1
|
Zou W, Huang C, Chen Y, Tang J, Li Q, Fang Q, Ma Y, Wu W, Feng S. Role of HDAC3 in the epithelial-mesenchymal transition of retinal pigment epithelium cells: Implications for proliferative vitreoretinopathy. Heliyon 2024; 10:e39333. [PMID: 39524785 PMCID: PMC11543911 DOI: 10.1016/j.heliyon.2024.e39333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Proliferative vitreoretinopathy(PVR) is a type of fibrotic eye disease with a poor clinical prognosis. Increasing evidence has shown that the primary pathological mechanism of PVR is the epithelial-mesenchymal transition(EMT) of retinal pigment epithelium(RPE) cells. Histone deacetylase 3(HDAC3) is a crucial enzyme involved in regulating the acetylation level of proteins. Several studies have reported associations between HDAC3 levels and EMT in various tumors; however, the specific effect of HDAC3 on PVR remains largely unknown. The current study found that HDAC3 was highly expressed in both human PVR membranes and experimental PVR. In vivo, silencing HDAC3 in RPE cells reduced their ability to develop experimental PVR through suppression of EMT. In vitro, inhibition of HDAC3 in RPE cells suppressed EGF-mediated cell proliferation, migration, and EMT. Additionally, overexpression of HDAC3 in RPE cells promoted cell proliferation, migration, and EMT. Mechanistically, the results of chromatin immunoprecipitation(ChIP) and luciferase assays revealed a direct binding of the transcription factor MAZ to the promoter region of HDAC3, thereby promoting its transcription. Furthermore, It was demonstrated that HDAC3 facilitated EMT by interacting with AKT and contributing to its deacetylation. In summary, our findings indicated the involvement of HDAC3 in the EMT of RPE cells, as well as its role in PVR through the regulation of the AKT pathway. These results suggested that targeting HDAC3 could be a potential strategy for preventing and treating PVR.
Collapse
Affiliation(s)
- Weikang Zou
- Department of Ophthalmology, Southern Medical University, Zhujiang Hospital, Guangzhou, China
| | - Chunling Huang
- Department of Ophthalmology, Southern Medical University, Zhujiang Hospital, Guangzhou, China
| | - Yuting Chen
- Department of Ophthalmology, Southern Medical University, Zhujiang Hospital, Guangzhou, China
| | - Jing Tang
- Department of Ophthalmology, Southern Medical University, Zhujiang Hospital, Guangzhou, China
| | - Qiqi Li
- Department of Ophthalmology, Southern Medical University, Zhujiang Hospital, Guangzhou, China
| | - Qi Fang
- Department of Ophthalmology, Southern Medical University, Zhujiang Hospital, Guangzhou, China
| | - Yulin Ma
- Department of Ophthalmology, Southern Medical University, Zhujiang Hospital, Guangzhou, China
| | - Wei Wu
- Department of Ophthalmology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Songfu Feng
- Department of Ophthalmology, Southern Medical University, Zhujiang Hospital, Guangzhou, China
| |
Collapse
|
2
|
Ou S, Jiao X, Li Y, Pan P, Li R, Huang J, Sun X, Wang W, Zhang Q, Cao C, Wei L. Comparison of chromatin accessibility remodeling of granulosa cells in patients with endometrioma or pelvic/tubal infertility. J Assist Reprod Genet 2024:10.1007/s10815-024-03302-7. [PMID: 39485574 DOI: 10.1007/s10815-024-03302-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024] Open
Abstract
PURPOSE To elucidatethe epigenetic alteration associated with impaired oogenesis in endometrioma using multi-omic approaches. METHODS ATAC-seq was performed on the granulosa cells (GCs) of 6 patients (3 with endometrioma and 3 without). Follicular samples from another 20 patients (10 with endometrioma and 10 without) were collected for mRNA-seq analysis of GCs and extracellular vesicles (EVs) of follicular fluid. qRT-PCR validated candidate genes in GCs from 44 newly enrolled patients (19 with endometrioma and 25 without). mRNA abundance was compared with the Mann-Whitney test. Pearson's correlation analyzed relationships between candidate genes and oocyte parameters. RESULTS Chromatin accessibility and gene expression profiles of GCs from endometrioma patients differed significantly from the pelvic/tubal infertility group. RNA-seq revealed most differentially expressed genes were downregulated (6216/7325) and enriched in the cellular localization pathway. Multi-omics analyses identified 22 significantly downregulated genes in the GCs of endometrioma patients, including PPIF (P < 0.0001) and VEGFA (P = 0.0148). Both genes were further confirmed by qRT-PCR. PPIF (r = 0.46, p = 0.043) and VEGFA (r = 0.45, p = 0.048) correlated with the total number of retrieved oocytes. CONCLUSIONS GC chromatin remodeling may disrupt GC and EV transcriptomes, interfering with somatic cell-oocyte communication and leading to compromised oogenesis in endometrioma patients.
Collapse
Affiliation(s)
- Songbang Ou
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Xi Ave, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xuedan Jiao
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Xi Ave, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yi Li
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Xi Ave, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ping Pan
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Xi Ave, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruiqi Li
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Xi Ave, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jia Huang
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Xi Ave, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyue Sun
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Xi Ave, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenjun Wang
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Xi Ave, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qingxue Zhang
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Xi Ave, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Chunwei Cao
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Xi Ave, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Lina Wei
- Division of Histology and Embryology, International Joint Laboratory for Embryonic, Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Xi Ave, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
3
|
Kaya M, Abuaisha A, Suer I, Emiroglu S, Abanoz F, Palanduz S, Cefle K, Ozturk S. Turmeric Inhibits MDA-MB-231 Cancer Cell Proliferation, Altering miR-638-5p and Its Potential Targets. Eur J Breast Health 2024; 20:102-109. [PMID: 38571691 PMCID: PMC10985573 DOI: 10.4274/ejbh.galenos.2024.2023-12-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/04/2024] [Indexed: 04/05/2024]
Abstract
Objective Recent research suggests curcumin extracted from the turmeric plant may inhibit the proliferation of cancer cells by controlling the expression of microRNAs (miRNAs). The effect of phenolic curcumin on miR-638-5p and potential target gene expressions in the triple negative breast cancer (TNBC) cell line MDA-MB-231 was investigated in this study. Materials and Methods GSE154255 and GSE40525 datasets were downloaded and analyzed using GEO2R to identify dysregulated miRNAs in TNBC. To find differently expressed genes in breast cancer (BRCA), The Cancer Genome Atlas Program data was examined. Utilizing in silico tools, KEGG, GO, and other enrichment analyses were performed. The databases miRNet, miRTarBase v8.0, and TarBase v.8 were used for miRNA and mRNA matching. Real-time quantitative reverse transcription polymerase chain reaction was used to examine the levels of miRNA and its targets in miRNA mimic transfected/curcumin-treated MDA-MB-231 cultures and controls. The cell viability detection kit-8 method was used to assess cell viability, and the scratch assay was used to conduct migration assessment. Results Bioinformatics analysis showed that miR-638-5p was significantly reduced in TNBC patients. Experimental results showed that miR-638-5p was upregulated in MDA-MB-231 treated with curcumin, while the potential target genes of miR-638-5p, CFL1, SIX4, MAZ, and CDH1 were downregulated. Mimic miR-638-5p transfection inhibited MDA-MB-231 cell proliferation and reduced migration and expression of CFL1, SIX4, and MAZ genes was decreased in mimic miR-638-5p transfected cells. Conclusion These findings suggest that curcumin exerts its anticancer effects on MDA-MB-231 cells by modulating the expression of miR-638-5p and its possible target genes.
Collapse
Affiliation(s)
- Murat Kaya
- Division of Medical Genetics, Department of Internal Medicine, Istanbul University-Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Asmaa Abuaisha
- Department of Genetics, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Ilknur Suer
- Department of Medical Genetics, Istanbul University-Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Selman Emiroglu
- Division of Breast Surgery, Department of General Surgery, Istanbul University-Istanbul Faculty of Medicine, Istanbul, Turkey
- Department of Molecular and Medical Genetics, Biruni University Graduate School of Education, Istanbul, Turkey
| | - Fahrunnisa Abanoz
- Department of Genetics, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Sukru Palanduz
- Division of Medical Genetics, Department of Internal Medicine, Istanbul University-Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Kivanc Cefle
- Division of Medical Genetics, Department of Internal Medicine, Istanbul University-Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Sukru Ozturk
- Division of Medical Genetics, Department of Internal Medicine, Istanbul University-Istanbul Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
4
|
Zhang F, Wang B, Zhang W, Xu Y, Zhang C, Xue X. Transcription Factor MAZ Potentiates the Upregulated NEIL3-mediated Aerobic Glycolysis, thereby Promoting Angiogenesis in Hepatocellular Carcinoma. Curr Cancer Drug Targets 2024; 24:1235-1249. [PMID: 38347781 DOI: 10.2174/0115680096265896231226062212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 09/25/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is characterized by high vascularity and notable abnormality of blood vessels, where angiogenesis is a key process in tumorigenesis and metastasis. The main functions of Nei Like DNA Glycosylase 3 (NEIL3) include DNA alcoholization repair, immune response regulation, nervous system development and function, and DNA damage signal transduction. However, the underlying mechanism of high expression NEIL3 in the development and progression of HCC and whether the absence or silencing of NEIL3 inhibits the development of cancer remain unclear. Therefore, a deeper understanding of the mechanisms by which increased NEIL3 expression promotes cancer development is needed. METHODS Expression of NEIL3 and its upstream transcription factor MAZ in HCC tumor tissues was analyzed in bioinformatics efforts, while validation was done by qRT-PCR and western blot in HCC cell lines. The migration and tube formation capacity of HUVEC cells were analyzed by Transwell and tube formation assays. Glycolytic capacity was analyzed by extracellular acidification rate, glucose uptake, and lactate production levels. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter gene assays were utilized to investigate specific interactions between MAZ and NEIL3. RESULTS NEIL3 and MAZ were substantially upregulated in HCC tissues and cells. NEIL3 was involved in modulating the glycolysis pathway, suppression of which reversed the stimulative impact of NEIL3 overexpression on migration and angiogenesis in HUVEC cells. MAZ bound to the promoter of NEIL3 to facilitate NEIL3 transcription. Silencing MAZ reduced NEIL3 expression and suppressed the glycolysis pathway, HUVEC cell migration, and angiogenesis. CONCLUSION MAZ potentiated the upregulated NEIL3-mediated glycolysis pathway and HCC angiogenesis. This study provided a rationale for the MAZ/NEIL3/glycolysis pathway as a possible option for anti-angiogenesis therapy in HCC.
Collapse
Affiliation(s)
- Fabiao Zhang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Binfeng Wang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Wenlong Zhang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Yongfu Xu
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Caiming Zhang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Xiangyang Xue
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
5
|
Guan Y, Han J, Chen D, Zhan Y, Chen J. Aquaporin 1 overexpression may enhance glioma tumorigenesis by interacting with the transcriptional regulation networks of Foxo4, Maz, and E2F families. Chin Neurosurg J 2023; 9:34. [PMID: 38057925 DOI: 10.1186/s41016-023-00342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/06/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND The glioblastoma has served as a valuable experimental model system for investigating the growth and invasive properties of glioblastoma. Aquaporin-1 (AQP1) in facilitating cell migration and potentially contributing to tumor progression. In this study, we analyzed the role of AQP1 overexpression in glioblastoma and elucidated the main mechanisms involved. METHODS AQP1 overexpression recombinant vector was introduced into C6 rat glioma cells to construct an AQP1 overexpression C6 cell line, and its effect on cell viability and migration ability was detected by MTT and Transwell. RNA was extracted by Trizol method for gene sequencing and transcriptomics analysis, and the differentially expressed genes (DEGs) were enriched for up- and downregulated genes by Principal component analysis (PCA), and the molecular mechanism of AQP1 overexpression was analyzed in comparison with the control group using the NCBI GEO database. Statistical analysis was performed using Mann-Whitney paired two tailed t test. RESULTS The cell viability of AQP1-transfected cell lines increased by 23% and the mean distance traveled increased by 67% compared with the control group. Quantitative analysis of gene expression showed that there were 12,121 genes with an average transcripts per million (TPM) value greater than 1. DEGs accounted for 13% of the genes expressed, with the highest correlation with upregulated genes being FOXO4 and MAZ, and the highest with downregulated genes being E2F TFs. CONCLUSIONS AQP1 may be implicated in glioma formation by interacting with the transcriptional regulation networks involving the FOXO4, MAZ, and E2F1/2. These findings shed light on the potential significance of AQP1 in glioma pathogenesis and warrant further investigations to unravel the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Ying Guan
- Department of Ultrasound, The First Affiliated Hospital of Hainan Medical College, Haikou City, 570102, Hainan Province, China
| | - Jinhua Han
- Department of Radiology, The First Affiliated Hospital of Hainan Medical College, Haikou City, 570102, Hainan Province, China
| | - Die Chen
- Department of Ultrasound, The First Affiliated Hospital of Hainan Medical College, Haikou City, 570102, Hainan Province, China
| | - Yuefu Zhan
- Department of Radiology, Hainan Children's Hospital, Haikou City, 571103, Hainan Province, China
| | - Jianqiang Chen
- Department of Radiology, The First Affiliated Hospital of Hainan Medical College, Haikou City, 570102, Hainan Province, China.
| |
Collapse
|
6
|
Meng Q, Zhao Q, Hou D. Use of local wound infiltration in open hepatectomy to reduce wound pain: A systematic review and meta-analysis. Int Wound J 2023; 20:3760-3767. [PMID: 37287429 PMCID: PMC10588336 DOI: 10.1111/iwj.14271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
The aim of this study was to assess the effects of local wound infiltration anaesthesia on postoperative wound pain in patients undergoing open liver resection. The Cochrane Library, PubMed, EMBASE, China National Knowledge Infrastructure (CNKI), Chinese Biomedical Literature Database (CBM) and Wanfang databases were searched. The search period spanned from database creation to December 2022. All relevant studies on local wound infiltration anaesthesia for analgesia after hepatectomy were included. Two investigators independently screened the literature, extracted data and evaluated the quality of each study. Review Manager (RevMan) 5.4 software (Cochrane Collaboration) was used for the meta-analysis, in which 12 studies with 986 patients were included. The results show that local wound infiltration anaesthesia effectively reduced surgical site wound pain at 4 h (mean difference [MD]: -1.26, 95% confidence intervals [CIs]: -2.15 to -0.37, P = .005), 12 h (MD: -0.84, 95% CIs: -1.26 to -0.42, P < .001), 24 h (MD: -0.57, 95% CIs: -1.01 to -0.14, P = .009) and 48 h (MD: -0.54, 95% CIs: -0.81 to -0.26, P < .001) postoperatively; however, there was no significant difference in analgesia at 72 h postoperatively (MD: -0.10, 95% CIs: -0.80 to 0.59, P = .77). These findings suggest that local wound infiltration anaesthesia administered to patients undergoing open liver resection provides good postoperative wound analgesia at the surgical site.
Collapse
Affiliation(s)
- Qian‐Qian Meng
- Department of AnesthesiologySecond Affiliated Hospital, Dalian Medical UniversityDalianLiaoningChina
| | - Qiu‐Cheng Zhao
- Department of AnesthesiologySecond Affiliated Hospital, Dalian Medical UniversityDalianLiaoningChina
| | - Dong‐Nan Hou
- Department of AnesthesiologySecond Affiliated Hospital, Dalian Medical UniversityDalianLiaoningChina
| |
Collapse
|
7
|
Asadnia A, Nazari E, Goshayeshi L, Zafari N, Moetamani-Ahmadi M, Goshayeshi L, Azari H, Pourali G, Khalili-Tanha G, Abbaszadegan MR, Khojasteh-Leylakoohi F, Bazyari M, Kahaei MS, Ghorbani E, Khazaei M, Hassanian SM, Gataa IS, Kiani MA, Peters GJ, Ferns GA, Batra J, Lam AKY, Giovannetti E, Avan A. The Prognostic Value of ASPHD1 and ZBTB12 in Colorectal Cancer: A Machine Learning-Based Integrated Bioinformatics Approach. Cancers (Basel) 2023; 15:4300. [PMID: 37686578 PMCID: PMC10486397 DOI: 10.3390/cancers15174300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Introduction: Colorectal cancer (CRC) is a common cancer associated with poor outcomes, underscoring a need for the identification of novel prognostic and therapeutic targets to improve outcomes. This study aimed to identify genetic variants and differentially expressed genes (DEGs) using genome-wide DNA and RNA sequencing followed by validation in a large cohort of patients with CRC. Methods: Whole genome and gene expression profiling were used to identify DEGs and genetic alterations in 146 patients with CRC. Gene Ontology, Reactom, GSEA, and Human Disease Ontology were employed to study the biological process and pathways involved in CRC. Survival analysis on dysregulated genes in patients with CRC was conducted using Cox regression and Kaplan-Meier analysis. The STRING database was used to construct a protein-protein interaction (PPI) network. Moreover, candidate genes were subjected to ML-based analysis and the Receiver operating characteristic (ROC) curve. Subsequently, the expression of the identified genes was evaluated by Real-time PCR (RT-PCR) in another cohort of 64 patients with CRC. Gene variants affecting the regulation of candidate gene expressions were further validated followed by Whole Exome Sequencing (WES) in 15 patients with CRC. Results: A total of 3576 DEGs in the early stages of CRC and 2985 DEGs in the advanced stages of CRC were identified. ASPHD1 and ZBTB12 genes were identified as potential prognostic markers. Moreover, the combination of ASPHD and ZBTB12 genes was sensitive, and the two were considered specific markers, with an area under the curve (AUC) of 0.934, 1.00, and 0.986, respectively. The expression levels of these two genes were higher in patients with CRC. Moreover, our data identified two novel genetic variants-the rs925939730 variant in ASPHD1 and the rs1428982750 variant in ZBTB1-as being potentially involved in the regulation of gene expression. Conclusions: Our findings provide a proof of concept for the prognostic values of two novel genes-ASPHD1 and ZBTB12-and their associated variants (rs925939730 and rs1428982750) in CRC, supporting further functional analyses to evaluate the value of emerging biomarkers in colorectal cancer.
Collapse
Affiliation(s)
- Alireza Asadnia
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran; (A.A.); (N.Z.); (M.M.-A.); (H.A.); (G.P.); (G.K.-T.); (F.K.-L.); (E.G.); (M.K.); (S.M.H.)
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran; (M.R.A.); (M.S.K.)
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran;
| | - Elham Nazari
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19839-69411, Iran;
| | - Ladan Goshayeshi
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran;
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48954, Iran;
| | - Nima Zafari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran; (A.A.); (N.Z.); (M.M.-A.); (H.A.); (G.P.); (G.K.-T.); (F.K.-L.); (E.G.); (M.K.); (S.M.H.)
| | - Mehrdad Moetamani-Ahmadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran; (A.A.); (N.Z.); (M.M.-A.); (H.A.); (G.P.); (G.K.-T.); (F.K.-L.); (E.G.); (M.K.); (S.M.H.)
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran; (M.R.A.); (M.S.K.)
| | - Lena Goshayeshi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48954, Iran;
| | - Haneih Azari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran; (A.A.); (N.Z.); (M.M.-A.); (H.A.); (G.P.); (G.K.-T.); (F.K.-L.); (E.G.); (M.K.); (S.M.H.)
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran; (A.A.); (N.Z.); (M.M.-A.); (H.A.); (G.P.); (G.K.-T.); (F.K.-L.); (E.G.); (M.K.); (S.M.H.)
| | - Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran; (A.A.); (N.Z.); (M.M.-A.); (H.A.); (G.P.); (G.K.-T.); (F.K.-L.); (E.G.); (M.K.); (S.M.H.)
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran; (M.R.A.); (M.S.K.)
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran;
| | - Fatemeh Khojasteh-Leylakoohi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran; (A.A.); (N.Z.); (M.M.-A.); (H.A.); (G.P.); (G.K.-T.); (F.K.-L.); (E.G.); (M.K.); (S.M.H.)
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran;
| | - MohammadJavad Bazyari
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran;
| | - Mir Salar Kahaei
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran; (M.R.A.); (M.S.K.)
| | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran; (A.A.); (N.Z.); (M.M.-A.); (H.A.); (G.P.); (G.K.-T.); (F.K.-L.); (E.G.); (M.K.); (S.M.H.)
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran; (A.A.); (N.Z.); (M.M.-A.); (H.A.); (G.P.); (G.K.-T.); (F.K.-L.); (E.G.); (M.K.); (S.M.H.)
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran;
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran; (A.A.); (N.Z.); (M.M.-A.); (H.A.); (G.P.); (G.K.-T.); (F.K.-L.); (E.G.); (M.K.); (S.M.H.)
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran;
| | | | - Mohammad Ali Kiani
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran;
| | - Godefridus J. Peters
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland;
- Cancer Center Amsterdam, Amsterdam U.M.C., VU University Medical Center (VUMC), Department of Medical Oncology, 1081 HV Amsterdam, The Netherlands
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK;
| | - Jyotsna Batra
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
| | - Alfred King-yin Lam
- Pathology, School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Elisa Giovannetti
- Cancer Center Amsterdam, Amsterdam U.M.C., VU University Medical Center (VUMC), Department of Medical Oncology, 1081 HV Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per La Scienza, 56017 Pisa, Italy
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran; (A.A.); (N.Z.); (M.M.-A.); (H.A.); (G.P.); (G.K.-T.); (F.K.-L.); (E.G.); (M.K.); (S.M.H.)
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran;
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
| |
Collapse
|
8
|
Wang F, Zhao M, Jiang Y, Xia S, Sun D, Zhou D, Dong Z. LncRNA UBE2R2-AS1, as prognostic marker, promotes cell proliferation and EMT in prostate cancer. Histol Histopathol 2023; 38:637-645. [PMID: 35916204 DOI: 10.14670/hh-18-505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
BACKGROUND Long noncoding RNA ubiquitin-conjugating enzyme E2 R2 antisense RNA 1 (UBE2R2-AS1) has been recently reported to participate in the progression of tumors, including glioma and liver cancer. However, the roles of UBE2R2-AS1 in prostate cancer (PC) remained poorly understood. METHODS The expression of UBE2R2-AS1 was determined in tumor tissues and paired adjacent tissues from PC patients using quantitative reverse transcription PCR analysis. Correlation between UBE2R2-AS1 expression and clinicopathological parameters and overall survival were investigated by Chi-square test and Kaplan-Meier method analysis. The in vitro experiments, including CCK-8 assay, colony formation, flow cytometry and transwell assay were performed to investigate the functional role of UBE2R2-AS1 knockdown or overexpression on PC cell lines (PC-3 and DU145). Related protein expression levels were measured by western blot analysis. RESULTS Our data showed that UBE2R2-AS1 expression was significantly upregulated in PC tissues compared with that in adjacent tissues. The high levels of UBE2R2-AS1 were associated with high Gleason score, advanced clinical T stage, lymph node metastasis and poor prognosis. Knockdown of UBE2R2-AS1 suppressed cell proliferation, migration and invasion, induced cell cycle G0/G1 arrest and apoptosis in PC cells, along with decreased expression of PCNA, CDK4, Cyclin D1, Bcl-2, N-cadherin and Vimentin, and increased E-cadherin expression. Overexpression of UBE12R2-AS1 obtained the opposite results in PC cells. CONCLUSIONS Our findings suggest that UBE2R2-AS1 might be a potential diagnostic and/or therapeutic target in PC.
Collapse
Affiliation(s)
- Feng Wang
- Department of Urology, Heilongjiang Hospital, Harbin city, Heilongjiang Province, China
| | - Miao Zhao
- Department of Ophthalmology, Heilongjiang Hospital, Harbin city, Heilongjiang Province, China
| | - Yuehong Jiang
- Laboratory Medicine, Heilongjiang Hospital, Harbin city, Heilongjiang Province, China
| | - Silong Xia
- Department of Urology, Heilongjiang Hospital, Harbin city, Heilongjiang Province, China
| | - Dapeng Sun
- Department of Urology, Heilongjiang Hospital, Harbin city, Heilongjiang Province, China
| | - Dahong Zhou
- Department of Urology, Heilongjiang Hospital, Harbin city, Heilongjiang Province, China
| | - Zipu Dong
- Department of Urology, Heilongjiang Hospital, Harbin city, Heilongjiang Province, China.
| |
Collapse
|
9
|
Wang M, Yang X, Meng Y, Jin Z, Cao J, Xiong L, Xiong Z. Comprehensive analysis of the tumor-promoting effect and immune infiltration correlation MAZ from pan-cancer to hepatocellular carcinoma. Int Immunopharmacol 2023; 115:109660. [PMID: 36623412 DOI: 10.1016/j.intimp.2022.109660] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Myc-associated zinc-finger protein (MAZ) is a transcription factor, which has been confirmed to be abnormally expressed in many tumors and involved in regulating the proliferation, migration, apoptosis, and autophagy of tumor cells. Currently, there is a lack of comprehensive analysis of MAZ in pan-cancer, and the mechanism of MAZ in hepatocellular carcinoma (HCC) and its association with immunotherapy remains unclear. METHODS The expression, prognostic mutation, sCNA, and tumor immunity characteristics of MAZ in 33 types of tumors were analyzed by The Cancer Genome Atlas (TCGA), GEPIA, and TIMER databases. The association of MAZ expression levels with drug sensitivity, immunotherapy, immune checkpoints, and HLA-associated genes was further analyzed. Transwell, CCK-8, wound healing, and flow cytometry verified that MAZ affected the malignant cell behavior of HCC. The signaling pathways and cellular functions affected by MAZ in HCC were revealed by GSEA enrichment analysis. RESULTS The expression level of MAZ was up-regulated, and the high expression of MAZ indicated a high-risk prognostic factor in most tumors, including ACC, BLCA, KIRP, LIHC, PRAD, SKCM, and THCA (p < 0.05). MAZ expression was positively correlated with the sensitivity of most chemotherapy drugs (p < 0.05). HLA-DQB2, HLA-H, and most immune checkpoint genes were remarkably up-regulated in the high MAZ expression group (p < 0.05). GSEA analysis revealed that MAZ expression was highly correlated with the intracellular immune-related functions and cancer-related signaling pathway, including the B cell receptor signaling pathway, complement activation, humoral immune response, TGF-β signaling pathway, and Wnt signaling pathway. The overexpression of MAZ in HCC cells could promote the abilities of cell proliferation and migration and inhibit tumor cell apoptosis. CONCLUSION Our study revealed that MAZ might play a role in promoting the progression of HCC. It was closely related to the tumor microenvironment, immune cell infiltration, and immune escape in pan-cancer. Moreover, this study provides new insights into MAZ as a prognostic marker and potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Mengmeng Wang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei, China
| | - Xiongjun Yang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei, China
| | - Yajun Meng
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei, China
| | - Ze Jin
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei, China
| | - Jiali Cao
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei, China
| | - Lina Xiong
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei, China
| | - Zhifan Xiong
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei, China.
| |
Collapse
|
10
|
Hussein D, Alsereihi R, Salwati AAA, Algehani R, Alhowity A, Al-Hejin AM, Schulten HJ, Baeesa S, Bangash M, Alghamdi F, Cross R, Al Zughaibi T, Saka M, Chaudhary A, Abuzenadah A. The anterior gradient homologue 2 (AGR2) co-localises with the glucose-regulated protein 78 (GRP78) in cancer stem cells, and is critical for the survival and drug resistance of recurrent glioblastoma: in situ and in vitro analyses. Cancer Cell Int 2022; 22:387. [PMID: 36482387 PMCID: PMC9730595 DOI: 10.1186/s12935-022-02814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Glioblastomas (GBs) are characterised as one of the most aggressive primary central nervous system tumours (CNSTs). Single-cell sequencing analysis identified the presence of a highly heterogeneous population of cancer stem cells (CSCs). The proteins anterior gradient homologue 2 (AGR2) and glucose-regulated protein 78 (GRP78) are known to play critical roles in regulating unfolded protein response (UPR) machinery. The UPR machinery influences cell survival, migration, invasion and drug resistance. Hence, we investigated the role of AGR2 in drug-resistant recurrent glioblastoma cells. METHODS Immunofluorescence, biological assessments and whole exome sequencing analyses were completed under in situ and in vitro conditions. Cells were treated with CNSTs clinical/preclinical drugs taxol, cisplatin, irinotecan, MCK8866, etoposide, and temozolomide, then resistant cells were analysed for the expression of AGR2. AGR2 was repressed using single and double siRNA transfections and combined with either temozolomide or irinotecan. RESULTS Genomic and biological characterisations of the AGR2-expressed Jed66_GB and Jed41_GB recurrent glioblastoma tissues and cell lines showed features consistent with glioblastoma. Immunofluorescence data indicated that AGR2 co-localised with the UPR marker GRP78 in both the tissue and their corresponding primary cell lines. AGR2 and GRP78 were highly expressed in glioblastoma CSCs. Following treatment with the aforementioned drugs, all drug-surviving cells showed high expression of AGR2. Prolonged siRNA repression of a particular region in AGR2 exon 2 reduced AGR2 protein expression and led to lower cell densities in both cell lines. Co-treatments using AGR2 exon 2B siRNA in conjunction with temozolomide or irinotecan had partially synergistic effects. The slight reduction of AGR2 expression increased nuclear Caspase-3 activation in both cell lines and caused multinucleation in the Jed66_GB cell line. CONCLUSIONS AGR2 is highly expressed in UPR-active CSCs and drug-resistant GB cells, and its repression leads to apoptosis, via multiple pathways.
Collapse
Affiliation(s)
- Deema Hussein
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Reem Alsereihi
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 80203, Jeddah, 21589 Saudi Arabia ,College of Health Sciences, Al-Rayan Colleges, 41411, Madinah AL-Munawarah, Saudi Arabia
| | - Abdulla Ahmed A. Salwati
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia
| | - Rinad Algehani
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia
| | - Alazouf Alhowity
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia
| | - Ahmed M. Al-Hejin
- grid.412125.10000 0001 0619 1117Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 80203, Jeddah, 21589 Saudi Arabia
| | - Hans-Juergen Schulten
- grid.412125.10000 0001 0619 1117Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Saleh Baeesa
- grid.412125.10000 0001 0619 1117Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mohammed Bangash
- grid.412125.10000 0001 0619 1117Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Fahad Alghamdi
- grid.412125.10000 0001 0619 1117Pathology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Richard Cross
- grid.48815.300000 0001 2153 2936School of Engineering and Sustainable Development, Emerging Technologies Research Centre (EMTERC), De Montfort University, The Gateway, Leicester, LE1 9BH UK
| | - Torki Al Zughaibi
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mohamad Saka
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Adeel Chaudhary
- grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Adel Abuzenadah
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
11
|
Clinical Significance of TUBGCP4 Expression in Hepatocellular Carcinoma. Anal Cell Pathol (Amst) 2022; 2022:9307468. [DOI: 10.1155/2022/9307468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
We aim to investigate the expression and clinical significance of the tubulin gamma complex-associated protein 4 (TUBGCP4) in hepatocellular carcinoma (HCC). The mRNA expression of TUBGCP4 in HCC tissues was analyzed using The Cancer Genome Atlas (TCGA) database. Paired HCC and adjacent nontumor tissues were obtained from HCC patients to measure the protein expression of TUBGCP4 by immunohistochemistry (IHC) and to analyze the relationship between TUBGCP4 protein expression and the clinicopathological characteristics and the prognosis of HCC patients. We found that TUBGCP4 mRNA expression was upregulated in HCC tissues from TCGA database. IHC analysis showed that TUBGCP4 was positively expressed in 61.25% (49/80) of HCC tissues and 77.5% (62/80) of adjacent nontumor tissues. The Chi-square analysis indicated that the positive rate of TUBGCP4 expression between HCC tissues and the adjacent nontumor tissues was statistically different (
). Furthermore, we found that TUBGCP4 protein expression was correlated with carbohydrate antigen (CA-199) levels of HCC patients (
). Further, survival analysis showed that the overall survival time and tumor-free survival time in the TUBGCP4 positive group were significantly higher than those of the negative group (
), indicating that the positive expression of TUBGCP4 was related to a better prognosis of HCC patients. COX model showed that TUBGCP4 was an independent prognostic factor for HCC patients. Our study indicates that TUBGCP4 protein expression is downregulated in HCC tissues and has a relationship with the prognosis of HCC patients.
Collapse
|
12
|
Wang H, Wu S, Li Z, Zhang C, Shang X, Zhao C, Li Z, Lin J, Guo J, Wang Z. Molecular subtyping of small-cell lung cancer based on mutational signatures with different genomic features and therapeutic strategies. Cancer Sci 2022; 114:665-679. [PMID: 36178064 PMCID: PMC9899606 DOI: 10.1111/cas.15606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 02/07/2023] Open
Abstract
Small-cell lung cancer (SCLC) is an exceptionally lethal malignancy characterized by extremely high alteration rates and tumor heterogeneity, which limits therapeutic options. In contrast to non-small-cell lung cancer that develops rapidly with precision oncology, SCLC still remains outside the realm of precision medicine. No recurrent and actionable mutations have been detected. Additionally, a paucity of substantive tumor specimens has made it even more difficult to classify SCLC subtypes based on genetic background. We therefore carried out whole-exome sequencing (WES) on the largest available Chinese SCLC cohort. For the first time, we partitioned SCLC patients into three clusters with different genomic alteration profiles and clinical features based on their mutational signatures. We showed that these clusters presented differences in intratumor heterogeneity and genome instability. Moreover, a wide existence of mutually exclusive gene alterations, typically within similar biological functions, was detected and suggested a high SCLC intertumoral heterogeneity. Particularly, Cluster 1 presented the greatest potential to benefit from immunotherapy, and Cluster 3 constituted recalcitrant SCLC, warranting biomarker-directed drug development and targeted therapies in clinical trials. Our study would provide an in-depth insight into the genome characteristics of the Chinese SCLC cohort, defining distinct molecular subtypes as well as subtype-specific therapies and biomarkers. We propose tailoring differentiated therapies for distinct molecular subgroups, centering on a personalized precision chemotherapy strategy combined with immunization or targeted therapy for patients with SCLC.
Collapse
Affiliation(s)
- Haiyong Wang
- Department of Internal Medicine‐Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Shuangxiu Wu
- Division of Clinical ResearchBerry Oncology CorporationBeijingChina
| | - Zhenzhen Li
- Division of BioinformationBerry Oncology CorporationBeijingChina
| | - Chenyue Zhang
- Department of Integrated TherapyFudan University Shanghai Cancer Center, Shanghai Medical CollegeShanghaiChina
| | - Xiaoling Shang
- Department of Clinical LaboratoryShandong UniversityJinanChina
| | - Chenglong Zhao
- Department of PathologyThe First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan HospitalJinanChina
| | - Zhenxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Jiamao Lin
- Department of Traditional Chinese Medicine, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Jun Guo
- Department of Internal Medicine‐Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Zhehai Wang
- Department of Internal Medicine‐Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
13
|
El Waly B, Bertet C, Paris M, Falque M, Milpied P, Magalon K, Cayre M, Durbec P. Neuroblasts contribute to oligodendrocytes generation upon demyelination in the adult mouse brain. iScience 2022; 25:105102. [PMID: 36185360 PMCID: PMC9519617 DOI: 10.1016/j.isci.2022.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 04/06/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
After demyelinating insult, the neuronal progenitors of the adult mouse sub-ventricular zone (SVZ) called neuroblasts convert into oligodendrocytes that participate to the remyelination process. We use this rare example of spontaneous fate conversion to identify the molecular mechanisms governing these processes. Using in vivo cell lineage and single cell RNA-sequencing, we demonstrate that SVZ neuroblasts fate conversion proceeds through formation of a non-proliferating transient cellular state co-expressing markers of both neuronal and oligodendrocyte identities. Transition between the two identities starts immediately after demyelination and occurs gradually, by a stepwise upregulation/downregulation of key TFs and chromatin modifiers. Each step of this fate conversion involves fine adjustments of the transcription and translation machineries as well as tight regulation of metabolism and migratory behaviors. Together, these data constitute the first in-depth analysis of a spontaneous cell fate conversion in the adult mammalian CNS. NB can contribute to myelin repair by converting into oligodendrocytes NB fate conversion occurs gradually, through formation of an intermediate cell type NB fate conversion does not involve reversion toward a pluripotent state NB fate conversion seems to involve EMT-related mechanisms and metabolic changes
Collapse
|
14
|
Ye W, Xu L, Li Y, Liu L, Ma Z, Sun D, Han B. Single Nucleotide Polymorphisms of ALDH18A1 and MAT2A Genes and Their Genetic Associations with Milk Production Traits of Chinese Holstein Cows. Genes (Basel) 2022; 13:genes13081437. [PMID: 36011348 PMCID: PMC9407996 DOI: 10.3390/genes13081437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/16/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Our preliminary work had suggested two genes, aldehyde dehydrogenase 18 family member A1 (ALDH18A1) and methionine adenosyltransferase 2A (MAT2A), related to amino acid synthesis and metabolism as candidates affecting milk traits by analyzing the liver transcriptome and proteome of dairy cows at different lactation stages. In this study, the single nucleotide polymorphisms (SNPs) of ALDH18A1 and MAT2A genes were identified and their genetic effects and underlying causative mechanisms on milk production traits in dairy cattle were analyzed, with the aim of providing effective genetic information for the molecular breeding of dairy cows. By resequencing the entire coding and partial flanking regions of ALDH18A1 and MAT2A, we found eight SNPs located in ALDH18A1 and two in MAT2A. Single-SNP association analysis showed that most of the 10 SNPs of these two genes were significantly associated with the milk yield traits, 305-day milk yield, fat yield, and protein yield in the first and second lactations (corrected p ≤ 0.0488). Using Haploview 4.2, we found that the seven SNPs of ALDH18A1 formed two haplotype blocks; subsequently, the haplotype-based association analysis showed that both haplotypes were significantly associated with 305-day milk yield, fat yield, and protein yield (corrected p ≤ 0.014). Furthermore, by Jaspar and Genomatix software, we found that 26:g.17130318 C>A and 11:g.49472723G>C, respectively, in the 5′ flanking region of ALDH18A1 and MAT2A genes changed the transcription factor binding sites (TFBSs), which might regulate the expression of corresponding genes to affect the phenotypes of milk production traits. Therefore, these two SNPs were considered as potential functional mutations, but they also require further verification. In summary, ALDH18A1 and MAT2A were proved to probably have genetic effects on milk production traits, and their valuable SNPs might be used as candidate genetic markers for dairy cattle’s genomic selection (GS).
Collapse
Affiliation(s)
- Wen Ye
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Lingna Xu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yanhua Li
- Beijing Dairy Cattle Center, Beijing 100192, China
| | - Lin Liu
- Beijing Dairy Cattle Center, Beijing 100192, China
| | - Zhu Ma
- Beijing Dairy Cattle Center, Beijing 100192, China
| | - Dongxiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Bo Han
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Correspondence:
| |
Collapse
|
15
|
Abstract
OBJECTIVES The aim of this study was to investigate differentially expressed genes (DEGs) in the acute pancreatitis (AP). METHODS Microarray datasets GSE3644, GSE65146, and GSE109227 were downloaded from Gene Expression Omnibus database. Then, a comprehensive analysis of these genes was performed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, protein-protein interaction network analysis, core gene correlation analysis, and transcription factor prediction. Finally, the differences in the expression of hub genes in human organs and survival analysis in pancreatic carcinoma were evaluated. RESULTS A total of 137 DEGs were screened, 128 genes were upregulated, and 9 genes were downregulated. Functional enrichment analysis demonstrated that these genes were mostly enriched in biological processes such as positive regulation of macroautophagy, cellular component such as focal adhesion, molecular function such as cadherin binding involved in cell-cell adhesion, and multiple pathways including tight junction. CDH1 and VCL were identified as hub DEGs, close interactions with MAZ, were expressed in human pancreas organs in various degrees. The high expression of CDH1 and VCL was significantly associated with poor prognosis in pancreatic carcinoma. CONCLUSIONS The core genes CDH1 and VCL may play a key role in AP through regulation by MAZ.
Collapse
|
16
|
Zheng C, Wu H, Jin S, Li D, Tan S, Zhu X. Roles of Myc-associated zinc finger protein in malignant tumors. Asia Pac J Clin Oncol 2022; 18:506-514. [PMID: 35098656 DOI: 10.1111/ajco.13748] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/04/2021] [Indexed: 11/30/2022]
Abstract
As an important transcription factor that is widely expressed in most tissues of the human body, Myc-associated zinc finger protein (MAZ) has been reported highly expressed in many malignant tumors and thought to be a promising therapeutic target for cancer treatment. In this review, we aim to offer a comprehensive understanding of MAZ regulation in malignant tumors. The carboxy terminal of MAZ protein contains six C2H2 zinc fingers, and its regulation of transcription is based on the interaction between the GC-rich DNA binding sites of target genes and its carboxy-terminal zinc finger motifs. MAZ protein has been found to activate or inhibit the transcriptional initiation process of many target genes, as well as play an important role in the transcriptional termination process of some target genes, so MAZ poses dual regulatory functions in the initiation and termination process of gene transcription. Through the transcriptional regulation of c-myc and Ras gene family, MAZ poses an important role in the occurrence and development of breast cancer, pancreatic cancer, prostate cancer, glioblastoma, neuroblastoma, and other malignant tumors. Our review shows a vital role of MAZ in many malignant tumors and provides novel insight for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chuanjun Zheng
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, China
| | - Hongmei Wu
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, China
| | - Song Jin
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, China
| | - Di Li
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, China
| | - Shengkui Tan
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, China
| | - Xiaonian Zhu
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, China
| |
Collapse
|
17
|
Giannos P, Kechagias KS, Gal A. Identification of Prognostic Gene Biomarkers in Non-Small Cell Lung Cancer Progression by Integrated Bioinformatics Analysis. BIOLOGY 2021; 10:1200. [PMID: 34827193 PMCID: PMC8615219 DOI: 10.3390/biology10111200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 01/06/2023]
Abstract
The progression of non-small cell lung cancer (NSCLC) is linked to epithelial-mesenchymal transition (EMT), a biologic process that enables tumor cells to acquire a migratory phenotype and resistance to chemo- and immunotherapies. Discovery of novel biomarkers in NSCLC progression is essential for improved prognosis and pharmacological interventions. In the current study, we performed an integrated bioinformatics analysis on gene expression datasets of TGF-β-induced EMT in NSCLC cells to identify novel gene biomarkers and elucidate their regulation in NSCLC progression. The gene expression datasets were extracted from the NCBI Gene Expression Omnibus repository, and differentially expressed genes (DEGs) between TGF-β-treated and untreated NSCLC cells were retrieved. A protein-protein interaction network was constructed and hub genes were identified. Functional and pathway enrichment analyses were conducted on module DEGs, and a correlation between the expression levels of module genes and survival of NSCLC patients was evaluated. Prediction of interactions of the biomarker genes with transcription factors and miRNAs was also carried out. We described four protein clusters in which DEGs were associated with ubiquitination (Module 1), regulation of cell death and cell adhesions (Module 2), oxidation-reduction reactions of aerobic respiration (Module 3) and mitochondrial translation (Module 4). From the module genes, we identified ten prognostic gene biomarkers in NSCLC. Low expression levels of KCTD6, KBTBD7, LMO7, SPSB2, RNF19A, FOXA2, DHTKD1, CDH1 and PDHB and high expression level of KLHL25 were associated with reduced overall survival of NSCLC patients. Most of these biomarker genes were involved in protein ubiquitination. The regulatory network of the gene biomarkers revealed their interaction with tumor suppressor miRNAs and transcription factors involved in the mechanisms of cancer progression. This ten-gene prognostic signature can be useful to improve risk prediction and therapeutic strategies in NSCLC. Our analysis also highlights the importance of deregulation of ubiquitination in EMT-associated NSCLC progression.
Collapse
Affiliation(s)
- Panagiotis Giannos
- School of Applied Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ, UK
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Konstantinos S. Kechagias
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, UK;
| | - Annamaria Gal
- School of Applied Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ, UK
| |
Collapse
|
18
|
Zhao X, Ye N, Feng X, Ju H, Liu R, Lu W. MicroRNA-29b-3p Inhibits the Migration and Invasion of Gastric Cancer Cells by Regulating the Autophagy-Associated Protein MAZ. Onco Targets Ther 2021; 14:3239-3249. [PMID: 34040389 PMCID: PMC8140921 DOI: 10.2147/ott.s274215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose The purpose of this study was to investigate the relationship between microRNA-29b-3p (miR-29b-3p) and myc-associated zinc finger protein (MAZ) expression and the effects of this interaction on the proliferation, migration, and invasion of gastric cancer cells. Methods qPCR and Western blots were used to detect the expression of miR-29b-3p and MAZ. The dual luciferase reporter gene system was used to explore whether MAZ is the target of miR-29b-3p. Cell function experiments and a mouse tumorigenesis model were used to determine the effects of miR-29b-3p overexpression and MAZ depletion on proliferation, migration, and invasion in gastric cancer cell lines and on tumor growth. Results The expression level of miR-29b-3p was low and the expression level of MAZ was high in gastric cancer cells compared with normal human gastric mucosal epithelial cells. MAZ was the target gene of miR-29b-3p. The upregulation of miR-29b-3p reduces the expression of MAZ. Overexpression of miR-29b-3p and downregulation of MAZ inhibited the proliferation and migration of cancer cells and induced apoptosis by controlling the expression of autophagy-related proteins. MiR-29b-3p mimics inhibit tumor growth in mice. Conclusion MiR-29b-3p inhibits the migration and invasion of gastric cancer cells by regulating the autophagy-related protein MAZ.
Collapse
Affiliation(s)
- Xiaomeng Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, the People's Republic of China
| | - Nan Ye
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, the People's Republic of China
| | - Xueke Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, the People's Republic of China
| | - Haiyan Ju
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, the People's Republic of China
| | - Ruixia Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, the People's Republic of China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, the People's Republic of China.,Key Laboratory of System Bioengineering, Tianjin University, Tianjin, the People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, the People's Republic of China
| |
Collapse
|
19
|
Zhang S, Zheng C, Li D, Bei C, Zhang H, Tian R, Song X, Zhu X, Tan S. Clinical Significance of POM121 Expression in Lung Cancer. Genet Test Mol Biomarkers 2020; 24:819-824. [PMID: 33296260 DOI: 10.1089/gtmb.2020.0053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aims: The aim of this study was to examine the RNA and protein expression levels and clinical significance of the pore membrane protein 121 kDa (POM121) in lung cancer. Materials and Methods: Paired lung cancer and adjacent nontumor tissues were obtained from lung cancer patients to measure the expression of POM121 by quantitative reverse transcription-polymerase chain reaction and immunohistochemistry. Patient clinical and pathological data were collected to analyze their relationships with POM121 protein expression levels by chi-square test and log-rank test, respectively. Results: POM121 mRNA and protein expression were both upregulated in lung cancer tissues. POM121 protein expression was observed in 48.00% (36/75) of lung cancer tissues and 25.33% (19/75) of adjacent nontumor tissues. A chi-square analysis indicated that this difference was statistically significant (p < 0.05). Furthermore, we found that POM121 protein expression was correlated with gender, tumor node metastasis stage, and lymphatic metastasis (p < 0.05). In addition, we found a significant relationship among POM121 expression, gender, and metastasis based on a multivariate logistic regression analysis. A Kaplan-Meier survival analysis indicated that lung cancer patients with POM121 expression had a poorer prognosis than those without POM121 expression (p < 0.05). Conclusion: POM121 protein expression is associated with lung cancer metastasis and is a potential prognostic biomarker for lung cancer patients.
Collapse
Affiliation(s)
- Shidong Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Chuanjun Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Di Li
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Chunhua Bei
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Huixia Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Run Tian
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Xin Song
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Xiaonian Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Shengkui Tan
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, P.R. China
| |
Collapse
|
20
|
Jiang Z, Ma Y, Tian T, Sun Y, Chen H, Lu Y, Wu Y, Jiang H, Li W, Li L, Zhou H, Wu M. Maimendong and Qianjinweijing Tang (Jin formula) suppresses lung cancer by regulation of miR-149-3p. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112836. [PMID: 32344160 DOI: 10.1016/j.jep.2020.112836] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/19/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Maimendong and Qianjinweijing Tang (Jin formula), a classic Chinese formula, can enhance therapeutic efficacy and reduce adverse effects in patients with lung cancer. AIM OF THE STUDY To evaluate the anti-lung cancer effect of Jin formula in vivo and in vitro, and to explore the role of microRNA (miRNA) in the anti-lung cancer mechanism of Jin formula. MATERIALS AND METHODS Cell survival was determined via a colorimetric method, and apoptotic condition was revealed by flow cytometric analysis. Cell migration and invasion were detected by scratch and transwell assays. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay was applied to measure the changes of miRNA expression. Pathological histology of lung tissues were assessed by hematoxylin-eosin (HE) staining. Immunohistochemistry and immunoblotting were used to detect the expression of marker proteins of Wnt/β-catenin pathway. The relationship between miR-149-3p and MYC associated zinc finger protein (MAZ) was verified using a dual-luciferase reporter assay system. RESULTS Our findings demonstrated the anti-cancer effect of Jin formula in vitro, and revealed that Jin formula could suppress the proliferation, migration and invasion of human lung cancer A549 and H1299 cells. We also confirmed the capability of Jin formula to reduce tumor growth through the up-regulation of miR-149-3p and down-regulation of Wnt/β-catenin signaling in animal models. qRT-PCR analysis in vitro further confirmed a dose-dependent increase of miR-149-3p by treatment with Jin formula. Functional studies identified MAZ as a downstream target of miR-149-3p. Overexpression of miR-149-3p inhibited cell proliferation, migration, invasion and induced apoptosis in A549 and H1299 cells, similar to our findings on the effects of Jin formula treatment. In contrast, inhibiting the expression of miR-149-3p reversed the anti-cancer effects of Jin formula. Additionally, we revealed that miR-149-3p was involved in the anti-cancer effects of Jin formula, at least in part, by inhibiting MAZ expression and the Wnt/β-catenin signaling cascade. CONCLUSION Our study illustrated that Jin formula suppressed the development of lung cancer and the mechanism may be associated with the miR-149-3p/MAZ/Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Zequn Jiang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Yanxia Ma
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Tian Tian
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Yan Sun
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Hao Chen
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Ye Lu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Yan Wu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Haiying Jiang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Wenting Li
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Li Li
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Hongguang Zhou
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Mianhua Wu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| |
Collapse
|
21
|
Liu J, Ou C, Zhu X, Tan C, Xiang X, He Y. Potential role of CFTR in bisphenol A-induced malignant transformation of prostate cells via mitochondrial apoptosis. Toxicol Ind Health 2020; 36:531-539. [PMID: 32729384 DOI: 10.1177/0748233720943750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bisphenol A (BPA) is an environmental endocrine disruptor and a risk factor for prostate cancer. The cystic fibrosis transmembrane conductance regulator (CFTR) is proposed to be a prostate cancer suppressor in some recent researches. However, the potential role and mechanism of CFTR in BPA-induced prostate cancer cells has not been well identified. In this study, BPA decreased the viability of human normal prostate RWPE-1 cells detected with a CCK-8 kit. The capacity of the cell line on soft agar colony formation, wound healing, and transwell invasion indicated malignant transformation induced by BPA. Western blot analysis demonstrated that the levels of CFTR and Bcl-2 decreased, whereas Bax level increased, and ELISA detection showed a decreased ATP level in BPA-exposed cells. Cell apoptosis was analyzed with Annexin V-FITC Detection Kit by flow cytometry. However, no significant difference was observed in cell viability and apoptosis rates compared to normal RWPE-1 cells. Our research revealed a potential role of CFTR in BPA-induced malignant transformation via mitochondrial apoptosis of normal prostate cells.
Collapse
Affiliation(s)
- Jia Liu
- Department of Epidemiology and Statistics, School of Public Health, 74716Guilin Medical University, Guilin, China
| | - Chaoyan Ou
- Department of Toxicology, School of Public Health, 74716Guilin Medical University, Guilin, China
| | - Xiaonian Zhu
- Department of Toxicology, School of Public Health, 74716Guilin Medical University, Guilin, China
| | - Chao Tan
- Department of Epidemiology and Statistics, School of Public Health, 74716Guilin Medical University, Guilin, China
| | - Xuebao Xiang
- Department of Urology, Affiliated Hospital of 74716Guilin Medical University, Guilin, China
| | - Yonghua He
- Department of Epidemiology and Statistics, School of Public Health, 74716Guilin Medical University, Guilin, China
| |
Collapse
|
22
|
Lopes-Ramos CM, Chen CY, Kuijjer ML, Paulson JN, Sonawane AR, Fagny M, Platig J, Glass K, Quackenbush J, DeMeo DL. Sex Differences in Gene Expression and Regulatory Networks across 29 Human Tissues. Cell Rep 2020; 31:107795. [PMID: 32579922 PMCID: PMC7898458 DOI: 10.1016/j.celrep.2020.107795] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/01/2020] [Accepted: 05/29/2020] [Indexed: 11/25/2022] Open
Abstract
Sex differences manifest in many diseases and may drive sex-specific therapeutic responses. To understand the molecular basis of sex differences, we evaluated sex-biased gene regulation by constructing sample-specific gene regulatory networks in 29 human healthy tissues using 8,279 whole-genome expression profiles from the Genotype-Tissue Expression (GTEx) project. We find sex-biased regulatory network structures in each tissue. Even though most transcription factors (TFs) are not differentially expressed between males and females, many have sex-biased regulatory targeting patterns. In each tissue, genes that are differentially targeted by TFs between the sexes are enriched for tissue-related functions and diseases. In brain tissue, for example, genes associated with Parkinson's disease and Alzheimer's disease are targeted by different sets of TFs in each sex. Our systems-based analysis identifies a repertoire of TFs that play important roles in sex-specific architecture of gene regulatory networks, and it underlines sex-specific regulatory processes in both health and disease.
Collapse
Affiliation(s)
| | - Cho-Yi Chen
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Marieke L Kuijjer
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Joseph N Paulson
- Department of Biostatistics, Product Development, Genentech Inc., San Francisco, CA, USA
| | - Abhijeet R Sonawane
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maud Fagny
- Genetique Quantitative et Evolution-Le Moulon, Universite Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, AgroParisTech, Gif-sur-Yvette, France
| | - John Platig
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kimberly Glass
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - John Quackenbush
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
23
|
Zhang S, Tian R, Bei C, Zhang H, Kong J, Zheng C, Song X, Li D, Tan H, Zhu X, Tan S. Down-Regulated CMTM2 Promotes Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma. Onco Targets Ther 2020; 13:5731-5741. [PMID: 32606785 PMCID: PMC7308353 DOI: 10.2147/ott.s250370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
Background Our recent study identified that human chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family member 2 (CMTM2) was deregulated in hepatocellular carcinoma (HCC) tissues and posed as a potential tumor suppressor. However, the mechanism of CMTM2 in HCC occurrence and development has not been well elaborated. Materials and Methods The expression of CMTM2 was knocked-down by RNA interruption in Huh-7 and SMMC7721 cells. Cell proliferation ability was detected by CCK8 test and colony formation assay. The cell invasion and migration were measured by wound healing and Transwell assay. Results We found that the cell proliferation was significantly increased by interruption of CMTM2 expression, both in Huh-7 and SMMC7721 cells. Moreover, down-regulated CMTM2 could promote the invasion and migration ability of HCC cells through inducing the epithelial-mesenchymal transition (EMT) process. We further discovered that both the expression of CMTM2 and the EMT-associated marker E-cadherin were decreased in the same thirty cases of HCC tissues compared with the corresponding adjacent non-tumor tissues. Pearson correlation test showed that there was a significantly positive correlation between CMTM2 and E-cadherin in HCC tissues (P<0.05). Conclusion Based on the results of cell model and HCC tissues, our study suggests that down-regulated CMTM2 promotes HCC metastasis through inducing the EMT process.
Collapse
Affiliation(s)
- Shidong Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, People's Republic of China
| | - Run Tian
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, People's Republic of China
| | - Chunhua Bei
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, People's Republic of China
| | - Huixia Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, People's Republic of China
| | - Juan Kong
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, People's Republic of China
| | - Chuanjun Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, People's Republic of China
| | - Xin Song
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, People's Republic of China
| | - Di Li
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, People's Republic of China
| | - Hongzhuan Tan
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha 410005, People's Republic of China
| | - Xiaonian Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, People's Republic of China
| | - Shengkui Tan
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, People's Republic of China.,Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha 410005, People's Republic of China
| |
Collapse
|
24
|
GLIS2 promotes colorectal cancer through repressing enhancer activation. Oncogenesis 2020; 9:57. [PMID: 32483180 PMCID: PMC7264249 DOI: 10.1038/s41389-020-0240-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 05/03/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Gene transcription is coordinately regulated by multiple transcription factors. However, a systematic approach is still lacking to identify co-regulators for transcription factors. Here, we performed ChIP-Seq analysis and predicted the regulators for p53-mediated transcription process, from which we confirmed the roles of GLIS2, MAZ and MEF2A in regulating p53 target genes. We revealed that GLIS2 selectively regulates the transcription of PUMA but not p21. GLIS2 deficiency caused the elevation of H3K27ac and p53 binding on the PUMA enhancer, and promoted PUMA expression. It increased the rate of apoptosis, but not cell cycle. Moreover, GLIS2 represses H3K27ac level on enhancers, regulates the gene expression related with focal adhesion and promotes cell migration, through inhibiting p300. Big data analysis supports GLIS2 as an oncogene in colon cancer, and perhaps other cancers. Taken together, we have predicted candidates for p53 transcriptional regulators, and provided evidence for GLIS2 as an oncogene through repressing enhancer activation.
Collapse
|
25
|
Wang Y, Sun L, Qiu W, Qi W, Qi Y, Liu Z, Liu S, Lv J. Inhibiting Forkhead box K1 induces autophagy to reverse epithelial-mesenchymal transition and metastasis in gastric cancer by regulating Myc-associated zinc finger protein in an acidic microenvironment. Aging (Albany NY) 2020; 12:6129-6150. [PMID: 32268297 PMCID: PMC7185099 DOI: 10.18632/aging.103013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
Background: Forkhead box K1 (FOXK1) is a transcription factor belonging to the Forkhead box (FOX) family and is closely related to the development of various cancers, but the functional mechanism through which FOXK1 regulates autophagy and epithelial-mesenchymal transition (EMT) in the acidic microenvironment of gastric cancer (GC) remains unclear. Results: Our results indicated that the inhibition of FOXK1 induced autophagy and thus exerted antimetastatic effects in an acidic microenvironment. The dual inhibition of mammalian target of rapamycin (mTOR) and FOXK1 enhanced autophagy and reversed EMT of acidic GC cells. In addition, FOXK1 activated transcription in conjunction with the MAZ promoter. Conclusion: Together, our results suggest that FOXK1 can be used as an independent prognostic indicator for GC patients. We also revealed a new strategy involving the cotargeting of FOXK1 and autophagy to reverse the effects of EMT. MAZ is involved in the development and progression of GC as a downstream target of FOXK1. Methods: Here, the cellular responses to the inhibition of FOXK1 in GC were studied in vivo and in vitro through wound healing assays, transwell assays, Western blotting, laser confocal microscopy and transmission electron microscopy. The molecular mechanisms of FOXK1 and Myc-associated zinc finger protein (MAZ) were studied via chromatin immunoprecipitation sequencing (ChIP-seq), bioinformatics, Western blotting, and quantitative real-time PCR (q-PCR).
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao 266071, Shandong, China
| | - Libin Sun
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao 266071, Shandong, China
| | - Wensheng Qiu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao 266071, Shandong, China
| | - Weiwei Qi
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao 266071, Shandong, China
| | - Yaoyue Qi
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao 266071, Shandong, China
| | - Zhao Liu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao 266071, Shandong, China
| | - Shihai Liu
- Central Laboratory, Affiliated Hospital of Qingdao University, Qingdao 266071, Shandong, China
| | - Jing Lv
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao 266071, Shandong, China
| |
Collapse
|
26
|
Chen Z, Gao Y, Gao S, Song D, Feng Y. MiR-135b-5p promotes viability, proliferation, migration and invasion of gastric cancer cells by targeting Krüppel-like factor 4 (KLF4). Arch Med Sci 2020; 16:167-176. [PMID: 32051721 PMCID: PMC6963155 DOI: 10.5114/aoms.2019.87761] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 07/23/2017] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The expression of MiR-135b-5p was up-regulated while Krüppel-like factor 4 (KLF4) expression was extremely low in human gastric carcinoma (GC) tissues. This study aimed to explore the role of miR-135b-5p in GC cells and its influence on various cell capacity and viability by targeting KLF4. MATERIAL AND METHODS The dual-luciferase reporter assay was first performed and the target relationship between miR-135b-5p and KLF4 was confirmed. Then three GC cell lines and the human normal gastric epithelial cell line (GES1) were analyzed for the expression level of miR-135b-5p and KLF4 mRNA by RT-qPCR. The BGC-823 GC cell line was chosen for subsequent assays. RESULTS The expression of miR-135b-5p and KLF4 was manipulated via transfection. The changes of proliferation, invasion, migration, viability, cycle and apoptosis of GC cells were evaluated by MTS, colony formation assay, transwell assay, wound healing assay and flow cytometry assay, respectively. Overexpression of MiR-135b-5p enhanced viability, proliferation, invasion and migration of GC cells, increased cell viability and reduced cell apoptosis. Replenishing of KLF4 functioned oppositely. CONCLUSIONS The inhibitory effects of ectopic KLF4 could be attenuated by co-transfection of miR-135b-5p. Collective data suggested that miR-135b-5p has a tumor-promoting role in GC cells via downregulating KLF4. Hence, inhibition of miR-135b-5p could be valuable for treatment of gastric cancer.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Shuohui Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Defeng Song
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ye Feng
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
27
|
Zhu X, Luo W, Bei C, Kong J, Zhang S, Fu Y, Li D, Tan S. Correlations between chromobox homolog 8 and key factors of epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Cell Int 2019; 19:340. [PMID: 31889893 PMCID: PMC6916084 DOI: 10.1186/s12935-019-1063-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, especially in China, with high metastasis and poor prognosis. Recently, as the core component of the polycomb repressive complexes 1 (PRC1), chromobox protein homolog 8 (CBX8) is considered as an oncogene and prognostic marker in HCC. Methods A tissue microarray of 166 paired HCC and adjacent non-tumor samples were collected to identify the relationship between CBX8 and epithelial mesenchymal transition (EMT) associated proteins by Spearman correlation analysis. Knock-down of CBX8 in HCC cells was conducted to detect the biologic functions of CBX8 in HCC metastasis. Results We found out that CBX8 was over-expressed in HCC and its expression was closely related to the metastasis of HCC patients. In addition, knock-down of CBX8 was found to inhibit the invasion and migration ability of HCC cells. Moreover, there was a significant relationship between expression of CBX8 and EMT associated proteins both in HCC cells and tumor tissues. Conclusions Our results indicate that CBX8 promotes metastasis of HCC by inducing EMT process.
Collapse
Affiliation(s)
- Xiaonian Zhu
- 1Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, 109 Huancheng North Road 2, Guilin, 541004 Guangxi People's Republic of China
| | - Wei Luo
- 2Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, 637000 Sichuan People's Republic of China
| | - Chunhua Bei
- 1Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, 109 Huancheng North Road 2, Guilin, 541004 Guangxi People's Republic of China
| | - Juan Kong
- 1Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, 109 Huancheng North Road 2, Guilin, 541004 Guangxi People's Republic of China
| | - Shidong Zhang
- 1Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, 109 Huancheng North Road 2, Guilin, 541004 Guangxi People's Republic of China
| | - Yuanyuan Fu
- 1Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, 109 Huancheng North Road 2, Guilin, 541004 Guangxi People's Republic of China
| | - Di Li
- 1Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, 109 Huancheng North Road 2, Guilin, 541004 Guangxi People's Republic of China
| | - Shengkui Tan
- 1Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, 109 Huancheng North Road 2, Guilin, 541004 Guangxi People's Republic of China
| |
Collapse
|
28
|
Gao L, Xiong DD, He RQ, Lai ZF, Liu LM, Huang ZG, Yang X, Wu HY, Yang LH, Ma J, Li SH, Lin P, Yang H, Luo DZ, Chen G, Dang YW. Identifying TF-miRNA-mRNA regulatory modules in nitidine chloride treated HCC xenograft of nude mice. Am J Transl Res 2019; 11:7503-7522. [PMID: 31934297 PMCID: PMC6943467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Nitidine chloride (NC) has reported tumor suppressive activities for various human cancers, including hepatocellular carcinoma (HCC). Nevertheless, the pharmacological mechanism of NC on HCC has not previously been elucidated. SMMC7721 HCC cell lines, before and after the treatment of NC, were injected into nude mice for a subcutaneous tumor xenograft model. MiRNA and mRNA sequencing were performed for both control and treated xenograft tissues to further analyze differential expressed miRNAs (DEmiRNAs) and mRNAs (DEmRNAs). The ten most significant DEmiRNAs were selected for prediction of transcription factors (TFs) and target genes. We constructed an interconnected network composed of TFs the ten most significant DEmiRNAs, the 100 most significant DEmRNAs, and selected target genes from online programs. Hub genes chosen from a protein-to-protein interaction network of hub genes were validated by correlation analysis, expression analysis, and Kaplan-Meier survival analysis. The five most up-regulated miRNAs (hsa-miR-628-5p, hsa-miR-767-5p, hsa-miR-767-3p, hsa-miR-1257, and hsa-miR-33b-3p) and the five most down-regulated miRNAs (hsa-miR-378d, hsa-miR-136-5p, hsa-miR-451a, hsa-miR-144-5p, and hsa-miR-378b) were singled out from the DEmiRNAs. Functional annotations indicated that potential target genes of the top five up-regulated miRNAs were mainly clustered in molecular processes concerning epithelial-to-mesenchymal transition. Hub genes, such as ITGA6 and ITGB4, were validated as up-regulated in HCC; both IFIT2 and IFIT3 were revealed by Kaplan-Meier survival curves as good prognostic factors for HCC. In summary, the regulating axes of NC-DEmiRNAs-DEmRNAs and TFs-DEmiRNAs-DEmRNAs in HCC that were discovered in this study may shed light on the possible molecular mechanism of NC in HCC.
Collapse
Affiliation(s)
- Li Gao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Dan-Dan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ze-Feng Lai
- School of Pharmacy, Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Li-Min Liu
- School of Pharmacy, Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xia Yang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hua-Yu Wu
- Department of Cell Biology and Genetics, School of Pre-Clinical Medicine, Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Li-Hua Yang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Sheng-Hua Li
- Department of Urology Surgery, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Peng Lin
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hong Yang
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Dian-Zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
29
|
Homeobox Genes and Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11050621. [PMID: 31058850 PMCID: PMC6562709 DOI: 10.3390/cancers11050621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/27/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common type of cancer, and is the third leading cause of cancer-related deaths each year. It involves a multi-step progression and is strongly associated with chronic inflammation induced by the intake of environmental toxins and/or viral infections (i.e., hepatitis B and C viruses). Although several genetic dysregulations are considered to be involved in disease progression, the detailed regulatory mechanisms are not well defined. Homeobox genes that encode transcription factors with homeodomains control cell growth, differentiation, and morphogenesis in embryonic development. Recently, more aberrant expressions of Homeobox genes were found in a wide variety of human cancer, including HCC. In this review, we summarize the currently available evidence related to the role of Homeobox genes in the development of HCC. The objective is to determine the roles of this conserved transcription factor family and its potential use as a therapeutic target in future investigations.
Collapse
|
30
|
Zhu X, Qin M, Li C, Zeng W, Bei C, Tan C, Zhang Y, Shi W, Kong J, Fu Y, Tan S. Downregulated Expression of Chromobox Homolog 7 in Hepatocellular Carcinoma. Genet Test Mol Biomarkers 2019; 23:348-352. [PMID: 30990338 DOI: 10.1089/gtmb.2018.0293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: As an essential member of the Polycomb group (PcG) proteins, chromobox homolog 7 (CBX7) is found deregulated in some human cancers, and is thought to be a contributing factor in carcinogenesis. However, the expression and role of CBX7 in hepatocellular carcinoma (HCC) is still not well characterized. Materials and Methods: The levels of the CBX7 protein were quantified in 75 paired HCC and adjacent nontumor tissues by immunohistochemistry; comparisons were made using McNemar's chi-square test. The Kaplan-Meier estimate was used for survival analysis. Results: We found that the expression of CBX7 in HCC tissues was significantly lower than that of adjacent nontumor tissues. In addition, decreased CBX7 expression levels were correlated with liver cirrhosis in HCC patients. Furthermore, the survival times of HCC patients who were CBX7-expression-negative were shorter than HCC patients who were CBX7-expression-positive. Conclusion: Our results show that downregulation of CBX7 is related to HCC progression and a poor prognosis in HCC patients.
Collapse
Affiliation(s)
- Xiaonian Zhu
- 1 Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Mingqun Qin
- 2 Department of Stomatology, School of Stomatology, Guilin Medical University, Guilin, P.R. China
| | - Cong Li
- 1 Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Wen Zeng
- 1 Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Chunhua Bei
- 1 Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Chao Tan
- 1 Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Ying Zhang
- 1 Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Wenxiang Shi
- 1 Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Juan Kong
- 1 Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Yuanyuan Fu
- 1 Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Shengkui Tan
- 1 Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| |
Collapse
|
31
|
Li Y, Zhang T, Qin S, Wang R, Li Y, Zhou Z, Chen Y, Wu Q, Su F. Effects of UPF1 expression on EMT process by targeting E‑cadherin, N‑cadherin, Vimentin and Twist in a hepatocellular carcinoma cell line. Mol Med Rep 2019; 19:2137-2143. [PMID: 30628676 PMCID: PMC6390072 DOI: 10.3892/mmr.2019.9838] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. It has been reported that HCC has a poor prognosis. In the majority of cases, once metastatic, HCC is incurable. To identify an effective treatment for HCC, it is important to understand the underlying molecular mechanisms of HCC-associated occurrence, proliferation, metastasis and carcinogenesis. In the present study, the role of Up-frameshift 1 (UPF1), a potential tumor suppressor, was investigated in the HCC cell lines. The expression levels of UPF1 in an HCC cell line were examined by reverse transcription-quantitative polymerase chain reaction. The expression levels of 19 key proteins in numerous signaling pathways were detected via protein array analysis in the presence of UPF1 overexpression. The present study further investigated the effects of UPF1 expression levels on the epithelial-mesenchymal transition (EMT) process by targeting E-cadherin, N-cadherin, Vimentin and Twist-related protein 1 (Twist). The results of the present study revealed that UPF1 was significantly downregulated in an HCC cell line. The majority of the proteins exhibited upregulated expression levels in the presence of UPF1 overexpression in the HCC cell line, Huh-7. Key proteins, including cluster of differentiation (CD)31 (platelet endothelial cell adhesion molecule-1), Vimentin, CD44, PCNA, Ki-67, N-Cadherin, Survivin, P53, Met and retinoblastoma exhibited a significant association with UPF1. Furthermore, western blotting indicated that the expression levels of N-cadherin, Vimentin and Twist were notably upregulated while UPF1 was overexpressed; however, E-cadherin was downregulated and opposing observations were reported with protein array analysis. In summary, E-cadherin expression levels were regulated by the manifold, and UPF1, a potential tumor suppressor, may promote the EMT process in Huh-7 HCC cells. The findings of the present study suggested that UPF1 expression levels affected the EMT process by targeting E-cadherin, N-cadherin, Vimentin and Twist.
Collapse
Affiliation(s)
- Yawei Li
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Tiantian Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Shukui Qin
- Department of Medical Oncology, PLA Cancer Center, Nanjing Bayi Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Rui Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Yumei Li
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Zhengguang Zhou
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Yufo Chen
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Qiong Wu
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Fang Su
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
32
|
Zhu X, Qi G, Li C, Bei C, Tan C, Zhang Y, Shi W, Zeng W, Kong J, Fu Y, Tan S. Expression and Clinical Significance of CMTM6 in Hepatocellular Carcinoma. DNA Cell Biol 2018; 38:193-197. [PMID: 30562063 DOI: 10.1089/dna.2018.4513] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study aimed to examine the expression level and clinical significance of chemokine-like factor-like MARVEL transmembrane domain-containing family member 6 (CMTM6) in paired hepatocellular carcinoma (HCC) and adjacent nontumor tissues. The expression of CMTM6 was detected in 75 paired HCC and adjacent nontumor tissues by immunohistochemistry. Chi-square test was used to compare the difference of CMTM6 expression between HCC tissues and adjacent nontumor tissues. The clinic-pathological features and prognosis of HCC patients were collected to analyze the relationship with CMTM6 expression. The positive expression of CMTM6 in HCC tissues was significantly lower than that of adjacent nontumor tissues. The difference of CMTM6 expression between HCC tissues and paired adjacent nontumor tissues was statistically significant (p < 0.05). Furthermore, CMTM6 expression was correlated with HCC metastasis and alpha-fetoprotein (AFP) (p < 0.05). Multivariate logistic regression analysis showed tumor staging, metastasis, and AFP had a significant relationship with CMTM6 expression. In addition, the survival time of HCC patients was different between CMTM6 positive group and CMTM6 negative group by Kaplan-Meier survival analysis (p < 0.05). Downregulation of CMTM6 is related to HCC metastasis and the prognosis of HCC patients.
Collapse
Affiliation(s)
- Xiaonian Zhu
- 1 Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Guangzi Qi
- 2 Department of Epidemiology and Health Statistics, Youjiang Medical University for Nationalities, Baise, P.R. China
| | - Cong Li
- 1 Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Chunhua Bei
- 1 Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Chao Tan
- 1 Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Ying Zhang
- 1 Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Wenxiang Shi
- 1 Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Wen Zeng
- 1 Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Juan Kong
- 1 Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Yuanyuan Fu
- 1 Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Shengkui Tan
- 1 Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, P.R. China
| |
Collapse
|
33
|
Myc-Associated Zinc Finger Protein Regulates the Proinflammatory Response in Colitis and Colon Cancer via STAT3 Signaling. Mol Cell Biol 2018; 38:MCB.00386-18. [PMID: 30181395 DOI: 10.1128/mcb.00386-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022] Open
Abstract
Myc-associated zinc finger (MAZ) is a transcription factor highly upregulated in chronic inflammatory disease and several human cancers. In the present study, we found that MAZ protein is highly expressed in human ulcerative colitis and colon cancer. However, the precise role for MAZ in the progression of colitis and colon cancer is not well defined. To determine the function of MAZ, a novel mouse model of intestinal epithelial cell-specific MAZ overexpression was generated. Expression of MAZ in intestinal epithelial cells was sufficient to enhance inflammatory injury in two complementary models of colitis. Moreover, MAZ expression increased tumorigenesis in an in vivo model of inflammation-induced colon cancer and was important for growth of human colon cancer cell lines in vitro and in vivo Mechanistically, MAZ is critical in the regulation of oncogenic STAT3 signaling. MAZ-expressing mice have enhanced STAT3 activation in the acute response to colitis. Moreover, MAZ was essential for cytokine- and bacterium-induced STAT3 signaling in colon cancer cells. Furthermore, we show that STAT3 is essential for MAZ-induced colon tumorigenesis using a chemical inhibitor. These data indicate an important functional role for MAZ in the inflammatory progression of colon cancer through regulation of STAT3 signaling and suggest that MAZ is a potential therapeutic target to dampen STAT3 signaling in colon cancer.
Collapse
|
34
|
Zhou X, Chen Z, Cai X. Identification of epigenetic modulators in human breast cancer by integrated analysis of DNA methylation and RNA-Seq data. Epigenetics 2018; 13:473-489. [PMID: 29940789 DOI: 10.1080/15592294.2018.1469894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human tumors undergo massive changes in DNA methylation. Recent studies showed that site-specific methylation of CpG sites is determined by the DNA sequence context surrounding the CpG site, which alludes to a possible mechanism for site-specific aberrant DNA methylation in cancer through DNA-binding proteins. In this paper, DNA methylation data and RNA-Seq data of breast tumors and normal tissues in the database of The Cancer Genome Atlas (TCGA) were integrated with information of DNA motifs in seven databases to find DNA-binding proteins and their binding motifs that were involved in aberrant DNA methylation in breast cancer. A total of 42,850 differentially methylated regions (DMRs) that include 77,298 CpG sites were detected in breast cancer. One hundred eight DNA motifs were found to be enriched in DMRs, and 109 genes encoding proteins binding to these motifs were determined. Based on these motifs and genes, 63 methylation modulator genes were identified to regulate differentially methylated CpG sites in breast cancer. A network of these 63 modulator genes and 645 transcription factors was constructed, and 20 network modules were determined. A number of pathways and gene sets related to breast cancer were found to be enriched in these network modules. The 63 methylation modulator genes identified may play an important role in aberrant methylation of CpG sites in breast cancer. They may help to understand site-specific dysregulation of DNA methylation and provide epigenetic markers for breast cancer.
Collapse
Affiliation(s)
- Xin Zhou
- a Department of Electrical and Computer Engineering , University of Miami , Coral Gables , FL , USA
| | - Zhibin Chen
- b Department of Microbiology and Immunology, Miller School of Medicine , University of Miami , Miami , FL , USA.,c Sylvester Comprehensive Cancer Center , University of Miami , Miami , FL , USA
| | - Xiaodong Cai
- a Department of Electrical and Computer Engineering , University of Miami , Coral Gables , FL , USA.,c Sylvester Comprehensive Cancer Center , University of Miami , Miami , FL , USA
| |
Collapse
|
35
|
Karaosmanoğlu O, Banerjee S, Sivas H. Identification of biomarkers associated with partial epithelial to mesenchymal transition in the secretome of slug over-expressing hepatocellular carcinoma cells. Cell Oncol (Dordr) 2018; 41:439-453. [PMID: 29858962 DOI: 10.1007/s13402-018-0384-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide. Complete epithelial to mesenchymal transition (EMT) has long been considered as a crucial step for metastasis initiation. It has, however, become apparent that many carcinoma cells can metastasize without complete loss of epithelial traits or with incomplete gain of mesenchymal traits, i.e., partial EMT. Here, we aimed to determine the similarities and differences between complete and partial EMT through over-expression of the EMT-associated transcription factor Slug in different HCC-derived cell lines. METHODS Slug over-expressing HCC-derived HepG2 and Huh7 cells were assessed for their EMT, chemo-resistance and stemness features using Western blotting, qRT-PCR, neutral red uptake, doxorubicin accumulation and scratch wound healing assays. We also collected conditioned media from Slug over-expressing HCC cells and analyzed its exosomal protein content for the presence of chemo-resistance and partial EMT markers using MALDI-TOF/TOF and ELISA assays, respectively. RESULTS We found that Slug over-expression resulted in the induction of both complete and partial EMT in the different HCC-derived cell lines tested. Complete EMT was characterized by downregulation of E-cadherin and upregulation of ZEB2. Partial EMT was characterized by upregulation of E-cadherin and downregulation of vimentin and ZEB2. Interestingly, we found that Slug induced chemo-resistance through downregulation of the ATP binding cassette (ABC) transporter ABCB1 and upregulation of the ABC transporter ABCG2, as well as through expression of CD133, a stemness marker that exhibited a similar expression pattern in cells with either a complete or a partial EMT phenotype. In addition, we found that Slug-mediated partial EMT was associated with enhanced exosomal secretion of post-translationally modified fibronectin 1 (FN1), collagen type II alpha 1 (COL2A1) and native fibrinogen gamma chain (FGG). CONCLUSIONS From our data we conclude that the exosomal proteins identified may be considered as potential non-invasive biomarkers for chemo-resistance and partial EMT in HCC.
Collapse
Affiliation(s)
- Oğuzhan Karaosmanoğlu
- Department of Biology, Faculty of Science, Anadolu University, 26400, Eskişehir, Turkey.
| | - Sreeparna Banerjee
- Department of Biological Sciences, Faculty of Science and Letters, Middle East Technical University, 06800, Ankara, Turkey
| | - Hülya Sivas
- Department of Biology, Faculty of Science, Anadolu University, 26400, Eskişehir, Turkey
| |
Collapse
|
36
|
Yu W, Zhao S, Wang Y, Zhao BN, Zhao W, Zhou X. Identification of cancer prognosis-associated functional modules using differential co-expression networks. Oncotarget 2017; 8:112928-112941. [PMID: 29348878 PMCID: PMC5762563 DOI: 10.18632/oncotarget.22878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/15/2017] [Indexed: 01/23/2023] Open
Abstract
The rapid accumulation of cancer-related data owing to high-throughput technologies has provided unprecedented choices to understand the progression of cancer and discover functional networks in multiple cancers. Establishment of co-expression networks will help us to discover the systemic properties of carcinogenesis features and regulatory mechanisms of multiple cancers. Here, we proposed a computational workflow to identify differentially co-expressed gene modules across 8 cancer types by using combined gene differential expression analysis methods and a higher-order generalized singular value decomposition. Four co-expression modules were identified; and oncogenes and tumor suppressors were significantly enriched in these modules. Functional enrichment analysis demonstrated the significantly enriched pathways in these modules, including ECM-receptor interaction, focal adhesion and PI3K-Akt signaling pathway. The top-ranked miRNAs (mir-199, mir-29, mir-200) and transcription factors (FOXO4, E2A, NFAT, and MAZ) were identified, which play an important role in deregulating cellular energetics; and regulating angiogenesis and cancer immune system. The clinical significance of the co-expressed gene clusters was assessed by evaluating their predictability of cancer patients’ survival. The predictive power of different clusters and subclusters was demonstrated. Our results will be valuable in cancer-related gene function annotation and for the evaluation of cancer patients’ prognosis.
Collapse
Affiliation(s)
- Wenshuai Yu
- Key Laboratory of Embedded System and Service Computing, College of Electronics and Information Engineering, The Ministry of Education, Tongji University, Shanghai, China
| | - Shengjie Zhao
- Key Laboratory of Embedded System and Service Computing, College of Electronics and Information Engineering, The Ministry of Education, Tongji University, Shanghai, China.,College of Software Engineering, Tongji University, Shanghai, China
| | - Yongcui Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | | | - Weiling Zhao
- Department of Radiology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Xiaobo Zhou
- College of Electronics and Information Engineering, Tongji University, Shanghai, China.,Center for Big Data Sciences and Network Security, Tongji University, Shanghai, China.,Center for Bioinformatics and System Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| |
Collapse
|
37
|
Bei C, Zhang Y, Wei R, Zhu X, Wang Z, Zeng W, Chen Q, Tan S. Clinical significance of CMTM4 expression in hepatocellular carcinoma. Onco Targets Ther 2017; 10:5439-5443. [PMID: 29180877 PMCID: PMC5694205 DOI: 10.2147/ott.s149786] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CMTM4 is the most conserved member of chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing (CMTM) family on chromosome 16q22.1, a locus that harbors a number of tumor-suppressor genes. In previous studies, CMTM4 was reported to be downregulated and exhibited tumor-suppressor activities by regulating cell growth and cell cycle in clear cell renal cell carcinoma. However, its roles in tumorigenesis of hepatocellular carcinoma (HCC) remain poorly studied. This study first investigated the expression of CMTM4 in HCC, and then examined the association between the expression of CMTM4 with the clinicopathological features and prognosis of HCC patients. It was found that CMTM4 was downregulated in HCC tissues, compared with matched adjacent nontumor tissues, as detected by immunohistochemistry. In addition, Kaplan-Meier survival analysis showed that the negative expression of CMTM4 was associated with decreased overall survival rates in patients with HCC. The results of this study suggest CMTM4 plays a role as a tumor suppressor in HCC and CMTM4 negative expression is a risk factor for poor prognosis of HCC.
Collapse
Affiliation(s)
- Chunhua Bei
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University
| | - Ying Zhang
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University
| | - Riming Wei
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University
| | - Xiaonian Zhu
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University
| | - Zhigang Wang
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University
| | - Wen Zeng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University
| | - Qiuyue Chen
- Department of Pathology, 181st Hospital of Chinese People's Liberation Army, Guilin, People's Republic of China
| | - Shengkui Tan
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University
| |
Collapse
|