1
|
Scardovi AL, Bartolucci D, Montemurro L, Bortolotti S, Angelucci S, Amadesi C, Nieddu G, Oosterholt S, Cerisoli L, Della Pasqua O, Hrelia P, Tonelli R. Preclinical Pharmacokinetics in Tumors and Normal Tissues of the Antigene PNA Oligonucleotide MYCN-Inhibitor BGA002. Nucleic Acid Ther 2024; 34:173-187. [PMID: 38957973 DOI: 10.1089/nat.2024.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Although MYCN has been considered an undruggable target, MYCN alterations confer poor prognosis in many pediatric and adult cancers. The novel MYCN-specific inhibitor BGA002 is an antigene peptide nucleic acid oligonucleotide covalently bound to a nuclear localization signal peptide. In the present study, we characterized the pharmacokinetics (PK) of BGA002 after single and repeated administration to mice using a novel specific enzyme-linked immunosorbent assay. BGA002 concentrations in plasma showed linear PK, with dose proportional increase across the tested dose levels and similar exposure between male and female and between intravenous and subcutaneous route of administration. Repeated dosing resulted in no accumulation in plasma. Biodistribution up to 7 days after single subcutaneous administration of [14C]-radiolabeled BGA002 showed broad tissues and organ distribution (suggesting a potential capability to reach primary tumor and metastasis in several body sites), with high concentrations in kidney, liver, spleen, lymph nodes, adrenals, and bone marrow. Remarkably, we demonstrated that BGA002 concentrates in tumors after repeated systemic administrations in three mouse models with MYCN amplification (neuroblastoma, rhabdomyosarcoma, and small-cell lung cancer), leading to a significant reduction in tumor weight. Taking into account the available safety profile of BGA002, these data support further evaluation of BGA002 in patients with MYCN-positive tumors.
Collapse
Affiliation(s)
| | | | - Luca Montemurro
- AGEOP Ricerca OdV, IRCCS S. Orsola Hospital, Pediatric Oncology and Hematology Unit, Bologna, Italy
| | | | | | | | | | - Sean Oosterholt
- Clinical Pharmacology & Therapeutics Group, University College London, London, United Kingdom
| | | | - Oscar Della Pasqua
- Clinical Pharmacology & Therapeutics Group, University College London, London, United Kingdom
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Roberto Tonelli
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Dai C, Cui X, Wang J, Dong B, Gao H, Cheng M, Jiang F. CX‑5461 potentiates imatinib‑induced apoptosis in K562 cells by stimulating KIF1B expression. Exp Ther Med 2024; 27:107. [PMID: 38356673 PMCID: PMC10865453 DOI: 10.3892/etm.2024.12395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/29/2023] [Indexed: 02/16/2024] Open
Abstract
The selective RNA polymerase I inhibitor CX-5461 has been shown to be effective in treating some types of leukemic disorders. Emerging evidence suggests that combined treatments with CX-5461 and other chemotherapeutic agents may achieve enhanced effectiveness as compared with monotherapies. Currently, pharmacodynamic properties of the combination of CX-5461 with tyrosine kinase inhibitors remain to be explored. The present study tested whether CX-5461 could potentiate the effect of imatinib in the human chronic myeloid leukemia cell line K562, which is p53-deficient. It was demonstrated that CX-5461 at 100 nM, which was non-cytotoxic in K562 cells, potentiated the pro-apoptotic effect of imatinib. Mechanistically, the present study identified that the upregulated expression of kinesin family member 1B (KIF1B) gene might be involved in mediating the pro-apoptotic effect of imatinib/CX-5461 combination. Under the present experimental settings, however, neither CX-5461 nor imatinib alone exhibited a significant effect on KIF1B expression. Moreover, using other leukemic cell lines, it was demonstrated that regulation of KIF1B expression by imatinib/CX-5461 was not a ubiquitous phenomenon in leukemic cells and should be studied in a cell type-specific manner. In conclusion, the results suggested that the synergistic interaction between CX-5461 and imatinib may be of potential clinical value for the treatment of tyrosine kinase inhibitor-resistant chronic myeloid leukemia.
Collapse
Affiliation(s)
- Chaochao Dai
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaopei Cui
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jie Wang
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Haiqing Gao
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Mei Cheng
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Fan Jiang
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
3
|
Tan SH, Tan TK, Yokomori R, Liao M, Huang XZ, Yeoh AEJ, Sanda T. TAL1 hijacks MYCN enhancer that induces MYCN expression and dependence on mevalonate pathway in T-cell acute lymphoblastic leukemia. Leukemia 2023; 37:1969-1981. [PMID: 37591943 DOI: 10.1038/s41375-023-01993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
A hallmark of T-cell acute lymphoblastic leukemia (T-ALL) is the dysregulated expression of oncogenic transcription factors (TFs), including TAL1, NOTCH1 and MYC. Rewiring of the transcriptional program disrupts the tightly controlled spatiotemporal expression of downstream target genes, thereby contributing to leukemogenesis. In this study, we first identify an evolutionarily conserved enhancer element controlling the MYCN oncogene (named enhMYCN) that is aberrantly activated by the TAL1 complex in T-ALL cells. TAL1-positive T-ALL cells are highly dependent on MYCN expression for their maintenance in vitro and in xenograft models. Interestingly, MYCN drives the expression of multiple genes involved in the mevalonate pathway, and T-ALL cells are sensitive to inhibition of HMG-CoA reductase (HMGCR), a rate-limiting enzyme of this pathway. Importantly, MYC and MYCN regulate the same targets and compensate for each other. Thus, MYCN-positive T-ALL cells display a dual dependence on the TAL1-MYCN and NOTCH1-MYC pathways. Together, our results demonstrate that enhMYCN-mediated MYCN expression is required for human T-ALL cells and implicate the TAL1-MYCN-HMGCR axis as a potential therapeutic target in T-ALL.
Collapse
Affiliation(s)
- Shi Hao Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Rui Yokomori
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Minghui Liao
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Allen Eng Juh Yeoh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
- Department of Paediatrics, National University of Singapore, Singapore, 119228, Singapore.
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| |
Collapse
|
4
|
Bogdanov K, Kudryavtseva E, Fomicheva Y, Churkina I, Lomaia E, Girshova L, Osipov Y, Zaritskey A. Shift of N-MYC Oncogene Expression in AML Patients Carrying the FLT3-ITD Mutation. PATHOPHYSIOLOGY 2023; 30:296-313. [PMID: 37606386 PMCID: PMC10443239 DOI: 10.3390/pathophysiology30030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 07/29/2023] [Indexed: 08/23/2023] Open
Abstract
Mutations in the FLT3 gene not only lead to abnormalities in its structure and function, but also affect the expression of other genes involved in leukemogenesis. This study evaluated the expression of genes that are more characteristic of neuroblastoma but less studied in leukemia. N-MYC oncogene expression was found to be more than 3-fold higher in primary AML patients carrying the FLT3-ITD mutation compared to carriers of other mutations as well as patients with normal karyotype (p = 0.03946). In contrast to the expression of several genes (C-MYC, SPT16, AURKA, AURKB) directly correlated to the allelic load of FLT3-ITD, the expression of the N-MYC oncogene is extremely weakly related or independent of it (p = 0.0405). Monitoring of N-MYC expression in some patients with high FLT3-ITD allelic load receiving therapy showed that a decrease in FLT3-ITD allelic load is not always accompanied by a decrease in N-MYC expression. On the contrary, N-MYC expression may remain elevated during the first three months after therapy, which is additional evidence of the emergence of resistance to therapy and progression of AML.
Collapse
Affiliation(s)
- Konstantin Bogdanov
- Almazov National Medical Research Centre, 2 Akkuratova Str., Saint Petersburg 197341, Russia; (E.K.); (Y.F.); (I.C.); (E.L.); (L.G.); (Y.O.); (A.Z.)
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Bhardwaj N, Das G, Srinivasan R. Neuroblastoma-derived v-myc avian myelocytomatosis viral related oncogene or MYCN gene. J Clin Pathol 2023:jcp-2022-208476. [PMID: 37221048 DOI: 10.1136/jcp-2022-208476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/13/2023] [Indexed: 05/25/2023]
Abstract
The MYCN gene belongs to the MYC family of transcription factors. Amplification of MYCN, first discovered in neuroblastoma cells, ushered in the era of cancer genomics. The MYCN gene and MYCN protein are extensively studied in the context of neuroblastoma. As demonstrated in transgenic mouse models, MYCN gene shows a restricted spatiotemporal expression predominantly in the neural crest cells which explains the associated neoplasms including neuroblastoma and central nervous system tumours. In neuroblastoma, MYCN amplification is a marker of aggressive tumours with poor prognosis and survival and forms the basis of risk stratification classifications.MYCN dysregulated expression occurs by several mechanisms at the transcriptional, translational and post-translational levels. These include massive gene amplification which occurs in an extrachromosomal location, upregulated transcription and stabilisation of the protein increasing its half-life. MYCN protein, a basic loop-helix-loop leucine zipper transcription factor, has many regions which bind to several proteins foremost of which is MAX forming the MYC:MAX heterodimer. Overall, MYCN controls multiple aspects of cell fate, foremost of which is cellular proliferation besides cell differentiation, apoptosis and cellular metabolism, all of which are the focus of this brief review. In addition to amplification, other mechanisms of MYCN overexpression include activating missense mutations as reported in basal cell carcinoma and Wilms tumour. A better understanding of this molecule will help in the discovery of novel strategies for its indirect targeting to improve the outcomes of patients with neuroblastoma and other MYCN-associated neoplasms.
Collapse
Affiliation(s)
- Neha Bhardwaj
- Department of Pathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Gargi Das
- Medical Oncology (Pediatric Oncology), Cancer Institute-WIA, Chennai, Tamil Nadu, India
| | - Radhika Srinivasan
- Pathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
6
|
Kaur S, Awad D, Finney RP, Meyer TJ, Singh SP, Cam MC, Karim BO, Warner AC, Roberts DD. CD47-Dependent Regulation of Immune Checkpoint Gene Expression and MYCN mRNA Splicing in Murine CD8 and Jurkat T Cells. Int J Mol Sci 2023; 24:2612. [PMID: 36768931 PMCID: PMC9916813 DOI: 10.3390/ijms24032612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Elevated expression of CD47 in some cancers is associated with poor survival related to its function as an innate immune checkpoint when expressed on tumor cells. In contrast, elevated CD47 expression in cutaneous melanomas is associated with improved survival. Previous studies implicated protective functions of CD47 expressed by immune cells in the melanoma tumor microenvironment. RNA sequencing analysis of responses induced by CD3 and CD28 engagement on wild type and CD47-deficient Jurkat T lymphoblast cells identified additional regulators of T cell function that were also CD47-dependent in mouse CD8 T cells. MYCN mRNA expression was upregulated in CD47-deficient cells but downregulated in CD47-deficient cells following activation. CD47 also regulated alternative splicing that produces two N-MYC isoforms. The CD47 ligand thrombospondin-1 inhibited expression of these MYCN mRNA isoforms, as well as induction of the oncogenic decoy MYCN opposite strand (MYCNOS) RNA during T cell activation. Analysis of mRNA expression data for melanomas in The Cancer Genome Atlas identified a significant coexpression of MYCN with CD47 and known regulators of CD8 T cell function. Thrombospondin-1 inhibited the induction of TIGIT, CD40LG, and MCL1 mRNAs following T cell activation in vitro. Increased mRNA expression of these T cell transcripts and MYCN in melanomas was associated with improved overall survival.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Duha Awad
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard P. Finney
- CCR Collaborative Bioinformatics, Resource, Office of Science and Technology Resources, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics, Resource, Office of Science and Technology Resources, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Satya P. Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margaret C. Cam
- CCR Collaborative Bioinformatics, Resource, Office of Science and Technology Resources, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baktiar O. Karim
- Molecular Histopathology Laboratory, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Andrew C. Warner
- Molecular Histopathology Laboratory, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Bai H, Zhang Q, Zhang S, Wang J, Luo B, Dong Y, Gao J, Cheng T, Dong F, Ema H. Multiple cells of origin in common with various types of mouse N-Myc acute leukemia. Leuk Res 2022; 117:106843. [DOI: 10.1016/j.leukres.2022.106843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
|
8
|
Zhang ZL, Wang D, Chen FS. MicroRNA-101a-3p mimic ameliorates spinal cord ischemia/reperfusion injury. Neural Regen Res 2022; 17:2022-2028. [PMID: 35142692 PMCID: PMC8848611 DOI: 10.4103/1673-5374.335164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
miR-101a-3p is expressed in a variety of organs and tissues and plays a regulatory role in many diseases, but its role in spinal cord ischemia/reperfusion injury remains unclear. In this study, we established a rat model of spinal cord ischemia/reperfusion injury by clamping the aortic arch for 14 minutes followed by reperfusion for 24 hours. Results showed that miR-101a-3p expression in L4–L6 spinal cord was greatly decreased, whereas MYCN expression was greatly increased. Dual-luciferase reporter assay results showed that miR-101a-3p targeted MYCN. MYCN immunoreactivity, which was primarily colocalized with neurons in L4–L6 spinal tissue, greatly increased after spinal cord ischemia/reperfusion injury. However, intrathecal injection of an miR-101a-3p mimic within 24 hours before injury decreased MYCN, p53, caspase-9 and interleukin-1β expression, reduced p53 immunoreactivity, reduced the number of MYCN/NeuN-positive cells and the number of necrotic cells in L4–L6 spinal tissue, and increased Tarlov scores. These findings suggest that the miR-101a-3p mimic improved spinal ischemia/reperfusion injury-induced nerve cell apoptosis and inflammation by inhibiting MYCN and the p53 signaling pathway. Therefore, miR-101a-3p mimic therapy may be a potential treatment option for spinal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Zai-Li Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Dan Wang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Feng-Shou Chen
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
9
|
Larrew T, Saway BF, Lowe SR, Olar A. Molecular Classification and Therapeutic Targets in Ependymoma. Cancers (Basel) 2021; 13:cancers13246218. [PMID: 34944845 PMCID: PMC8699461 DOI: 10.3390/cancers13246218] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Ependymoma is a biologically diverse tumor wherein molecular classification has superseded traditional histological grading based on its superior ability to characterize behavior, prognosis, and possible targeted therapies. The current, updated molecular classification of ependymoma consists of ten distinct subgroups spread evenly among the spinal, infratentorial, and supratentorial compartments, each with its own distinct clinical and molecular characteristics. In this review, the history, histopathology, standard of care, prognosis, oncogenic drivers, and hypothesized molecular targets for all subgroups of ependymoma are explored. This review emphasizes that despite the varied behavior of the ependymoma subgroups, it remains clear that research must be performed to further elucidate molecular targets for these tumors. Although not all ependymoma subgroups are oncologically aggressive, development of targeted therapies is essential, particularly for cases where surgical resection is not an option without causing significant morbidity. The development of molecular therapies must rely on building upon our current understanding of ependymoma oncogenesis, as well as cultivating transfer of knowledge based on malignancies with similar genomic alterations.
Collapse
Affiliation(s)
- Thomas Larrew
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (T.L.); (B.F.S.)
| | - Brian Fabian Saway
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (T.L.); (B.F.S.)
| | | | - Adriana Olar
- NOMIX Laboratories, Denver, CO 80218, USA
- Correspondence: or
| |
Collapse
|
10
|
MYC in T-cell acute lymphoblastic leukemia: functional implications and targeted strategies. BLOOD SCIENCE 2021; 3:65-70. [PMID: 35402840 PMCID: PMC8974894 DOI: 10.1097/bs9.0000000000000073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/03/2021] [Indexed: 01/12/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer that frequently occurs in children and adolescents, which results from the transformation of immature T-cell progenitors. Aberrant cell growth and proliferation of T-ALL lymphoblasts are sustained by activation of strong oncogenic drivers. Mounting evidence highlights the critical role of the NOTCH1-MYC highway toward the initiation and progression of T-ALL. MYC has been emphasized as a primary NOTCH1 transcriptional target impinging in leukemia-initiating cell activity particularly responsible for disease onset and relapse. These findings lay a foundation of T-ALL as an ideal disease model for studying MYC-mediated cancer. The biology of MYC deregulation in T-ALL supports innovative strategies for therapeutic targeting of MYC. To summarize the relevant literature and data in recent years, we here provide a comprehensive overview of the functional importance of MYC in T-ALL development, and the molecular mechanisms underlying MYC deregulation in T-ALL. Finally, we illustrate the innovative MYC-targeted approaches that have been evaluated in pre-clinical models and shown significant efficacy. Given the complexity of T-ALL molecular pathogenesis, we propose that a combination of anti-MYC strategies with conventional chemotherapies or other targeted/immunotherapies may provide the most durable response, especially for those patients with relapsed and refractory T-ALL.
Collapse
|
11
|
Wang F, Qi Z, Yao Y, Yu G, Feng T, Zhao T, Xue HH, Zhao Y, Jiang P, Bao L, Yu S. Exploring the stage-specific roles of Tcf-1 in T cell development and malignancy at single-cell resolution. Cell Mol Immunol 2021; 18:644-659. [PMID: 32868912 PMCID: PMC8027857 DOI: 10.1038/s41423-020-00527-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023] Open
Abstract
Tcf-1 (encoded by Tcf7) not only plays critical roles in promoting T cell development and differentiation but also has been identified as a tumor suppressor involved in preventing T cell malignancy. However, the comprehensive mechanisms of Tcf-1 involved in T cell transformation remain poorly understood. In this study, Tcf7fl/fl mice were crossed with Vav-cre, Lck-cre, or Cd4-cre mice to delete Tcf-1 conditionally at the beginning of the HSC, DN2-DN3, or DP stage, respectively. The defective T cell development phenotypes became gradually less severe as the deletion stage became more advanced in distinct mouse models. Interestingly, consistent with Tcf7-/- mice, Tcf7fl/flVav-cre mice developed aggressive T cell lymphoma within 45 weeks, but no tumors were generated in Tcf7fl/flLck-cre or Tcf7fl/flCd4-cre mice. Single-cell RNA-seq (ScRNA-seq) indicated that ablation of Tcf-1 at distinct phases can subdivide DN1 cells into three clusters (C1, C2, and C3) and DN2-DN3 cells into three clusters (C4, C5, and C6). Moreover, Tcf-1 deficiency redirects bifurcation among divergent cell fates, and clusters C1 and C4 exhibit high potential for leukemic transformation. Mechanistically, we found that Tcf-1 directly binds and mediates chromatin accessibility for both typical T cell regulators and proto-oncogenes, including Myb, Mycn, Runx1, and Lyl1 in the DN1 phase and Lef1, Id2, Dtx1, Fyn, Bcl11b, and Zfp36l2 in the DN2-DN3 phase. The aberrant expression of these genes due to Tcf-1 deficiency in very early T cells contributes to subsequent tumorigenesis. Thus, we demonstrated that Tcf-1 plays stage-specific roles in regulating early thymocyte development and transformation, providing new insights and evidence for clinical trials on T-ALL leukemia.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Cell Differentiation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Gene Expression Profiling
- Hepatocyte Nuclear Factor 1-alpha/physiology
- Lymphocyte Activation
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/physiology
- Lymphoma, T-Cell/etiology
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Single-Cell Analysis/methods
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Zhihong Qi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Yingpeng Yao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Guotao Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Tao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Tianyan Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Hai-Hui Xue
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Peng Jiang
- Regenerative Biology Laboratory, Morgridge Institute for Research, Madison, WI, 53707, USA
| | - Li Bao
- Department Hematology, Beijing Jishuitan Hospital, 100096, Beijing, China
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China.
| |
Collapse
|
12
|
Bogdanov KV, Merzlikina OV, Mirolyubova YV, Girshova LL, Lomaia EG, Zaritskey AY. CASC5 Gene Expression Changes Correlate with Targeted Mutations in Leukemia. Mol Biol 2021. [DOI: 10.1134/s0026893321010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Liu Z, Chen SS, Clarke S, Veschi V, Thiele CJ. Targeting MYCN in Pediatric and Adult Cancers. Front Oncol 2021; 10:623679. [PMID: 33628735 PMCID: PMC7898977 DOI: 10.3389/fonc.2020.623679] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
The deregulation of the MYC family of oncogenes, including c-MYC, MYCN and MYCL occurs in many types of cancers, and is frequently associated with a poor prognosis. The majority of functional studies have focused on c-MYC due to its broad expression profile in human cancers. The existence of highly conserved functional domains between MYCN and c-MYC suggests that MYCN participates in similar activities. MYC encodes a basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor (TF) whose central oncogenic role in many human cancers makes it a highly desirable therapeutic target. Historically, as a TF, MYC has been regarded as “undruggable”. Thus, recent efforts focus on investigating methods to indirectly target MYC to achieve anti-tumor effects. This review will primarily summarize the recent progress in understanding the function of MYCN. It will explore efforts at targeting MYCN, including strategies aimed at suppression of MYCN transcription, destabilization of MYCN protein, inhibition of MYCN transcriptional activity, repression of MYCN targets and utilization of MYCN overexpression dependent synthetic lethality.
Collapse
Affiliation(s)
- Zhihui Liu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Samuel S Chen
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Saki Clarke
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Carol J Thiele
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
14
|
Kong D, Fan S, Sun L, Chen X, Zhao Y, Zhao L, Guo Z, Li Y. Growth inhibition and suppression of the mTOR and Wnt/β-catenin pathways in T-acute lymphoblastic leukemia by rapamycin and MYCN depletion. Hematol Oncol 2020; 39:222-230. [PMID: 33300153 DOI: 10.1002/hon.2831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy. Understanding of the molecular pathogenesis may lead to novel therapeutic targets. Rapamycin, the mammalian target of rapamycin (mTOR) inhibitor, showed inhibitory effects on T-ALL cells. In this study, we showed that rapamycin significantly reduced MYCN mRNA and protein in a concentration-dependent manner in T-ALL cells. Selective knockdown of MYCN by small interfering RNA had similar effects to rapamycin to inhibit T-ALL proliferation and colony formation and to induce G1-phase cell-cycle arrest and apoptosis. The inhibitory effects of rapamycin and MYCN depletion were also found in a Molt-4 xenograft model. Rapamycin and MYCN inhibition suppressed both Wnt/β-catenin and mTOR signaling pathways. The results suggest the effects of rapamycin on adult T-ALL is likely mediated by downregulation of MYCN. The findings suggest MYCN a potential target for the treatment of adult T-ALL. Additionally, dual targeting of mTOR and Wnt/β-catenin pathways may represent a novel strategy in the treatment of adult T-ALL.
Collapse
Affiliation(s)
- Desheng Kong
- Department of Hematology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shengjin Fan
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Lili Sun
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xi Chen
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yanqiu Zhao
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Linlin Zhao
- Department of Blood Transfusion, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhibo Guo
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yinghua Li
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Ghasemi DR, Sill M, Okonechnikov K, Korshunov A, Yip S, Schutz PW, Scheie D, Kruse A, Harter PN, Kastelan M, Wagner M, Hartmann C, Benzel J, Maass KK, Khasraw M, Sträter R, Thomas C, Paulus W, Kratz CP, Witt H, Kawauchi D, Herold-Mende C, Sahm F, Brandner S, Kool M, Jones DTW, von Deimling A, Pfister SM, Reuss DE, Pajtler KW. MYCN amplification drives an aggressive form of spinal ependymoma. Acta Neuropathol 2019; 138:1075-1089. [PMID: 31414211 PMCID: PMC6851394 DOI: 10.1007/s00401-019-02056-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022]
Abstract
Spinal ependymal tumors form a histologically and molecularly heterogeneous group of tumors with generally good prognosis. However, their treatment can be challenging if infiltration of the spinal cord or dissemination throughout the central nervous system (CNS) occurs and, in these cases, clinical outcome remains poor. Here, we describe a new and relatively rare subgroup of spinal ependymal tumors identified using DNA methylation profiling that is distinct from other molecular subgroups of ependymoma. Copy number variation plots derived from DNA methylation arrays showed MYCN amplification as a characteristic genetic alteration in all cases of our cohort (n = 13), which was subsequently validated using fluorescence in situ hybridization. The histological diagnosis was anaplastic ependymoma (WHO Grade III) in ten cases and classic ependymoma (WHO Grade II) in three cases. Histological re-evaluation in five primary tumors and seven relapses showed characteristic histological features of ependymoma, namely pseudorosettes, GFAP- and EMA positivity. Electron microscopy revealed cilia, complex intercellular junctions and intermediate filaments in a representative sample. Taking these findings into account, we suggest to designate this molecular subgroup spinal ependymoma with MYCN amplification, SP-EPN-MYCN. SP-EPN-MYCN tumors showed distinct growth patterns with intradural, extramedullary localization mostly within the thoracic and cervical spine, diffuse leptomeningeal spread throughout the whole CNS and infiltrative invasion of the spinal cord. Dissemination was observed in 100% of cases. Despite high-intensity treatment, SP-EPN-MYCN showed significantly worse median progression free survival (PFS) (17 months) and median overall survival (OS) (87 months) than all other previously described molecular spinal ependymoma subgroups. OS and PFS were similar to supratentorial ependymoma with RELA-fusion (ST-EPN-RELA) and posterior fossa ependymoma A (PF-EPN-A), further highlighting the aggressiveness of this distinct new subgroup. We, therefore, propose to establish SP-EPN-MYCN as a new molecular subgroup in ependymoma and advocate for testing newly diagnosed spinal ependymal tumors for MYCN amplification.
Collapse
Affiliation(s)
- David R Ghasemi
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Martin Sill
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Konstantin Okonechnikov
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephen Yip
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Peter W Schutz
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David Scheie
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | - Anders Kruse
- Spine Section, Department of Orthopedic Surgery, Rigshospitalet, Copenhagen, Denmark
| | - Patrick N Harter
- Institute of Neurology (Edinger-Institute), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Marina Kastelan
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW, Australia
- The Brain Cancer Group, Sydney, NSW, Australia
| | - Marlies Wagner
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany
- Institute of Neuroradiology, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Christian Hartmann
- Department of Neuropathology, Hannover Medical School, Hannover, Germany
| | - Julia Benzel
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kendra K Maass
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Mustafa Khasraw
- Royal North Shore Hospital, The University of Sydney, Sydney, Australia
| | - Ronald Sträter
- Department of Pediatric Hematology/Oncology, University of Münster, Münster, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Werner Paulus
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Hendrik Witt
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Daisuke Kawauchi
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | | | - Felix Sahm
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Brandner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Marcel Kool
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - David T W Jones
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - David E Reuss
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Kristian W Pajtler
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.
- Department of Pediatric Oncology, Hematology, and Immunology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
16
|
Huang X, Zhao J, Zhu J, Chen S, Fu W, Tian X, Lou S, Ruan J, He J, Zhou H. MYCN gene polymorphisms and Wilms tumor susceptibility in Chinese children. J Clin Lab Anal 2019; 33:e22988. [PMID: 31343784 PMCID: PMC7938399 DOI: 10.1002/jcla.22988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Wilms tumor, derived from embryonic cells, accounts for a large proportion of pediatric renal tumors. MYCN encoded by MYCN proto-oncogene, a member of the MYC family, is a BHLH transcription factor. It plays a critical role in tumorigenesis and predicts poor clinical outcomes in various types of cancer. However, the role of MYCN remained unclarified in Wilms tumor. In this study, we investigated the association between MYCN gene polymorphisms and Wilms tumor susceptibility. METHODS Four MYCN gene polymorphisms (rs57961569 G > A, rs9653226 T > C, rs13034994 A > G, and rs60226897 G > A) were genotyped in 183 cases and 603 controls. Adjusted odds ratios (AORs) and 95% confidence intervals (CIs) were calculated to evaluate the association between MYCN gene polymorphisms and Wilms tumor susceptibility. RESULTS Overall, no significant association was found for any of the four MYCN gene polymorphisms. Interestingly, in the stratification analysis, the rs57961569 was found to be associated with decreased Wilms tumor susceptibility in the children older than 18 months (AOR = 0.65, 95% CI = 0.42-1.00, P = .050). Moreover, older children carrying 2-4 risk genotypes were at increased risk of Wilms tumor (OR = 1.55, 95% CI = 1.001-2.40, P = .0497). Haplotype GCAA was shown to significantly increased Wilms tumor risk (AOR = 2.40, 95% CI = 1.12-5.14, P = .024). CONCLUSION Our study demonstrated that these MYCN gene polymorphisms might be low penetrant variants in Wilms tumor.
Collapse
Affiliation(s)
- Xiaokai Huang
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jie Zhao
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jinhong Zhu
- Department of Clinical LaboratoryBiobankHarbin Medical University Cancer HospitalHarbinChina
| | - Shanshan Chen
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Xiaoqian Tian
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Susu Lou
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jichen Ruan
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jing He
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Haixia Zhou
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
17
|
An integrated transcriptional switch at the β-selection checkpoint determines T cell survival, development and leukaemogenesis. Biochem Soc Trans 2019; 47:1077-1089. [DOI: 10.1042/bst20180414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023]
Abstract
Abstract
In T cell development, a pivotal decision-making stage, termed β-selection, integrates a TCRβ checkpoint to coordinate survival, proliferation and differentiation to an αβ T cell. Here, we review how transcriptional regulation coordinates fate determination in early T cell development to enable β-selection. Errors in this transcription control can trigger T cell acute lymphoblastic leukaemia. We describe how the β-selection checkpoint goes awry in leukaemic transformation.
Collapse
|
18
|
Sheng Y, Ji Z, Zhao H, Wang J, Cheng C, Xu W, Wang X, He Y, Liu K, Li L, Voeltzel T, Maguer-Satta V, Gao WQ, Zhu HH. Downregulation of the histone methyltransferase SETD2 promotes imatinib resistance in chronic myeloid leukaemia cells. Cell Prolif 2019; 52:e12611. [PMID: 31054182 PMCID: PMC6668982 DOI: 10.1111/cpr.12611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/25/2019] [Accepted: 03/09/2019] [Indexed: 12/19/2022] Open
Abstract
Objectives Epigenetic modifiers were important players in the development of haematological malignancies and sensitivity to therapy. Mutations of SET domain‐containing 2 (SETD2), a methyltransferase that catalyses the trimethylation of histone 3 on lysine 36 (H3K36me3), were found in various myeloid malignancies. However, the detailed mechanisms through which SETD2 confers chronic myeloid leukaemia progression and resistance to therapy targeting on BCR‐ABL remain unclear. Materials and methods The level of SETD2 in imatinib‐sensitive and imatinib‐resistant chronic myeloid leukaemia (CML) cells was examined by immunoblotting and quantitative real‐time PCR. We analysed CD34+CD38− leukaemic stem cells by flow cytometry and colony formation assays upon SETD2 knockdown or overexpression. The impact of SETD2 expression alterations or small‐molecule inhibitor JIB‐04 targeting H3K36me3 loss on imatinib sensitivity was assessed by IC50, cell apoptosis and proliferation assays. Finally, RNA sequencing and ChIP‐quantitative PCR were performed to verify putative downstream targets. Results SETD2 was found to act as a tumour suppressor in CML. The novel oncogenic targets MYCN and ERG were shown to be the direct downstream targets of SETD2, where their overexpression induced by SETD2 knockdown caused imatinib insensitivity and leukaemic stem cell enrichment in CML cell lines. Treatment with JIB‐04, an inhibitor that restores H3K36me3 levels through blockade of its demethylation, successfully improved the cell imatinib sensitivity and enhanced the chemotherapeutic effect. Conclusions Our study not only emphasizes the regulatory mechanism of SETD2 in CML, but also provides promising therapeutic strategies for overcoming the imatinib resistance in patients with CML.
Collapse
Affiliation(s)
- Yaru Sheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongzhong Ji
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Huifang Zhao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinming Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chaping Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Weimin Xu
- Department of Colorectal Surgery, Xin-Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yuman He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kaiyuan Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Li
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | | | | | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Papale M, Ferretti E, Battaglia G, Bellavia D, Mai A, Tafani M. EZH2, HIF-1, and Their Inhibitors: An Overview on Pediatric Cancers. Front Pediatr 2018; 6:328. [PMID: 30510924 PMCID: PMC6254013 DOI: 10.3389/fped.2018.00328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022] Open
Abstract
During the past decades, several discoveries have established the role of epigenetic modifications and cellular microenvironment in tumor growth and progression. One of the main representatives concerning epigenetic modification is the polycomb group (PcG). It is composed of different highly conserved epigenetic effector proteins preserving, through several post-translational modifications of histones, the silenced state of the genes implicated in a wide range of central biological events such as development, stem cell formation, and tumor progression. Proteins of the PcG can be divided in polycomb repressive complexes (PRCs): PRC1 and PRC2. In particular, enhancer of zeste homolog 2 (EZH2), the catalytic core subunit of PRC2, acts as an epigenetic silencer of many tumor suppressor genes through the trimethylation of lysine 27 on histone H3, an essential binding site for DNA methyl transferases and histone deacetylases. A growing number of data suggests that overexpression of EZH2 associates with progression and poor outcome in a large number of cancer cases. Hypoxia inducible factor (HIF) is an important transcription factor involved in modulating cellular response to the microenvironment by promoting and regulating tumor development such as angiogenesis, inflammation, metabolic reprogramming, invasion, and metastatic fate. The HIF complex is represented by different subunits (α and β) acting together and promoting the expression of vascular endothelial growth factor (VEGF), hexokinase II (HKII), receptor for advanced glycation end products (RAGE), carbonic anhydrase (CA), etc., after binding to the hypoxia-response element (HRE) binding site on the DNA. In this review, we will try to connect these two players by detailing the following: (i) the activity and influence of these two important regulators of cancer progression in particular for what concerns pediatric tumors, (ii) the possible correlation between them, and (iii) the feasibility and efficiency to contrast them using several inhibitors.
Collapse
Affiliation(s)
- Marco Papale
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University, Rome, Italy
- IRCCS Neuromed, Isernia, Italy
| | | | - Diana Bellavia
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University, Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
20
|
Tan TK, Zhang C, Sanda T. Oncogenic transcriptional program driven by TAL1 in T-cell acute lymphoblastic leukemia. Int J Hematol 2018; 109:5-17. [PMID: 30145780 DOI: 10.1007/s12185-018-2518-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/21/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
TAL1/SCL is a prime example of an oncogenic transcription factor that is abnormally expressed in acute leukemia due to the replacement of regulator elements. This gene has also been recognized as an essential regulator of hematopoiesis. TAL1 expression is strictly regulated in a lineage- and stage-specific manner. Such precise control is crucial for the switching of the transcriptional program. The misexpression of TAL1 in immature thymocytes leads to a widespread series of orchestrated downstream events that affect several different cellular machineries, resulting in a lethal consequence, namely T-cell acute lymphoblastic leukemia (T-ALL). In this article, we will discuss the transcriptional regulatory network and downstream target genes, including protein-coding genes and non-coding RNAs, controlled by TAL1 in normal hematopoiesis and T-cell leukemogenesis.
Collapse
Affiliation(s)
- Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore, 117599, Singapore
| | - Chujing Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore, 117599, Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore, 117599, Singapore. .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| |
Collapse
|
21
|
Kong D, Zhao L, Sun L, Fan S, Li H, Zhao Y, Guo Z, Lin L, Cui L, Wang K, Chen W, Zhang Y, Zhou J, Li Y. MYCN is a novel oncogenic target in adult B-ALL that activates the Wnt/β-catenin pathway by suppressing DKK3. J Cell Mol Med 2018; 22:3627-3637. [PMID: 29673070 PMCID: PMC6010754 DOI: 10.1111/jcmm.13644] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/08/2018] [Indexed: 12/11/2022] Open
Abstract
Dickkopf‐3 (DKK3) is frequently down‐regulated by promoter hypermethylation and is closely associated with a poor prognosis in many cancers. Our previous studies have shown that miR‐708 down‐regulates DKK3 at the post‐transcriptional level in B‐ALL. However, whether transcriptional mechanisms lead to DKK3 silencing remains unclear. Here, we analysed the promoter regions of DKK3 by bioinformatics and found binding sites for MYCN. A dual‐luciferase reporter gene assay and ChIP experiments revealed that MYCN negatively regulates DKK3 at the transcriptional level in B‐ALL cell lines, and using bisulphite sequencing PCR, we affirmed that MYCN has no effect on the methylation of the DKK3 promoter. MYCN silencing in B‐ALL cells resulted in reduced cell proliferation, increased apoptosis and G1 phase arrest. Treatment with MYCN siRNA or 5‐aza‐2′‐deoxycytidine (5‐AdC), a demethylating agent, significantly increased the levels of DKK3 mRNA and protein and decreased the protein levels of p‐GSK3β and nuclear β‐catenin, which indicates inhibition of the Wnt/β‐catenin pathway in vitro. MYCN knockdown significantly decreased the tumorigenic capacity of Nalm6 cells, which restored DKK3 levels and inhibited the Wnt/β‐catenin pathway in vivo. Our study provides an increased understanding of adult B‐ALL pathogenesis, which may be beneficial to the development of effective prognostic markers or therapeutic targets.
Collapse
Affiliation(s)
- Desheng Kong
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Hematology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Linlin Zhao
- Department of Blood Transfusion, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Lili Sun
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shengjin Fan
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Huibo Li
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yanqiu Zhao
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhibo Guo
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Leilei Lin
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Lin Cui
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ke Wang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wenjia Chen
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yihui Zhang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jin Zhou
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yinghua Li
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
The MYCN Protein in Health and Disease. Genes (Basel) 2017; 8:genes8040113. [PMID: 28358317 PMCID: PMC5406860 DOI: 10.3390/genes8040113] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
MYCN is a member of the MYC family of proto-oncogenes. It encodes a transcription factor, MYCN, involved in the control of fundamental processes during embryonal development. The MYCN protein is situated downstream of several signaling pathways promoting cell growth, proliferation and metabolism of progenitor cells in different developing organs and tissues. Conversely, deregulated MYCN signaling supports the development of several different tumors, mainly with a childhood onset, including neuroblastoma, medulloblastoma, rhabdomyosarcoma and Wilms’ tumor, but it is also associated with some cancers occurring during adulthood such as prostate and lung cancer. In neuroblastoma, MYCN-amplification is the most consistent genetic aberration associated with poor prognosis and treatment failure. Targeting MYCN has been proposed as a therapeutic strategy for the treatment of these tumors and great efforts have allowed the development of direct and indirect MYCN inhibitors with potential clinical use.
Collapse
|
23
|
Beckers A, Van Peer G, Carter DR, Mets E, Althoff K, Cheung BB, Schulte JH, Mestdagh P, Vandesompele J, Marshall GM, De Preter K, Speleman F. MYCN-targeting miRNAs are predominantly downregulated during MYCN‑driven neuroblastoma tumor formation. Oncotarget 2016; 6:5204-16. [PMID: 25294817 PMCID: PMC4467143 DOI: 10.18632/oncotarget.2477] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/15/2014] [Indexed: 12/25/2022] Open
Abstract
MYCN is a transcription factor that plays key roles in both normal development and cancer. In neuroblastoma, MYCN acts as a major oncogenic driver through pleiotropic effects regulated by multiple protein encoding genes as well as microRNAs (miRNAs). MYCN activity is tightly controlled at the level of transcription and protein stability through various mechanisms. Like most genes, MYCN is further controlled by miRNAs, but the full complement of all miRNAs implicated in this process has not been determined through an unbiased approach. To elucidate the role of miRNAs in regulation of MYCN, we thus explored the MYCN-miRNA interactome to establish miRNAs controlling MYCN expression levels. We combined results from an unbiased and genome-wide high-throughput miRNA target reporter screen with miRNA and mRNA expression data from patients and a murine neuroblastoma progression model. We identified 29 miRNAs targeting MYCN, of which 12 miRNAs are inversely correlated with MYCN expression or activity in neuroblastoma tumor tissue. The majority of MYCN-targeting miRNAs in neuroblastoma showed a decrease in expression during murine MYCN-driven neuroblastoma tumor development. Therefore, we provide evidence that MYCN-targeting miRNAs are preferentially downregulated in MYCN-driven neuroblastoma, suggesting that MYCN negatively controls the expression of these miRNAs, to safeguard its expression.
Collapse
Affiliation(s)
- Anneleen Beckers
- Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
| | - Gert Van Peer
- Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
| | - Daniel R Carter
- Children's Cancer Institute, University of New South Wales, Sydney, Australia
| | - Evelien Mets
- Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
| | - Kristina Althoff
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), Germany
| | - Belamy B Cheung
- Children's Cancer Institute, University of New South Wales, Sydney, Australia
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Translational Neuro-Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Pieter Mestdagh
- Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
| | - Glenn M Marshall
- Children's Cancer Institute, University of New South Wales, Sydney, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Sydney, Australia
| | - Katleen De Preter
- Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
| | - Frank Speleman
- Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
| |
Collapse
|
24
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
D'Angelo V, Iannotta A, Ramaglia M, Lombardi A, Zarone MR, Desiderio V, Affinita MC, Pecoraro G, Di Martino M, Indolfi P, Casale F, Caraglia M. EZH2 is increased in paediatric T-cell acute lymphoblastic leukemia and is a suitable molecular target in combination treatment approaches. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:83. [PMID: 26268310 PMCID: PMC4535295 DOI: 10.1186/s13046-015-0191-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/17/2015] [Indexed: 12/04/2022]
Abstract
Background T-cell Acute Lymphoblastic Leukemia (ALL) represents about 10–15 % of pediatric ALL cases. EZH2, one of the components of Polycomb group proteins (PRC2) complex, catalyzes the trimethylation of histone H3 lysine 27 that is associated with transcriptional repression and tumor development. Methods We examined the expression levels of PRC2 complex in primary samples of T cells ALL at diagnosis by western blotting and real time PCR. We evaluated the effect of 3-deazaneplanocin-A (DZNep), an EZH2 inhibitor, alone and in combination with Daunoblastine on cell viability, apoptotic death and cell cycle distribution of T cell established Jurkat cell line. Results EZH2 was expressed in 75 % samples at different extents mainly with high expression level. SUZ12 was expressed in 60 % samples and EED in all samples, respectively. The Kaplan-Meier analysis shows that T-ALL expressing EZH2 had a lower probability of disease-free survival (DFS) compared to T-ALL negative for EZH2 (23 % vs 100 %) (p = 0.01). The EZH2 inhibitor DZNep used in combination with Daunoblastine was synergistic in inducing growth inhibition and increasing the apoptosis in T-ALL Jurkat cells at 48 and 72 h paralleled by EZH2 decreased expression. Moreover, the combination decreased the activity of Erk-1/2 proliferation enzymes with no effects on Akt survival pathway. Conclusions The evaluation of EZH2 expression in pediatric T-ALL can be useful in predict the clinical outcome of the patients and EZH2 can be a useful target to improve the efficacy of conventional chemotherapy in this subset of patients with bad prognosis.
Collapse
Affiliation(s)
- V D'Angelo
- Department of Woman, Child and General and Specialized Surgery, Pediatric Oncology Unit - Second University of Naples, Via Luigi De Crecchio 4, 80138, Naples, Italy.
| | - A Iannotta
- Department of Woman, Child and General and Specialized Surgery, Pediatric Oncology Unit - Second University of Naples, Via Luigi De Crecchio 4, 80138, Naples, Italy.
| | - M Ramaglia
- Department of Woman, Child and General and Specialized Surgery, Pediatric Oncology Unit - Second University of Naples, Via Luigi De Crecchio 4, 80138, Naples, Italy.
| | - A Lombardi
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via S.M. Costantinopoli, 16, 80138, Naples, Italy.
| | - M R Zarone
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via S.M. Costantinopoli, 16, 80138, Naples, Italy.
| | - V Desiderio
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples, Naples, Italy.
| | - M C Affinita
- Department of Woman, Child and General and Specialized Surgery, Pediatric Oncology Unit - Second University of Naples, Via Luigi De Crecchio 4, 80138, Naples, Italy.
| | - G Pecoraro
- Department of Woman, Child and General and Specialized Surgery, Pediatric Oncology Unit - Second University of Naples, Via Luigi De Crecchio 4, 80138, Naples, Italy.
| | - M Di Martino
- Department of Woman, Child and General and Specialized Surgery, Pediatric Oncology Unit - Second University of Naples, Via Luigi De Crecchio 4, 80138, Naples, Italy.
| | - P Indolfi
- Department of Woman, Child and General and Specialized Surgery, Pediatric Oncology Unit - Second University of Naples, Via Luigi De Crecchio 4, 80138, Naples, Italy.
| | - F Casale
- Department of Woman, Child and General and Specialized Surgery, Pediatric Oncology Unit - Second University of Naples, Via Luigi De Crecchio 4, 80138, Naples, Italy.
| | - M Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via S.M. Costantinopoli, 16, 80138, Naples, Italy.
| |
Collapse
|
26
|
Kaszuba-Zwoińska J, Ćwiklińska M, Balwierz W, Chorobik P, Nowak B, Wójcik-Piotrowicz K, Ziomber A, Malina-Novak K, Zaraska W, Thor PJ. Changes in cell death of peripheral blood lymphocytes isolated from children with acute lymphoblastic leukemia upon stimulation with 7 Hz, 30 mT pulsed electromagnetic field. ACTA ACUST UNITED AC 2015. [DOI: 10.1515/cmble-2015-0006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractPulsed electromagnetic field (PEMF) influenced the viability of proliferating in vitro peripheral blood mononuclear cells (PBMCs) isolated from Crohn’s disease patients as well as acute myeloblastic leukemia (AML) patients by induction of cell death, but did not cause any vital changes in cells from healthy donors. Experiments with lymphoid U937 and monocytic MonoMac6 cell lines have shown a protective effect of PEMF on the death process in cells treated with death inducers.The aim of the current study was to investigate the influence of PEMF on native proliferating leukocytes originating from newly diagnosed acute lymphoblastic leukemia (ALL) patients.The effects of exposure to PEMF were studied in PBMCs from 20 children with ALL. PBMCs were stimulated with three doses of PEMF (7 Hz, 30 mT) for 4 h each with 24 h intervals. After the last stimulation, the cells were double stained with annexin V and propidium iodide dye to estimate viability by flow cytometric analysis.The results indicated an increase of annexin V positive as well as double stained annexin V and propidium iodide positive cells after exposure to threefold PEMF stimulation.A low-frequency pulsed electromagnetic field induces cell death in native proliferating cells isolated from ALL patients. The increased vulnerability of proliferating PBMCs to PEMF-induced interactions may be potentially applied in the therapy of ALL.The analysis of expression of apoptosis-related genes revealed changes in mRNA of some genes engaged in the intrinsic apoptotic pathway belonging to the Bcl-2 family and the pathway with apoptosis-inducing factor (AIF) abundance upon PEMF stimulation of PBMCs.
Collapse
|