assessment of novel application of vine tea.
Collapse
Affiliation(s)
- Qili Zhang
- College of Life Sciences, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yanfang Zhao
- College of Life Sciences, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Meiyan Zhang
- Department of Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Yalu Zhang
- Department of Pharmacy, The Affiliated Hospital of Jining Medical College, Jining, Shandong 272100, China
| | - Hongfang Ji
- College of Life Sciences, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Liang Shen
- College of Life Sciences, Shandong University of Technology, Zibo, Shandong 255000, China
| |
Collapse
|
11
|
Chen J, Wang X, Xia T, Bi Y, Liu B, Fu J, Zhu R. Molecular mechanisms and therapeutic implications of dihydromyricetin in liver disease. Biomed Pharmacother 2021; 142:111927. [PMID: 34339914 DOI: 10.1016/j.biopha.2021.111927] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Recent studies demonstrated that dihydromyricetin (DHM) has prominent therapeutic effects on liver injury and liver cancer. By summarizing the current preclinical in vitro and in vivo studies, the present review examines the preventive and therapeutic effects of DHM on liver disorders as well as its potential mechanisms. Briefly, in both chemical- and alcohol-induced liver injury models, DHM ameliorates hepatocyte necrosis and steatosis while promoting liver regeneration. In addition, DHM can alleviate nonalcoholic fatty liver disease (NAFLD) via regulating lipid/glucose metabolism, probably due to its anti-inflammatory or sirtuins-dependent mechanisms. Furthermore, DHM treatment inhibits cell proliferation, induces apoptosis and autophagy and regulates redox balance in liver cancer cells, thus exhibiting remarkable anti-cancer effects. The pharmacological mechanisms of DHM may be associated with its anti-inflammatory, anti-oxidative and apoptosis-regulatory benefits. With the accumulating interests in utilizing natural products to target common diseases, our work aims to improve the understanding of DHM acting as a novel drug candidate for liver diseases and to accelerate its translation from bench to bedside.
Collapse
Affiliation(s)
- Jingnan Chen
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China; Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, China
| | - Xitong Wang
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China; Laboratory of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, China
| | - Tian Xia
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China; Laboratory of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, China
| | - Yanhua Bi
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China
| | - Bin Liu
- Laboratory of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, China.
| | - Junfen Fu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China; Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, China.
| | - Runzhi Zhu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China; Laboratory of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, China; Cancer Center, Zhejiang University, China.
| |
Collapse
|
12
|
Xu Y, Ji Y, Li X, Ding J, Chen L, Huang Y, Wei W. URI1 suppresses irradiation-induced reactive oxygen species (ROS) by activating autophagy in hepatocellular carcinoma cells. Int J Biol Sci 2021; 17:3091-3103. [PMID: 34421352 PMCID: PMC8375238 DOI: 10.7150/ijbs.55689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy has been extensively applied in cancer treatment. However, this treatment is ineffective in Hepatocellular carcinoma (HCC) due to lack of radiosensitivity. Unconventional prefoldin RPB5 interactor 1 (URI1) exhibits characteristics similar to those oncoproteins, which promotes survival of cancer cells. As a consequence of the irradiation, the levels of endogenous reactive oxygen species (ROS) rise. In the current study, we analyzed the role of URI1 in the control of ROS levels in HepG2 cells. Upon URI1 overexpression, HepG2 cells significantly suppressed irradiation-induced ROS, which may help cells escape from oxidative toxicity. And our data demonstrated that overexpression of URI1 not only resulted in an increase of autophagic flux, but also resulted in an further increased capacity of autophagy to eliminate ROS. It indicated that URI1 suppressed irradiation-induced ROS through activating autophagy. Moreover, URI1 activated autophagy by promoting the activities of AMP-activated protein kinase (AMPK). Results showed that overexpression of URI1 increased the phosphorylation of AMPKα at the Thr172 residue and the activated-AMPK promoted the phosphorylation of forkhead box O3 (FOXO3) at the Ser253 residue, which significantly induced autophagy. Taken together, our findings provide a mechanism that URI1 suppresses irradiation-induced ROS by activating autophagy through AMPK/FOXO3 signaling pathway. These new molecular insights will provide an important contribution to our better understanding about irradiation insensitivity of HCC.
Collapse
Affiliation(s)
- Yue Xu
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| | - Yuan Ji
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| | - Xiang Li
- Department of Endocrinology, Children's Hospital affiliated to Soochow University, Suzhou, 215000, China
| | - JiaZheng Ding
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| | - LinQi Chen
- Department of Endocrinology, Children's Hospital affiliated to Soochow University, Suzhou, 215000, China
| | - YaFeng Huang
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| | - Wenxiang Wei
- ✉ Corresponding author: Wenxiang Wei, Department of Cell Biology and Institute of Bioengineering, School of Medicine, Soochow University, Suzhou, 215123 China. 86-512-5188-0107;
| |
Collapse
|
13
|
Silva J, Carry E, Xue C, Zhang J, Liang J, Roberge JY, Davies DL. A Novel Dual Drug Approach That Combines Ivermectin and Dihydromyricetin (DHM) to Reduce Alcohol Drinking and Preference in Mice. Molecules 2021; 26:molecules26061791. [PMID: 33810134 PMCID: PMC8004700 DOI: 10.3390/molecules26061791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol use disorder (AUD) affects over 18 million people in the US. Unfortunately, pharmacotherapies available for AUD have limited clinical success and are under prescribed. Previously, we established that avermectin compounds (ivermectin [IVM] and moxidectin) reduce alcohol (ethanol/EtOH) consumption in mice, but these effects are limited by P-glycoprotein (Pgp/ABCB1) efflux. The current study tested the hypothesis that dihydromyricetin (DHM), a natural product suggested to inhibit Pgp, will enhance IVM potency as measured by changes in EtOH consumption. Using a within-subjects study design and two-bottle choice study, we tested the combination of DHM (10 mg/kg; i.p.) and IVM (0.5–2.5 mg/kg; i.p.) on EtOH intake and preference in male and female C57BL/6J mice. We also conducted molecular modeling studies of DHM with the nucleotide-binding domain of human Pgp that identified key binding residues associated with Pgp inhibition. We found that DHM increased the potency of IVM in reducing EtOH consumption, resulting in significant effects at the 1.0 mg/kg dose. This combination supports our hypothesis that inhibiting Pgp improves the potency of IVM in reducing EtOH consumption. Collectively, we demonstrate the feasibility of this novel combinatorial approach in reducing EtOH consumption and illustrate the utility of DHM in a novel combinatorial approach.
Collapse
Affiliation(s)
- Joshua Silva
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA 90089, USA; (J.S.); (C.X.); (J.Z.); (J.L.)
| | - Eileen Carry
- Molecular Design and Synthesis Group, Rutgers University Biomedical Research Innovation Core, Piscataway, NJ 08854, USA; (E.C.); (J.Y.R.)
| | - Chen Xue
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA 90089, USA; (J.S.); (C.X.); (J.Z.); (J.L.)
| | - Jifeng Zhang
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA 90089, USA; (J.S.); (C.X.); (J.Z.); (J.L.)
| | - Jing Liang
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA 90089, USA; (J.S.); (C.X.); (J.Z.); (J.L.)
| | - Jacques Y. Roberge
- Molecular Design and Synthesis Group, Rutgers University Biomedical Research Innovation Core, Piscataway, NJ 08854, USA; (E.C.); (J.Y.R.)
| | - Daryl L. Davies
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA 90089, USA; (J.S.); (C.X.); (J.Z.); (J.L.)
- Correspondence: ; Tel.: +13-23-442-1427
| |
Collapse
|
14
|
Gao J, Shi N, Guo H, Gao J, Tang X, Yuan S, Qian J, Wen B. UPLC-Q-TOF/MS-Based Metabolomics Approach to Reveal the Hepatotoxicity of Emodin and Detoxification of Dihydromyricetin. ACS OMEGA 2021; 6:5348-5358. [PMID: 33681574 PMCID: PMC7931181 DOI: 10.1021/acsomega.0c05488] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/12/2021] [Indexed: 05/05/2023]
Abstract
Dihydromyricetin (DMY), an important flavanone found in Ampelopsis grossedentata, plays a protective role in liver injury. Our previous research found that DMY protected L02 cells against hepatotoxicity caused by emodin. In this study, serum, urine, and liver samples from rats were systematically used for biochemical analysis, pathological observation, and nontargeted metabolomics to evaluate the toxicity of emodin and DMY intervention. After oral administration of DMY, DMY may alleviate liver injury by improving liver metabolism. Approximately, 8 of 15 metabolites in rat urine and serum were significantly regulated by DMY. Metabolic pathway analysis showed that glutathione metabolism, pyrimidine metabolism, and tryptophan metabolism were the most affected pathways, and 18 proteins were predicted to be potential targets of DMY during the alleviation of liver injury induced by emodin. This research is of great significance in confirming the liver-protective effect of DMY, especially during acute liver injury caused by traditional Chinese medicine.
Collapse
Affiliation(s)
- Jian Gao
- Beijing
University of Chinese Medicine, Beijing 100029, P. R. China
- Dongfang
Hospital, Beijing University of Chinese
Medicine, Beijing 100078, P. R. China
| | - Ning Shi
- Pharmaceutical
Department of Characteristic Medical Center, Strategic Support Force, Beijing 100101, P. R. China
| | - Hongju Guo
- Pharmaceutical
Department of Characteristic Medical Center, Strategic Support Force, Beijing 100101, P. R. China
| | - Junfeng Gao
- Dongfang
Hospital, Beijing University of Chinese
Medicine, Beijing 100078, P. R. China
| | - Xu Tang
- Dongfang
Hospital, Beijing University of Chinese
Medicine, Beijing 100078, P. R. China
| | - Siyuan Yuan
- Dongfang
Hospital, Beijing University of Chinese
Medicine, Beijing 100078, P. R. China
| | - Jiahui Qian
- Beijing
University of Chinese Medicine, Beijing 100029, P. R. China
| | - Binyu Wen
- Dongfang
Hospital, Beijing University of Chinese
Medicine, Beijing 100078, P. R. China
| |
Collapse
|
15
|
Zhang F, Gao F, Wang K, Liu X, Zhang Z. MiR-34a inhibitor protects mesenchymal stem cells from hyperglycaemic injury through the activation of the SIRT1/FoxO3a autophagy pathway. Stem Cell Res Ther 2021; 12:115. [PMID: 33546760 PMCID: PMC7866658 DOI: 10.1186/s13287-021-02183-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are favourable treatments for ischaemic diseases; however, MSCs from diabetic patients are not useful for this purpose. Recent studies have shown that the expression of miR-34a is significantly increased in patients with hyperglycaemia; the precise role of miR-34a in MSCs in diabetes needs to be clarified. OBJECTIVE The aim of this study is to determine the precise role of miR-34a in MSCs exposed to hyperglycaemia and in recovery heart function after myocardial infarction (MI) in diabetes mellitus (DM) rats. METHODS DM rat models were established by high-fat diet combined with streptozotocin (STZ) injection. MSCs were isolated from the bone marrow of donor rats. Chronic culture of MSCs under high glucose was used to mimic the DM micro-environment. The role of miR-34a in regulating cell viability, senescence and paracrine effects were investigated using a cell counting kit-8 (CCK-8) assay, senescence-associated β-galactosidase (SA-β-gal) staining and vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) ELISA, respectively. The expression of autophagy- and senescence-associated proteins in MSCs and silent information regulator 1 (SIRT1) and forkhead box class O 3a (FoxO3a) were analysed by western blotting. Autophagic bodies were analysed by transmission electron microscopy (TEM). The MI model was established by left anterior descending coronary artery (LAD) ligation, and then, the rats were transplanted with differentially treated MSCs intramuscularly at sites around the border zone of the infarcted heart. Thereafter, cardiac function in rats in each group was detected via cardiac ultrasonography at 1 week and 3 weeks after surgery. The infarct size was determined through a 2,3,5-triphenyltetrazolium chloride (TTC) staining assay, while myocardial fibrosis was assessed by Masson staining. RESULTS The results of the current study showed that miR-34a was significantly increased under chronic hyperglycaemia exposure. Overexpression of miR-34a was significantly associated with impaired cell viability, exacerbated senescence and disrupted cell paracrine capacity. Moreover, we found that the mechanism underlying miR-34a-mediated deterioration of MSCs exposed to high glucose involved the activation of the SIRT1/FoxO3a autophagy pathway. Further analysis showed that miR-34a inhibitor-treated MSC transplantation could improve cardiac function and decrease the scar area in DM rats. CONCLUSIONS Our study demonstrates for the first time that miR-34a mediates the deterioration of MSCs' functions under hyperglycaemia. The underlying mechanism may involve the SIRT1/FoxO3a autophagy signalling pathway. Thus, inhibition of miR-34a might have important therapeutic implications in MSC-based therapies for myocardial infarction in DM patients.
Collapse
Affiliation(s)
- Fengyun Zhang
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221000, People's Republic of China
| | - Fei Gao
- Department of Cardiology, Institute of Cardiovascular Research, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Kun Wang
- Department of Cardiology, First People's Hospital of Suqian, Suqian, People's Republic of China
| | - Xiaohong Liu
- Department of Cardiology, Institute of Cardiovascular Research, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Zhuoqi Zhang
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221000, People's Republic of China.
| |
Collapse
|
16
|
Xu B, Zhang X, Gao Y, Song J, Shi B. Microglial Annexin A3 promoted the development of melanoma via activation of hypoxia-inducible factor-1α/vascular endothelial growth factor signaling pathway. J Clin Lab Anal 2021; 35:e23622. [PMID: 33118214 PMCID: PMC7891517 DOI: 10.1002/jcla.23622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Melanoma, a relatively common malignancy, has become one of the tumors with the fastest rising incidence in recent years. The purpose of this study was to investigate the effect of Microglial Annexin A3 (ANXA3) on melanoma. METHODS Serum samples were obtained from 20 patients with melanoma or 20 healthy controls. Kaplan-Meier survival analysis was performed. Transcriptome were used to analyze the correlation between ANXA3 expression and overall survival in patients with melanoma. Human melanoma cell lines WM-115 cells were transfected with ANXA3, si-ANXA3, ANXA3 + si-hypoxia inducible factor-1α (HIF-1α), si-ANXA3 + HIF-1α, and negative plasmids. Cell proliferation assay, cell invasion assay, and wound healing assay were performed on WM-115 cells. Lactate dehydrogenase (LDH) and caspase-3/9 activities were detected by commercial kits. Western blot and RT-PCR were used to detect the protein and mRNA expression of relation factors. RESULTS ANXA3 expression was up-regulated in patients with melanoma in comparison with healthy controls. Over-expression of ANXA3 promoted cell growth and migration, and reduced cytotoxicity of WM-115 cells. Overall survival (OS) and disease-free survival (DFS) of patients with high ANXA3 expression were both lower than those of patients with low ANXA3 expression. Down-regulation of ANXA3 reduced cell growth and migration, and promoted cytotoxicity of WM-115 cells. ANXA3 induced vascular endothelial growth factor (VEGF) signaling pathway by activation of HIF-1α. CONCLUSION In conclusion, our results indicated that ANXA3 promoted cell growth and migration of melanoma via activation of HIF-1α/VEGF signaling pathway.
Collapse
Affiliation(s)
- Bin Xu
- Department of SurgeryZhejiang Rehabilitation Medical CenterHangzhouChina
| | - Xiping Zhang
- Department of Tumor SurgeryZhejiang Cancer HospitalHangzhouChina
| | - Yuan Gao
- Department of SurgeryZhejiang Rehabilitation Medical CenterHangzhouChina
| | - Jianfei Song
- Department of SurgeryZhejiang Rehabilitation Medical CenterHangzhouChina
| | - Bailing Shi
- Department of SurgeryThe Third Affiliated Hospital of ZhejiangChinese Medical UniversityHangzhouChina
| |
Collapse
|
17
|
Fan X, Zeng Y, Fan Z, Cui L, Song W, Wu Q, Gao Y, Yang D, Mao X, Zeng B, Zhang M, Ni Q, Li Y, Wang T, Li D, Yang M. Dihydromyricetin promotes longevity and activates the transcription factors FOXO and AOP in Drosophila. Aging (Albany NY) 2020; 13:460-476. [PMID: 33291074 PMCID: PMC7835053 DOI: 10.18632/aging.202156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022]
Abstract
Drugs or compounds have been shown to promote longevity in various approaches. We used Drosophila to explore novel natural compounds can be applied to anti-aging. Here we reported that a flavonoid named Dihydromyricetin can increase stress that tolerance and lipid levels, slow down gut dysfunction and extend Drosophila lifespan. Dihydromyricetin can also lessen pERK and pAKT signaling, consequently activating FOXO and AOP to modulate longevity. Our results suggested that DHM could be used as an effective compound for anti-aging intervention, which could likely be applied to both mammals and humans.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yao Zeng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Ziqiang Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Liang Cui
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Wenhao Song
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Qi Wu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yue Gao
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xueping Mao
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingwang Zhang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qingyong Ni
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tao Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Cheng QC, Fan J, Deng XW, Liu HC, Ding HR, Fang X, Wang JW, Chen CH, Zhang WG. Dihydromyricetin ameliorates chronic liver injury by reducing pyroptosis. World J Gastroenterol 2020; 26:6346-6360. [PMID: 33244197 PMCID: PMC7656208 DOI: 10.3748/wjg.v26.i41.6346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/30/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic liver injury (CLI) is now a worldwide disease. However, there is no effective treatment. Pyroptosis plays an essential role in CLI. Dihydromyricetin (DHM) resists oxidation and protects the liver. We hypothesize that the beneficial effect of DHM on CLI is related to its effect on the expression of pyroptosis-related molecules. Therefore, we studied the influence of DHM on CLI and pyroptosis.
AIM To study the role of pyroptosis in the pathogenesis of CLI and the therapeutic mechanism of DHM.
METHODS Thirty-two mice were randomly divided into four groups: The control group was injected with olive oil, the carbon tetrachloride (CCl4) group was injected with CCl4, the vehicle group was injected with hydroxypropyl-β-cyclodextrin while injecting CCl4 and the DHM group was injected with DHM while injecting CCl4. After four weeks of treatment, liver tissues from the mice were stained with hematoxylin and eosin, and oil red O. Blood was collected from the angular vein for serological analysis. The severity of CLI was estimated. Some liver tissue was sampled for immunohistochemistry, Western blotting and quantitative reverse transcription PCR to observe the changes in pyroptosis-related molecules.
RESULTS Serum total cholesterol, low density lipoprotein, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the CCl4 group were higher than those in the control group, and serum total cholesterol, low density lipoprotein, AST and ALT in the DHM group were lower than those in the vehicle group. Hematoxylin and eosin and oil red O staining showed that there were more lipid droplets in the CCl4 group than in the control group, and there were fewer lipid droplets in the DHM group than in the vehicle group. Western blotting showed that the expression of the pyroptosis-related molecules caspase-1, NOD-, LRR- and pyrin domain-containing 3 (NLRP3) and gasdermin D (GSDMD)-N in the CCl4 group was higher than that in the control group, while expression of these proteins in the DHM group was lower than that in the vehicle group. Quantitative reverse transcription PCR results showed that the expression of the pyroptosis-related genes caspase-1, NLRP3, GSDMD and interleukin-1β (IL-1β) in the CCl4 group was higher than that in the control group, while there was no significant change in NLRP3 and caspase-1 expression in the DHM group compared with that in the vehicle group, and the expression of GSDMD and IL-1β was decreased.
CONCLUSION DHM improves CCl4-induced CLI and regulates the pyroptosis pathway in hepatocytes. DHM may be a potential therapeutic agent for CLI.
Collapse
Affiliation(s)
- Quan-Cheng Cheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jing Fan
- Xin Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 202155, China
| | - Xin-Wei Deng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Huai-Cun Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hui-Ru Ding
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xuan Fang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jian-Wei Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chun-Hua Chen
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Guang Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
19
|
Sayed AM, Hassanein EH, Salem SH, Hussein OE, Mahmoud AM. Flavonoids-mediated SIRT1 signaling activation in hepatic disorders. Life Sci 2020; 259:118173. [DOI: 10.1016/j.lfs.2020.118173] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
|
20
|
Jin P, Li LH, Shi Y, Hu NB. Salidroside inhibits apoptosis and autophagy of cardiomyocyte by regulation of circular RNA hsa_circ_0000064 in cardiac ischemia-reperfusion injury. Gene 2020; 767:145075. [PMID: 32858179 DOI: 10.1016/j.gene.2020.145075] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/08/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
Salidroside (Sal), a natural extract of Rhodiola rosea, shows a latent effect on protecting cardiovascular system. Our study explored the effect of salidroside on ischemia-reperfusion (I/R) injury in rat heart. I/R was performed on Wistar rat hearts, and Sal pretreatment was performed in I/R rats. Cardiac marker enzyme, myocardial infarct size, malondialdehyde (MDA) and superoxide dismutase (SOD) content were then measured. Compared with the untreated group, Sal pretreatment observably ameliorated the cardiac function, decreased the myocardial infarct size, reduced the levels of cardiac lactate creatine kinase-MB (CK-MB) and dehydrogenase (LDH), and inhibited the anti-oxidative stress. In addition, Sal treatment also significantly inhibited autophagy and apoptosis, which could be partially reversed by Rapamycin (RAPA), an autophagic agonist. Furthermore, Sal treatment attenuated autophagy by up-regulating the expression of hsa_circ_0000064 (circ-0000064) and Rapamycin (RAPA) treatment abolished it. Our study showed that Sal protected the heart from I/R injury, which might berelated to the upregulation of circ-0000064 and the inhibition of autophagy.
Collapse
Affiliation(s)
- Ping Jin
- Department of Intensive Care Unit (ICU), Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, China.
| | - Liang-Hai Li
- Department of Intensive Care Unit (ICU), Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, China
| | - Yan Shi
- Department of Emergency, Huai'an Second People's Hospital and the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Nan-Bin Hu
- Department of Intensive Care Unit, Lian Shui People's Hospital, Lian Shui, Huan'an, China
| |
Collapse
|
21
|
Cell Survival Is Regulated via SOX9/BCL2L1 Axis in HCT-116 Colorectal Cancer Cell Line. JOURNAL OF ONCOLOGY 2020; 2020:5701527. [PMID: 32411238 PMCID: PMC7206885 DOI: 10.1155/2020/5701527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/20/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is one of the most frequent types of malignancies and one of the major causes of cancer-related death worldwide. Sex-determining region Y (SRY)-box 9 protein (SOX9) is a member of the SOX family of transcription factors which are involved in the regulation of differentiation and development. Recently, several reports suggest an important role of SOX9 in tumorigenesis since its overexpression correlates with tumor progression and poor outcome in several types of cancer; however, its role in CRC is not clear until now. Therefore, in this work, we searched for novel SOX9-regulated genes involved in cell survival of CRC. We silenced SOX9 in the poorly differentiated HCT-116 cell line, using a specific siRNA, to identify differential expressed genes by DNA microarrays and analyzed the role or candidate genes in apoptosis and autophagy. Transcriptome analysis showed that diverse cellular pathways, associated with CRC carcinogenesis such as Wnt/β-catenin, MAPK, TGF-β, and mTOR, were modulated after SOX9 silencing. Interestingly, we found that SOX9 silencing promotes downregulation of BCL2L1 and overexpression of CASP3, proteins related to apoptosis, which was further confirmed in SW-480, a moderated-differentiated cell line, but not in HT-29, well-differentiated cell line. Moreover, inhibition of BCL2L1 by ABT-737 (BH3 mimetic) in SOX9-silenced HCT-116 cells resulted in an increased apoptosis percentage. However, downregulation of BCL2L1 was not enough to induce autophagy. This is the first report, suggesting that cell survival in poorly and moderated-differentiated CRC cells lines is regulated by SOX9/BCL2L1 axis, but not in well-differentiated cell lines.
Collapse
|
22
|
Zhang Y, Cao Y, Chen J, Qin H, Yang L. A New Possible Mechanism by Which Punicalagin Protects against Liver Injury Induced by Type 2 Diabetes Mellitus: Upregulation of Autophagy via the Akt/FoxO3a Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13948-13959. [PMID: 31698901 DOI: 10.1021/acs.jafc.9b05910] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The aim of this study was to investigate the protective effect of punicalagin (PU), which is a main component of pomegranate polyphenols, against liver injury induced by Type 2 diabetes mellitus (T2DM) and to explore the molecular mechanism based on autophagy in vivo and in vitro. In T2DM mice, we found that PU significantly improved liver histology, reversed serum biochemical abnormalities, and increased the autophagosome number in the liver. In HepG2 cells cultured in a high-glucose environment, PU upregulated the glucose uptake level. Both in vivo and in vitro, PU upregulated the expression of autophagy-related proteins, such as LC3b and p62, and reduced the phosphorylated Akt/total Akt and phosphorylated FoxO3a/total FoxO3a protein ratios, and these effects were enhanced by LY294002 (a PI3K/Akt inhibitor). In summary, our current findings suggest that PU protects against liver injury induced by T2DM by restoring autophagy through the Akt/FoxO3a signaling pathway.
Collapse
Affiliation(s)
- Yahui Zhang
- Xiangya School of Public Health , Central South University , Changsha 410128 , China
| | - Yuan Cao
- Xiangya School of Public Health , Central South University , Changsha 410128 , China
| | - Jihua Chen
- Xiangya School of Public Health , Central South University , Changsha 410128 , China
| | - Hong Qin
- Xiangya School of Public Health , Central South University , Changsha 410128 , China
| | - Lina Yang
- Xiangya School of Public Health , Central South University , Changsha 410128 , China
| |
Collapse
|
23
|
Ma JQ, Sun YZ, Ming QL, Tian ZK, Yang HX, Liu CM. Ampelopsin attenuates carbon tetrachloride-induced mouse liver fibrosis and hepatic stellate cell activation associated with the SIRT1/TGF-β1/Smad3 and autophagy pathway. Int Immunopharmacol 2019; 77:105984. [DOI: 10.1016/j.intimp.2019.105984] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
|
24
|
Liu D, Mao Y, Ding L, Zeng XA. Dihydromyricetin: A review on identification and quantification methods, biological activities, chemical stability, metabolism and approaches to enhance its bioavailability. Trends Food Sci Technol 2019; 91:586-597. [PMID: 32288229 PMCID: PMC7127391 DOI: 10.1016/j.tifs.2019.07.038] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/21/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Dihydromyricetin (DMY) is an important plant flavonoid, which has received great attention due to its health-benefiting activities, including antioxidant, antimicrobial, anti-inflammatory, anticancer, antidiabetic and neuroprotective activities. DMY capsules have been sold in US as a nutraceutical supplement to prevent alcoholic hangovers. The major disadvantage associated with DMY is its chemical instability and poor bioavailability caused by the combined effects of its low solubility and poor membrane permeability. This limits its practical use in the food and pharmaceutical fields. SCOPE AND APPROACH The present paper gives an overview of the current methods for the identification and quantification of DMY. Furthermore, recent findings regarding the main biological properties and chemical stability of DMY, the metabolism of DMY as well as different approaches to increase DMY bioavailability in both aqueous and lipid phases are discussed. KEY FINDINGS AND CONCLUSIONS Current trends on identification and quantification of DMY have been focused on spectral and chromatographic techniques. Many factors such as heat, pH, metal ions, could affect the chemical stability of DMY. Despite the diverse biological effects of DMY, DMY faces with the problem of poor bioavailability. Utilization of different delivery systems including solid dispersion, nanocapsule, microemuslion, cyclodextrin inclusion complexes, co-crystallization, phospholipid complexes, and chemical or enzymatic acylation has the potential to improve both the solubility and bioavailability. DMY digested in laboratory animals undergoes reduction, dehydroxylation, methylation, glucuronidation, and sulfation. Novel DMY delivery systems and basic pharmacokinetic studies of encapsulated DMY on higher animals and humans might be required in the future.
Collapse
Affiliation(s)
- Dan Liu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yiqin Mao
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Lijun Ding
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xin-An Zeng
- South China University of Technology, School of Food Science & Engineering, Guangzhou, 510640, Guangdong, PR China
| |
Collapse
|
25
|
Cheng Z. The FoxO-Autophagy Axis in Health and Disease. Trends Endocrinol Metab 2019; 30:658-671. [PMID: 31443842 DOI: 10.1016/j.tem.2019.07.009] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022]
Abstract
Autophagy controls cellular remodeling and quality control. Dysregulated autophagy has been implicated in several human diseases including obesity, diabetes, cardiovascular disease, neurodegenerative diseases, and cancer. Current evidence has revealed that FoxO (forkhead box class O) transcription factors have a multifaceted role in autophagy regulation and dysregulation. Nuclear FoxOs transactivate genes that control the formation of autophagosomes and their fusion with lysosomes. Independently of transactivation, cytosolic FoxO proteins induce autophagy by directly interacting with autophagy proteins. Autophagy is also controlled by FoxOs through epigenetic mechanisms. Moreover, FoxO proteins can be degraded directly or indirectly by autophagy. Cutting-edge evidence is reviewed that the FoxO-autophagy axis plays a crucial role in health and disease.
Collapse
Affiliation(s)
- Zhiyong Cheng
- Food Science and Human Nutrition Department, The University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
26
|
Dusabimana T, Kim SR, Kim HJ, Park SW, Kim H. Nobiletin ameliorates hepatic ischemia and reperfusion injury through the activation of SIRT-1/FOXO3a-mediated autophagy and mitochondrial biogenesis. Exp Mol Med 2019; 51:1-16. [PMID: 31028246 PMCID: PMC6486618 DOI: 10.1038/s12276-019-0245-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 01/23/2023] Open
Abstract
Hepatic ischemia and reperfusion injury are characterized by impaired autophagy, mitochondrial dysfunction, and subsequent compromise of cellular homeostasis following hepatic surgery or transplantation. Nobiletin, a natural flavonoid, is a beneficial antioxidant that possesses anti-inflammatory and anti-cancer activities. We investigated the effect of nobiletin on hepatic IR injury and described the underlying mechanisms. C57BL/6 mice were subjected to 60 min of partial hepatic ischemia, treated with nobiletin (5 mg/kg) or vehicle at the start of reperfusion, and killed at 5 h of reperfusion. Hepatic ischemia and reperfusion increased hepatocellular oxidative damage, inflammation, and cell death, but these changes were alleviated upon nobiletin treatment. Nobiletin increased the expression of proteins that control autophagy, mitochondrial dynamics, and biogenesis. Specifically, the SIRT-1/FOXO3a and PGC-1α pathways were activated by nobiletin. IR-induced AKT activation was associated with FOXO3a phosphorylation, which resulted in a significant reduction in the nuclear FOXO3a levels and potentially attenuated autophagy-regulatory gene expression. Nobiletin increased FOXO3a expression and its nuclear translocation via the inhibition of AKT. Specific inhibition of SIRT-1 abolished the protective effect of nobiletin, causing decreased FOXO3a expression, followed by autophagy induction and decreased PGC-1α expression and mitochondrial dynamics. Taken together, our data indicate that SIRT-1 directly mediates the protective effect of nobiletin against hepatic ischemia and reperfusion injury. The activation of autophagy and mitochondrial function through the SIRT-1/FOXO3a and PGC-1α pathways indicate that nobiletin could have therapeutic potential for treating hepatic ischemia and reperfusion injury. Nobiletin, an antioxidant found in citrus peel, may protect the liver from reperfusion injury, damage following blood flow interruption. When blood flow is restricted and then restored, as in transplant, surgery, or shock, cells are injured, largely due to damage to the cellular powerhouses, the mitochondria. Nobiletin is known to have many benefits, including anti-cancer and anti-inflammatory activities, but its mechanism of action is not well understood. Sang Won Park and Hwajin Kim, at the Gyeongsang National University School of Medicine, in Jinju, South Korea, and co-workers, investigated how nobiletin might protect the liver against interruption of blood flow. They found that nobiletin triggered cells to dismantle damaged mitochondria and produce new, functioning mitochondria, greatly reducing liver damage. These results illuminate how nobiletin works and may lead to better treatments for liver reperfusion injury.
Collapse
Affiliation(s)
- Theodomir Dusabimana
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 52727, Republic of Korea.,Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - So Ra Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 52727, Republic of Korea.,Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 52727, Republic of Korea. .,Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea.
| | - Hwajin Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 52727, Republic of Korea.
| |
Collapse
|
27
|
Dong S, Ji J, Hu L, Wang H. Dihydromyricetin alleviates acetaminophen-induced liver injury via the regulation of transformation, lipid homeostasis, cell death and regeneration. Life Sci 2019; 227:20-29. [PMID: 30974116 DOI: 10.1016/j.lfs.2019.04.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 12/26/2022]
Abstract
AIMS We previously reported that Hovenia dulcis Thunb. extract, a traditional Chinese medicine rich in dihydromyricetin (DHM), exhibited a significant hepatoprotective effect against acetaminophen (APAP)-induced liver injury. However, whether DHM plays a protective role in APAP hepatotoxicity and what mechanisms are involved remain unclear. In this study, we evaluated the hepatoprotective effects of DHM against APAP-induced liver injury. MAIN METHODS Male C57BL/6 mice were used for the experiment. LC-MS, q-PCR, immunochemistry and western blot analysis were employed to mechanism analysis. KEY FINDINGS DHM exhibited a protective effect against APAP-induced liver injury. Further mechanistic investigations revealed that the protective effect of DHM against APAP hepatotoxicity had multi-target and multi-pathway characteristics involving APAP metabolism, lipid regulation, and hepatocyte death and regeneration. DHM pretreatment resulted in cytochrome P450 2E1 inhibition and UDP-glucuronosyltransferase 1A1 activation, affecting APAP biotransformation. Moreover, DHM pretreatment significantly ameliorated lipid dysregulation via peroxisome proliferator-activated receptor and sterol regulatory element-binding protein-1c (SREBP-1c) signalling pathways. Furthermore, DHM regulated the expression of cell death- and liver regeneration-associated proteins. SIGNIFICANCE These results suggested that DHM alleviated APAP-induced liver injury in mice by inhibiting hepatocyte death, promoting p53-related regeneration, and regulating lipid homeostatic imbalance and APAP transformation. Based on these findings, DHM provides a potential and novel approach for preventing and treating APAP-induced liver damage, and SREBP-1c signalling might be a new therapeutic target for APAP hepatotoxicity.
Collapse
Affiliation(s)
- Sijing Dong
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Lingyun Hu
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Haina Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
28
|
Guo L, Zhang H, Yan X. Protective effect of dihydromyricetin revents fatty liver through nuclear factor‑κB/p53/B‑cell lymphoma 2‑associated X protein signaling pathways in a rat model. Mol Med Rep 2018; 19:1638-1644. [PMID: 30592279 PMCID: PMC6390035 DOI: 10.3892/mmr.2018.9783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/31/2018] [Indexed: 01/23/2023] Open
Abstract
Dihydromyricetin is the major flavonoid in vine tea, whose pharmacological action has attracted increasing attention in recent years. The triglyceride, albumin (ALB), alanine aminotransferase, aspartate aminotransferase, malondialdehyde, superoxide dismutase, glutathione (GSH), GSH peroxidase, tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and IL-18 expression levels were measured using enzyme-linked immunosorbent assay kits. The protein levels of ALB and collagen I, PPARα, NF-κB, p53 and Bax were used to measure using western blotting. The results revealed that dihydromyricetin prevented the development of fatty liver, and inhibited oxidative stress, inflammation and apoptosis in a fatty liver rat model. In addition, treatment with dihydromyricetin inhibited the levels of ALB and collagen I, while it induced peroxisome proliferator-activated receptor α protein expression. Dihydromyricetin also suppressed the protein expression levels of nuclear factor (NF)-κB, p53 and B-cell lymphoma 2-associated X protein (Bax) in the rat model. Collectively, it is concluded that dihydromyricetin exerted a protective effect on fatty liver through NF-κB/p53/Bax signaling pathways in a rat model.
Collapse
Affiliation(s)
- Lu Guo
- Department of Hepatopathy, Sixth People's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| | - Haifeng Zhang
- Department of Hepatopathy, Sixth People's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| | - Xiuping Yan
- Department of Hepatopathy, Sixth People's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| |
Collapse
|
29
|
Dihydromyricetin from ampelopsis grossedentata protects against vascular neointimal formation via induction of TR3. Eur J Pharmacol 2018; 838:23-31. [PMID: 30194942 DOI: 10.1016/j.ejphar.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 11/21/2022]
Abstract
Vine tea has been used as a medicinal herb in traditional Chinese medicine for hundreds of years. As the most abundant ingredient in vine tea, Dihydromyricetin (DHM) has been reported to exert anti-inflammatory, antioxidant, and anti-cardiovascular disease. However, the role of DHM in injury-induced neointimal formation remains poorly characterized. We determined the effects of DHM on ligation-induced carotid artery neointimal formation. We found that ligation-induced carotid artery neointimal formation could be significantly attenuated by DHM treatment. We provide evidence that DHM increases orphan nuclear receptor TR3 expression in smooth muscle cell (SMC) and carotid artery. Moreover, overexpression and loss-of-function strategies of TR3 were done to overexpression and knockdown of TR3, and demonstrate that DHM promotes SMC differentiation, however, inhibits SMC proliferation and migration, via regulating expression of TR3. Collectively, we reveal that DHM may be a therapeutic agent for the treatment of injury-induced vascular diseases.
Collapse
|
30
|
Zhou H, Xie G, Mao Y, Zhou K, Ren R, Zhao Q, Wang H, Yin S. Enhanced Regeneration and Hepatoprotective Effects of Interleukin 22 Fusion Protein on a Predamaged Liver Undergoing Partial Hepatectomy. J Immunol Res 2018; 2018:5241526. [PMID: 30515423 PMCID: PMC6234454 DOI: 10.1155/2018/5241526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023] Open
Abstract
Liver ischemia-reperfusion injury (IRI) and regeneration deficiency are two major challenges for surgery patients with chronic liver disease. As a survival factor for hepatocytes, interleukin 22 (IL-22) plays an important role in hepatoprotection and the promotion of regeneration after hepatectomy. In this study, we aim to investigate the roles of an interleukin 22 fusion protein (IL-22-FP) in mice with a predamaged liver after a two-third partial hepatectomy (PHx). Predamaged livers in mice were induced by concanavalin A (ConA)/carbon tetrachloride (CCl4) following PHx with or without IL-22-FP treatment. A hepatic IRI mouse model was also used to determine the hepatoprotective effects of IL-22-FP. In the ConA/CCl4 model, IL-22-FP treatment alleviated liver injury and accelerated hepatocyte proliferation. Administration of IL-22-FP activated the hepatic signal transducer and activator of transcription 3 (STAT3) and upregulated the expression of many mitogenic proteins. IL-22-FP treatment prior to IRI effectively reduced liver damage through decreased aminotransferase and improved liver histology. In conclusion, IL-22-FP promotes liver regeneration in mice with predamaged livers following PHx and alleviates IRI-induced liver injury. Our study suggests that IL-22-FP may represent a promising therapeutic drug against regeneration deficiency and liver IRI in patients who have undergone PHx.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Geriatrics, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Institute for Liver Disease, Anhui Medical University, Hefei 230032, China
| | - Guomin Xie
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Institute for Liver Disease, Anhui Medical University, Hefei 230032, China
| | - Yudi Mao
- Department of Geriatrics, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Ke Zhou
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Institute for Liver Disease, Anhui Medical University, Hefei 230032, China
| | - Ruixue Ren
- Institute for Liver Disease, Anhui Medical University, Hefei 230032, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Qihong Zhao
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Institute for Liver Disease, Anhui Medical University, Hefei 230032, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Shi Yin
- Department of Geriatrics, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| |
Collapse
|
31
|
Zhang J, Chen Y, Luo H, Sun L, Xu M, Yu J, Zhou Q, Meng G, Yang S. Recent Update on the Pharmacological Effects and Mechanisms of Dihydromyricetin. Front Pharmacol 2018; 9:1204. [PMID: 30410442 PMCID: PMC6209623 DOI: 10.3389/fphar.2018.01204] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022] Open
Abstract
As the most abundant natural flavonoid in rattan tea, dihydromyricetin (DMY) has shown a wide range of pharmacological effects. In addition to the general characteristics of flavonoids, DMY has the effects of cardioprotection, anti-diabetes, hepatoprotection, neuroprotection, anti-tumor, and dermatoprotection. DMY was also applied for the treatment of bacterial infection, osteoporosis, asthma, kidney injury, nephrotoxicity and so on. These effects to some extent enrich the understanding about the role of DMY in disease prevention and therapy. However, to date, we still have no outlined knowledge about the detailed mechanism of DMY, which might be related to anti-oxidation and anti-inflammation. And the detailed mechanisms may be associated with several different molecules involved in cellular apoptosis, oxidative stress, and inflammation, such as AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), protein kinase B (Akt), nuclear factor-κB (NF-κB), nuclear factor E2-related factor 2 (Nrf2), ATP-binding cassette transporter A1 (ABCA1), peroxisome proliferator-activated receptor-γ (PPARγ) and so on. Here, we summarized the current pharmacological developments of DMY as well as possible mechanisms, aiming to push the understanding about the protective role of DMY as well as its preclinical assessment of novel application.
Collapse
Affiliation(s)
- Jingyao Zhang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Pharmacology, School of Pharmacy, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Yun Chen
- Department of Pharmacology, School of Pharmacy, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Huiqin Luo
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Pharmacology, School of Pharmacy, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Linlin Sun
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Pharmacology, School of Pharmacy, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Mengting Xu
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Pharmacology, School of Pharmacy, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Jin Yu
- Department of Pharmacology, School of Pharmacy, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Qigang Zhou
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Guoliang Meng
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shengju Yang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
32
|
Fan L, Zhao X, Tong Q, Zhou X, Chen J, Xiong W, Fang J, Wang W, Shi C. Interactions of Dihydromyricetin, a Flavonoid from Vine Tea (Ampelopsis grossedentata) with Gut Microbiota. J Food Sci 2018; 83:1444-1453. [PMID: 29660761 DOI: 10.1111/1750-3841.14128] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/02/2018] [Accepted: 02/22/2018] [Indexed: 01/20/2023]
Abstract
Dihydromyricetin (DMY) is the main bioactive constituent in vine tea (Ampelopsis grossedentata), which was predominantly distributed in the gastrointestinal tract and showed poor oral bioavailability. Our aim was to systematically investigate the interactions of DMY with gut microbiota. Through the metabolism study of DMY by fecal microflora in vitro, it was found that DMY could be metabolized into three metabolites by fecal microflora via reduction and dehydroxylation pathways, and the dehydroxylation metabolite was the dominant one. Meanwhile, in order to consider the influence of gut microbiota metabolism on the pharmacokinetics of DMY, the pharmacokinetics of DMY in control and pseudo-germ-free rats were compared. It was shown that area under the curve (AUC) could only slightly increase, however, peak concentration (Cmax ) could significantly increase in the pseudo-germ-free rats compared with the control rats, which indicated the gut microbiota metabolism played an important role in the pharmacokinetics of DMY. In addition, the long-term influence of DMY on gut microbiota composition by using 16S rRNA pyrosequencing was further investigated. And it was found that DMY could markedly alter the richness and diversity of the gut microbiota and modulate the gut microbiota composition. The present findings will be helpful for the future development and clinical application of DMY. PRACTICAL APPLICATION The gut microbiota plays an important role in the pharmacokinetics of flavonoids. As well, the long-term supplements of flavonoids could alter the gut microbiota composition in turn. The study aims to clarify the mutual interaction of DMY with gut microbiota, which may lead to new information with respect to the mechanism study and clinical application of DMY.
Collapse
Affiliation(s)
- Li Fan
- Dept. of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan, 430030, China
| | - Xinyuan Zhao
- Dept. of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan, 430030, China
| | - Qing Tong
- Dept. of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan, 430030, China
| | - Xiya Zhou
- Dept. of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan, 430030, China
| | - Jing Chen
- Dept. of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan, 430030, China
| | - Wei Xiong
- Dept. of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan, 430030, China
| | - Jianguo Fang
- Dept. of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan, 430030, China
| | - Wenqing Wang
- Dept. of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan, 430030, China
| | - Chunyang Shi
- Dept. of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
33
|
Over-expression of growth differentiation factor 15 (GDF15) preventing cold ischemia reperfusion (I/R) injury in heart transplantation through Foxo3a signaling. Oncotarget 2018; 8:36531-36544. [PMID: 28388574 PMCID: PMC5482674 DOI: 10.18632/oncotarget.16607] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/02/2017] [Indexed: 12/21/2022] Open
Abstract
Ischemia reperfusion (I/R) injury which inevitably occurs during heart transplantation is the major factor leading to organ failure and graft rejection. In order to develop new therapies to prevent I/R injury, we used both a murine heart transplantation model with 24 hour cold I/R and an in vitro cell culture system to determine whether growth differentiation factor 15 (GDF15) is a protective factor in preventing I/R injury in heart transplantation and to further investigate underlying mechanisms of I/R injury. We found that cold I/R caused severe damage to the endocardium, epicardium and myocardium of heart grafts from wild type C57BL/6 mice, whereas grafts from GDF15 transgenic (TG) mice showed less damage as demonstrated by decreased cell apoptosis/death, decreased neutrophils infiltration and the preservation of the normal structure of the heart. Over-expression of GDF15 reduced expression of phosphorylated RelA p65, pre-inflammatory and pro-apoptotic genes while it enhanced Foxo3a phosphorylation in vitro and in vivo. Over-expression of GDF15 inhibited cell apoptosis/death and reduced neutrophil infiltration. In conclusion, this study, for the first time, demonstrates that GDF15 is a promising target for preventing cold I/R injury in heart transplantation. This study also shows that the resultant protective effects are mediated by the Foxo3 and NFκB signaling pathways.
Collapse
|
34
|
Liu Y, Zhang W, Wu X, Gong J. Foxo3a-dependent Bim transcription protects mice from a high fat diet via inhibition of activation of the NLRP3 inflammasome by facilitating autophagy flux in Kupffer cells. Oncotarget 2018; 8:34258-34267. [PMID: 28427239 PMCID: PMC5470965 DOI: 10.18632/oncotarget.15946] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/22/2017] [Indexed: 12/11/2022] Open
Abstract
Background The role of Foxo3a in the regulation of autophagy flux and activation of the NLRP3 inflammasome in KCs suffering from HFD conditions is unknown. Results Up-regulation of Foxo3a restored autophagy flux and dampened the activation of the NLRP3 inflammasome in KCs stimulated with PA and LPS. In contrast, down-regulation of Foxo3a increased blockage of autophagy flux and promoted NLRP3 inflammasome activation. Additionally, mRNA levels of Bim were significantly changed with the alteration of Foxo3a in KCs under PA and LPS stimulation among foxo3a targeted genes. Overexpression of Bim restored autophagy influx and attenuated NLRP3 inflammasome pathway activation. In addition, autophagy formation was restored, and activation of NLRP3 inflammasome was inhibited in KCs isolated from mice treated with Iturin A and fed with a HFD. Materials and methods Autophagy flux in KCs and activation levels of NLRP3 inflammasome were evaluated after altering the expression of Foxo3a in KCs before stimulation with PA and LPS. Additionally, various target genes of Foxo3a were measured in KCs pretreated with an agonist (Iturin A) or inhibitor (SC97) of Foxo3a after KCs stimulation with PA and LPS in order to hunt for targets of Foxo3a. Activation levels of NLRP3 inflammasome in isolated KCs, as well as autophagy flux, were measured after mice were treated with Iturin A and fed with a HFD for 16 weeks. Conclusions Foxo3a restores autophagy flux and attenuates the activation of the NLRP3 inflammasome by promoting the transcription of Bim, suggesting a potential therapeutic target in NAFLD and other obesity-related diseases.
Collapse
Affiliation(s)
- Yan Liu
- Department of Digestive System, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China.,Department of Gastroenterology, the Fifth people's Hospital of Chengdu, Chengdu, Sichuan, 611130, P.R. China
| | - Wenfeng Zhang
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Xiaoling Wu
- Department of Digestive System, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Jianping Gong
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| |
Collapse
|
35
|
Fan T, Pi H, Li M, Ren Z, He Z, Zhu F, Tian L, Tu M, Xie J, Liu M, Li Y, Tan M, Li G, Qing W, Reiter RJ, Yu Z, Wu H, Zhou Z. Inhibiting MT2-TFE3-dependent autophagy enhances melatonin-induced apoptosis in tongue squamous cell carcinoma. J Pineal Res 2018; 64. [PMID: 29149494 DOI: 10.1111/jpi.12457] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 10/31/2017] [Indexed: 12/30/2022]
Abstract
Autophagy modulation is a potential therapeutic strategy for tongue squamous cell carcinoma (TSCC). Melatonin possesses significant anticarcinogenic activity. However, whether melatonin induces autophagy and its roles in cell death in TSCC are unclear. Herein, we show that melatonin induced significant apoptosis in the TSCC cell line Cal27. Apart from the induction of apoptosis, we demonstrated that melatonin-induced autophagic flux in Cal27 cells as evidenced by the formation of GFP-LC3 puncta, and the upregulation of LC3-II and downregulation of SQSTM1/P62. Moreover, pharmacological or genetic blockage of autophagy enhanced melatonin-induced apoptosis, indicating a cytoprotective role of autophagy in melatonin-treated Cal27 cells. Mechanistically, melatonin induced TFE3(Ser321) dephosphorylation, subsequently activated TFE3 nuclear translocation, and increased TFE3 reporter activity, which contributed to the expression of autophagy-related genes and lysosomal biogenesis. Luzindole, a melatonin membrane receptor blocker, or MT2-siRNA partially blocked the ability of melatonin to promote mTORC1/TFE3 signaling. Furthermore, we verified in a xenograft mouse model that melatonin with hydroxychloroquine or TFE3-siRNA exerted a synergistic antitumor effect by inhibiting autophagy. Importantly, TFE3 expression positively correlated with TSCC development and poor prognosis in patients. Collectively, we demonstrated that the melatonin-induced increase in TFE3-dependent autophagy is mediated through the melatonin membrane receptor in TSCC. These data also suggest that blocking melatonin membrane receptor-TFE3-dependent autophagy to enhance the activity of melatonin warrants further attention as a treatment strategy for TSCC.
Collapse
Affiliation(s)
- Tengfei Fan
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing, China
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Min Li
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Zhenhu Ren
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijing He
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feiya Zhu
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Tian
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Manyu Tu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Jia Xie
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Mengyu Liu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Yuming Li
- Institute of Hepatobiliary Surgery, XinQiao Hospital, Third Military Medical University, Chongqing, China
| | - Miduo Tan
- Surgery Department of Galactophore, The Central Hospital of Zhuzhou, Zhuzhou, Hunan, China
| | - Gaoming Li
- Department of Health Statistics, Third Military Medical University, Chongqing, China
| | - Weijia Qing
- The 517th Hospital of PLA, Xinzhou, Shanxi, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Hanjiang Wu
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhou Zhou
- Department of Occupational and Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Zhao L, Cai C, Wang J, Zhao L, Li W, Liu C, Guan H, Zhu Y, Xiao J. Dihydromyricetin Protects against Bone Loss in Ovariectomized Mice by Suppressing Osteoclast Activity. Front Pharmacol 2017; 8:928. [PMID: 29311931 PMCID: PMC5742133 DOI: 10.3389/fphar.2017.00928] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022] Open
Abstract
Dihydromyricetin (DMY), the main flavonoid component of Ampelopsis grossedentata, possesses pharmacological activities useful for treatment of diseases associated with inflammation and oxidative damage. Because osteoclasts are often involved in chronic low-grade systemic inflammation and oxidative damage, we hypothesized that DMY may be an effective treatment for osteoclast-related diseases. The effects of DMY on osteoclast formation and activity were examined in vitro. Female C57BL/6 mice were ovariectomized to mimic menopause-induced bone loss and treated with DMY, and femur samples were subjected to bone structure and histological analysis, serum biochemical indicators were also measured. DMY suppressed the activation of nuclear factor-κB, c-Fos and mitogen-activated protein kinase, and prevented production of reactive oxygen species. DMY decreased expression of osteoclast-specific genes, including Trap, Mmp-9, Cathepsin K, C-Fos, Nfatc1, and Rank. In addition, DMY prevented bone loss and decreased serum levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6, and with a decrease in the ratio between receptor activator of nuclear factor-κB (RANK) ligand (RANKL) and osteoprotegerin (OPG) in vivo. These findings demonstrate that DMY attenuates bone loss and inhibits osteoclast formation and activity through modulation of multiple pathways both upstream and downstream of RANKL signaling. DMY may thus be a useful option for treatment of osteoclast-related diseases such as rheumatoid arthritis and osteoporosis.
Collapse
Affiliation(s)
- Libo Zhao
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Cai
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of Oncology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Liming Zhao
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijin Li
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changyu Liu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanfeng Guan
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanli Zhu
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Decitabine-Induced Changes in Human Myelodysplastic Syndrome Cell Line SKM-1 Are Mediated by FOXO3A Activation. J Immunol Res 2017; 2017:4302320. [PMID: 29124072 PMCID: PMC5662805 DOI: 10.1155/2017/4302320] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/12/2017] [Accepted: 07/20/2017] [Indexed: 01/03/2023] Open
Abstract
The epigenetic silencing of tumor suppressor genes in myelodysplastic syndromes (MDS) can potentially confer a growth advantage to individual cellular clones. Currently, the recommended treatment for patients with high-risk MDS is the methylation agent decitabine (DAC), a drug that can induce the reexpression of silenced tumor suppressor genes. We investigated the effects of DAC treatment on the myeloid MDS cell line SKM-1 and investigated the role of FOXO3A, a potentially tumor-suppressive transcription factor, by silencing its expression prior to DAC treatment. We found that FOXO3A exists in an inactive, hyperphosphorylated form in SKM-1 cells, but that DAC both induces FOXO3A expression and reactivates the protein by reducing its phosphorylation level. Furthermore, we show that this FOXO3A activation is responsible for the DAC-induced differentiation of SKM-1 cells into monocytes, as well as for SKM-1 cell cycle arrest, apoptosis, and autophagy. Collectively, these results suggest that FOXO3A reactivation may contribute to the therapeutic effects of DAC in MDS.
Collapse
|
38
|
The Versatile Effects of Dihydromyricetin in Health. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1053617. [PMID: 28947908 PMCID: PMC5602609 DOI: 10.1155/2017/1053617] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/27/2017] [Indexed: 01/02/2023]
Abstract
Dihydromyricetin is a flavonoid isolated from Ampelopsis grossedentata, which is traditionally used in China. Dihydromyricetin exhibits health-benefiting activities with minimum adverse effects. Dihydromyricetin has been demonstrated to show antioxidative, anti-inflammatory, anticancer, antimicrobial, cell death-mediating, and lipid and glucose metabolism-regulatory activities. Dihydromyricetin may scavenge ROS to protect against oxidative stress or potentiate ROS generation to counteract cancer cells selectively without any effects on normal cells. However, the low bioavailability of dihydromyricetin limits its potential applications. Recent research has gained positive and promising data. This review will discuss the versatile effects and clinical prospective of dihydromyricetin.
Collapse
|
39
|
Fan L, Tong Q, Dong W, Yang G, Hou X, Xiong W, Shi C, Fang J, Wang W. Tissue Distribution, Excretion, and Metabolic Profile of Dihydromyricetin, a Flavonoid from Vine Tea (Ampelopsis grossedentata) after Oral Administration in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4597-4604. [PMID: 28534405 DOI: 10.1021/acs.jafc.7b01155] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Dihydromyricetin (DMY), a flavanonol compound found as the most abundant and bioactive constituent in vine tea (Ampelopsis grossedentata), possesses numerous biological activities. In the present study, an HPLC-MS/MS method for the determination of DMY in tissues, urine, and feces was developed and applied to the tissue distribution and excretion study after oral administration in rats, and the metabolic profile of DMY was further investigated using UPLC-QTOF-MS. The results indicated that DMY could be distributed rapidly in various tissues and highly in the gastrointestinal tract. The elimination of DMY occurred rapidly as well, and most unconverted forms were excreted in feces. A total of eight metabolites were identified in urine and feces, while metabolites were barely found in plasma. The predicted metabolic pathways including reduction, dehydroxylation, methylation, glucuronidation, and sulfation were proposed. The present findings may provide the theoretical basis for evaluating the biological activities of DMY and will be helpful for its future development and application.
Collapse
Affiliation(s)
- Li Fan
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030, China
| | - Qing Tong
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030, China
| | - Weiwei Dong
- Wuhan Institute for Drug and Medical Device Control , Wuhan 430075, China
| | - Guangjie Yang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030, China
| | - Xiaolong Hou
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030, China
| | - Wei Xiong
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030, China
| | - Chunyang Shi
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030, China
| | - Jianguo Fang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030, China
| | - Wenqing Wang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030, China
| |
Collapse
|