1
|
Mohammadi F, Nejatollahi M, Sheikhnia F, Ebrahimi Y, Mohammadi M, Rashidi V, Alizadeh-Fanalou S, Azizzadeh B, Majidinia M. MiRNAs: main players of cancer drug resistance target ABC transporters. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03719-y. [PMID: 39808313 DOI: 10.1007/s00210-024-03719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025]
Abstract
Chemotherapy remains the cornerstone of cancer treatment; however, its efficacy is frequently compromised by the development of chemoresistance. Multidrug resistance (MDR), characterized by the refractoriness of cancer cells to a wide array of chemotherapeutic agents, presents a significant barrier to achieving successful and sustained cancer remission. One critical factor contributing to this chemoresistance is the overexpression of ATP-binding cassette (ABC) transporters. Furthermore, additional mechanisms, such as the malfunctioning of apoptosis, alterations in DNA repair systems, and resistance mechanisms inherent to cancer stem cells, exacerbate the issue. Intriguingly, microRNAs (miRNAs) have demonstrated potential in modulating chemoresistance by specifically targeting ABC transporters, thereby offering promising new avenues for overcoming drug resistance. This narrative review aims to elucidate the molecular underpinnings of drug resistance, with a particular focus on the roles of ABC transporters and the regulatory influence of miRNAs on these transporters.
Collapse
Affiliation(s)
- Forogh Mohammadi
- Department of Veterinary, Agriculture Faculty, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Masoumeh Nejatollahi
- Research Center for High School Students, Education System Zanjan Province, Zanjan, Iran
| | - Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaser Ebrahimi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Rashidi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahin Alizadeh-Fanalou
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Bita Azizzadeh
- Department of Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Guo X, Yu H, Wang X, Zhao S, Wang C, Wang S. Hsa_circ_0109320 Serves as a Novel Circular RNA Biomarker in Non-small Cell Lung Cancer by Promoting Metastasis. Mol Biotechnol 2024:10.1007/s12033-024-01306-3. [PMID: 39499388 DOI: 10.1007/s12033-024-01306-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024]
Abstract
Non-small cell lung cancer (NSCLC), including squamous cell carcinoma and adenocarcinoma, ranks among the top 10 cancers worldwide in terms of prevalence and mortality. NSCLC, a highly malignant tumor, exhibits distant invasion and migration as well as an unfavorable prognosis. As an innovative circular RNA, hsa _circ_0109320 (circ_0109320) has been recognized as a promising cancer modulator. However, our understanding of the influence of circ_0109320 in NSCLC remains insufficient. Our research explored the clinical significance and effects of circ_0109320 on oncogenic non-small cell lung cancer (NSCLC) phenotypes. Microarray analysis and qPCR indicated that circ_0109320 expression in NSCLC specimens increased relative to that in adjacent normal tissues and was further elevated in metastatic lymph nodes. The specimens acquired from 25 patients confirmed these findings. Additionally, circ_0109320 indicated a good score (AUC = 0.688, P = 0.013) on the ROC curves, which suggests its suitability as a promising biomarker for lung cancer. Meanwhile, circ_0109320 was noticeably upregulated in lung cancer (LC) cell lines compared to human bronchial epithelial cells. Next, we performed loss- and gain-of-function experiments to examine the role of circ_0109320 in the tumor phenotypes of the cell lines. We observed that depletion or overexpression of circ_0109320 did not alter cell viability. However, the ectopic removal of circ_0109320 repressed the migration and invasion of A549 and SK-MES-1 cells, whereas circ_0109320 overexpression promoted cell migration and invasion. Furthermore, the examination of epithelial-mesenchymal transition (EMT) markers indicated that circ_0109320 elevates cell EMT activity. In conclusion, circ_0109320 level was highly associated with increased tumor cell proliferation and metastasis. circ_0109320 could be a promising predictor of clinical outcomes and a reliable target to treat NSCLC by inhibiting metastasis.
Collapse
Affiliation(s)
- Xiaoyan Guo
- Pulmonary and Critical Care Medicine II, Affiliated Hospital of Hebei University of Engineering, Handan, 056002, Hebei, China
| | - Hongyan Yu
- Pulmonary and Critical Care Medicine II, Affiliated Hospital of Hebei University of Engineering, Handan, 056002, Hebei, China
| | - Xiansheng Wang
- Pulmonary and Critical Care Medicine II, Affiliated Hospital of Hebei University of Engineering, Handan, 056002, Hebei, China
| | - Shifeng Zhao
- Pulmonary and Critical Care Medicine II, Affiliated Hospital of Hebei University of Engineering, Handan, 056002, Hebei, China
| | - Chunyan Wang
- Pulmonary and Critical Care Medicine II, Affiliated Hospital of Hebei University of Engineering, Handan, 056002, Hebei, China
| | - Shuai Wang
- Department of Function I, Affiliated Hospital of Hebei University of Engineering, No. 81 Congtai Road, Congtai District, Handan, 056002, Hebei, China.
| |
Collapse
|
3
|
Szczepanek J, Skorupa M, Tretyn A. MicroRNA as a Potential Therapeutic Molecule in Cancer. Cells 2022; 11:1008. [PMID: 35326459 PMCID: PMC8947269 DOI: 10.3390/cells11061008] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Small noncoding RNAs, as post-translational regulators of many target genes, are not only markers of neoplastic disease initiation and progression, but also markers of response to anticancer therapy. Hundreds of miRNAs have been identified as biomarkers of drug resistance, and many have demonstrated the potential to sensitize cancer cells to therapy. Their properties of modulating the response of cells to therapy have made them a promising target for overcoming drug resistance. Several methods have been developed for the delivery of miRNAs to cancer cells, including introducing synthetic miRNA mimics, DNA plasmids containing miRNAs, and small molecules that epigenetically alter endogenous miRNA expression. The results of studies in animal models and preclinical studies for solid cancers and hematological malignancies have confirmed the effectiveness of treatment protocols using microRNA. Nevertheless, the use of miRNAs in anticancer therapy is not without limitations, including the development of a stable nanoconstruct, delivery method choices, and biodistribution. The aim of this review was to summarize the role of miRNAs in cancer treatment and to present new therapeutic concepts for these molecules. Supporting anticancer therapy with microRNA molecules has been verified in numerous clinical trials, which shows great potential in the treatment of cancer.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Ul. Wilenska 4, 87-100 Torun, Poland;
| | - Monika Skorupa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Ul. Wilenska 4, 87-100 Torun, Poland;
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Ul. Lwowska 1, 87-100 Torun, Poland;
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Ul. Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
4
|
Moghbeli M. MicroRNAs as the critical regulators of Cisplatin resistance in ovarian cancer cells. J Ovarian Res 2021; 14:127. [PMID: 34593006 PMCID: PMC8485521 DOI: 10.1186/s13048-021-00882-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is one of the leading causes of cancer related deaths among women. Due to the asymptomatic tumor progression and lack of efficient screening methods, majority of OC patients are diagnosed in advanced tumor stages. A combination of surgical resection and platinum based-therapy is the common treatment option for advanced OC patients. However, tumor relapse is observed in about 70% of cases due to the treatment failure. Cisplatin is widely used as an efficient first-line treatment option for OC; however cisplatin resistance is observed in a noticeable ratio of cases. Regarding, the severe cisplatin side effects, it is required to clarify the molecular biology of cisplatin resistance to improve the clinical outcomes of OC patients. Cisplatin resistance in OC is associated with abnormal drug transportation, increased detoxification, abnormal apoptosis, and abnormal DNA repair ability. MicroRNAs (miRNAs) are critical factors involved in cell proliferation, apoptosis, and chemo resistance. MiRNAs as non-invasive and more stable factors compared with mRNAs, can be introduced as efficient markers of cisplatin response in OC patients. MAIN BODY In present review, we have summarized all of the miRNAs that have been associated with cisplatin resistance in OC. We also categorized the miRNAs based on their targets to clarify their probable molecular mechanisms during cisplatin resistance in ovarian tumor cells. CONCLUSIONS It was observed that miRNAs mainly exert their role in cisplatin response through regulation of apoptosis, signaling pathways, and transcription factors in OC cells. This review highlighted the miRNAs as important regulators of cisplatin response in ovarian tumor cells. Moreover, present review paves the way of suggesting a non-invasive panel of prediction markers for cisplatin response among OC patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Chae YJ, Chang JE, Lee MK, Lim J, Shin KH, Lee KR. Regulation of drug transporters by microRNA and implications in disease treatment. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00538-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Zhou S, Guo Z, Zhou C, Zhang Y, Wang S. circ_NRIP1 is oncogenic in malignant development of esophageal squamous cell carcinoma (ESCC) via miR-595/SEMA4D axis and PI3K/AKT pathway. Cancer Cell Int 2021; 21:250. [PMID: 33957921 PMCID: PMC8101145 DOI: 10.1186/s12935-021-01907-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 04/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The hsa_circ_0004771 derived from NRIP1 (called circ_NRIP1) is a recently identified oncogenic circRNA. Here, we intended to investigate the role and mechanism of circ_NRIP1 in esophageal squamous cell carcinoma (ESCC), a prevalent and aggressive type of esophageal cancer. METHODS Expression of circ_NRIP1, miRNA-595-5p (miR-595) and semaphorin 4D (SEMA4D) was detected by RT-qPCR and western blotting. Cell growth was assessed by colony formation assay, MTS assay, flow cytometry, and xenograft experiment; migration and invasion were evaluated by transwell assay and western blotting. Dual-luciferase reporter assay identified the relationship among circ_NRIP1, miR-595 and SEMA4D. Western blotting measured phosphatidylinositol-3-hydroxykinase (PI3K)/AKT pathway-related proteins. RESULTS Expression of circ_NRIP1 was upregulated in ESCC tissues and cells. Knockdown of circ_NRIP1 could enhance apoptosis rate and E-cadherin expression, but suppress colony formation, cell viability, migration, invasion, and snail expression in KYSE30 and KYSE450 cells, as well as retarded tumor growth in mice. The suppressive role of circ_NRIP1 knockdown in cell growth, migration and invasion in vitro was abated by blocking miR-595; meanwhile, miR-595 overexpression elicited similar anti-tumor role in KYSE30 and KYSE450 cells, which was abrogated by restoring SEMA4D. Notably, circ_NRIP1 was a sponge for miR-595, and SEMA4D was a target of miR-595. Besides, PI3K/AKT signal was inhibited by circ_NRIP1 knockdown and/or miR-595 overexpression via indirectly or directly regulating SEMA4D. CONCLUSION circ_NRIP1 functioned as an oncogene in ESCC, and modulated ESCC cell growth, migration and invasion both in vitro and in vivo via targeting miR-595/SEMA4D axis and inhibiting PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Shifan Zhou
- Henan University of Chinese Medicine, No.156 Jinshui East Road, Zhengzhou, 450046, Henan, China. .,Department of Oncology, The Second Affiliated Hospital of Henan University of Chinese Medicine, No.6 Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China.
| | - Zhizhong Guo
- Department of Oncology, The Second Affiliated Hospital of Henan University of Chinese Medicine, No.6 Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China
| | - Chaofeng Zhou
- Department of Oncology, The Second Affiliated Hospital of Henan University of Chinese Medicine, No.6 Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China
| | - Yu Zhang
- Department of Oncology, The Second Affiliated Hospital of Henan University of Chinese Medicine, No.6 Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China
| | - Sai Wang
- Department of Oncology, The Second Affiliated Hospital of Henan University of Chinese Medicine, No.6 Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China
| |
Collapse
|
7
|
Xing Z, Li S, Liu Z, Zhang C, Meng M, Bai Z. The long non-coding RNA LINC00473 contributes to cell proliferation via JAK-STAT3 signaling pathway by regulating miR-195-5p/SEPT2 axis in prostate cancer. Biosci Rep 2020; 40:BSR20191850. [PMID: 32440687 PMCID: PMC7494984 DOI: 10.1042/bsr20191850] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 04/24/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is a kind of male malignant tumor, which has brought tremendous health threat to men. Prostate cancer is difficult to be cured because of high incidence and metastasis rate. Thereby, it is of great urgency to elucidate the underlying molecular mechanism of prostate cancer for the treatment of this cancer. LINC00473 dysregulation has been observed in many cancers. However, the role of LINC00473 was unknown in prostate cancer. In the present study, we discovered that prostate cancer cells presented high expression of LINC00473, and LINC00473 inhibition limited cell proliferation and the expression of proteins in JAK-STAT3 signaling pathway. Additionally, LINC00473 acted as an up-stream factor for miR-195-5p to negatively modulate miR-195-5p expression. Moreover, SEPT2 interacted with miR-195-5p in prostate cancer and SEPT2 expression was positively modulated by LINC00473 and negatively regulated by miR-195-5p. Last, the inhibitory effect of LINC00473 knockdown on cell proliferation and expression of proteins of JAK-STAT3 signaling pathway was restored by SEPT2 overexpression. All in all, LINC00473 contributed to cell proliferation via JAK-STAT3 signaling pathway by regulating miR-195-5p/SEPT2 axis in prostate cancer, which provided a novel therapeutic tactic for prostate cancer patients.
Collapse
Affiliation(s)
- Zengshu Xing
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No.43, Renmin Road, Meilan District, Haikou, 570208, Hainan Province, P.R. China
| | - Sailian Li
- Department of Gastroenterology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, Hainan Province, P.R. China
| | - Zhenxiang Liu
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No.43, Renmin Road, Meilan District, Haikou, 570208, Hainan Province, P.R. China
| | - Chong Zhang
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No.43, Renmin Road, Meilan District, Haikou, 570208, Hainan Province, P.R. China
| | - Meijiang Meng
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No.43, Renmin Road, Meilan District, Haikou, 570208, Hainan Province, P.R. China
| | - Zhiming Bai
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No.43, Renmin Road, Meilan District, Haikou, 570208, Hainan Province, P.R. China
| |
Collapse
|
8
|
Bai Q, Li L, Chen F, Zhu J, Cao L, Yang Y, Zhong F. Suppression of Circular RNA Hsa_circ_0109320 Attenuates Non-Small Cell Lung Cancer Progression via MiR-595/E2F7 Axis. Med Sci Monit 2020; 26:e921200. [PMID: 32508344 PMCID: PMC7297023 DOI: 10.12659/msm.921200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Circular RNAs (circRNAs) are frequently aberrantly expressed in non-small cell lung cancer (NSCLC) and are considered to exert a pivotal role in the occurrence and development of NSCLC via targeting and negatively regulating microRNAs (miRNAs). We aimed to investigate the role of hsa_circ_0109320 in the proliferation, invasion and apoptosis of NSCLC, and explore its underlying molecular mechanism. Material/Methods Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis was performed to determine the circ_0109320 and miR-595 expression in tissues or cells. Western blot analysis was conducted to examine the cleaved caspase-3, Bax, Bcl-2, and E2F7 protein expression. Transwell detection was used to evaluate the invasion level of NSCLC cell lines. Results The results of present study indicated that circ_0109320 expression in NSCLC patients was upregulated significantly in tumor tissues compared with tissues adjacent to carcinoma. Upregulated circ_0109320 level was significantly associated with TNM stages as well as lymph node metastasis of NSCLC. Moreover, downregulation of circ_0109320 attenuated proliferation and invasion while promoting apoptosis in NSCLC cells. We further confirmed that circ_0109320 could sponge miR-595 to upregulate E2F7 expression. Silencing of miR-595 or overexpression of E2F2 could partially reversed the inhibitory role of circ_0109320 knockdown in NSCLC cells. These data provided evidence that the suppression of circ_0109320 attenuates NSCLC cell proliferation and invasion and enhances apoptosis through the miR-595/E2F7 pathway. Conclusions Circ_0109320/miR-595/E2F2 axis may exert a pivotal role in the pathological mechanism of NSCLC progression, and it has potential application in the future treatment of NSCLC.
Collapse
Affiliation(s)
- Qiaohong Bai
- Department of Respiratory, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Li Li
- Department of Respiratory, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Futao Chen
- Department of Respiratory, The Second Hospital of LianYunGang, Lianyungang, Jiangsu, China (mainland)
| | - Jiang Zhu
- Department of Respiratory, The Second Hospital of LianYunGang, Lianyungang, Jiangsu, China (mainland)
| | - Lifeng Cao
- Department of Respiratory, The Second Hospital of LianYunGang, Lianyungang, Jiangsu, China (mainland)
| | - Yang Yang
- Department of Respiratory, The Second Hospital of LianYunGang, Lianyungang, Jiangsu, China (mainland)
| | - Fukuan Zhong
- Department of Respiratory, The Second Hospital of LianYunGang, Lianyungang, Jiangsu, China (mainland)
| |
Collapse
|
9
|
Wang H, Jiang F, Liu W, Tian W. miR-595 suppresses cell proliferation and metastasis in hepatocellular carcinoma by inhibiting NF-κB signalling pathway. Pathol Res Pract 2020; 216:152899. [PMID: 32107085 DOI: 10.1016/j.prp.2020.152899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/27/2020] [Accepted: 02/16/2020] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) have been proven to be critical regulators of cancer development. To date, many of them are still in urgent need of characterisation, and role of miR-595 in hepatocellular carcinoma (HCC) remains unknown. To better understand the mechanism of miR-595 in HCC development, a series of experiments were carried out to explore the effects of miR-595 on malignant behaviour in HCC. First, we found that miR-595 was downregulated in HCC tissues and cells and tightly associated with poor overall survival in HCC patients. Then, we further demonstrated that miR-595 inhibited cell proliferation, migration and invasion in vitro. Additionally, animal experimental results demonstrated that miR-595 inhibited HCC carcinogenesis in vivo. Moreover, we demonstrated that upregulation of miR-595 expression inhibited the NF-κB signalling pathway in HCC cells. To further uncover the molecular mechanism of miR-595 action on the NF-κB signalling pathway, we identified ABCB1 as a direct target of miR-595 through bioinformatics prediction and supported our results with luciferase assays. Finally, we showed that miR-595 inhibited the NF-κB pathway by suppressing ABCB1 expression in HCC cells. Taken together, our findings uncover a pivotal role for the miR-595/ABCB1/NF-κB axis in HCC development, and this novel axis may be a suitable target for diagnostic or therapeutic interventions in HCC.
Collapse
Affiliation(s)
- Hongying Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Fang Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Weiying Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Weiping Tian
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
10
|
Ghafouri-Fard S, Shoorei H, Taheri M. miRNA profile in ovarian cancer. Exp Mol Pathol 2020; 113:104381. [PMID: 31954715 DOI: 10.1016/j.yexmp.2020.104381] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/29/2022]
Abstract
Ovarian cancer is a gynecological cancer with high mortality and a heterogeneous nature which complicates its early detection and primary prevention. Numerous studies have evaluated expression profile microRNAs (miRNAs) in tissue and serum samples of ovarian cancer patients to find appropriate biomarkers for this malignancy. Functional experiments also verified the oncogenic or suppressor effects of a number of miRNAs. miRNAs exert their role through degradation or inhibition of translation of the target mRNA. Through this regulatory function, they modulate numerous cellular processes which are ultimately associated with carcinogenesis. A number of miRNAs including miR-135a-3p, miR-200c, miR-216a and miR-340 regulate epithelial-mesenchymal transition program thus modulate invasiveness of ovarian cancer cell. Others have been shown to regulate some fundamental pathways in carcinogenesis such as mTOR and PI3K/AKT pathways. Such vast area of function of miRNAs in ovarian cancer has suggested them as putative therapeutic options for future years. In this review, we summarize the recent findings regarding the role of miRNAs in ovarian cancer pathogenesis, their application as biomarkers and the future perspectives of this research area.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Role of microRNAs as Clinical Cancer Biomarkers for Ovarian Cancer: A Short Overview. Cells 2020; 9:cells9010169. [PMID: 31936634 PMCID: PMC7016727 DOI: 10.3390/cells9010169] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer has the highest mortality rate among gynecological cancers. Early clinical signs are missing and there is an urgent need to establish early diagnosis biomarkers. MicroRNAs are promising biomarkers in this respect. In this paper, we review the most recent advances regarding the alterations of microRNAs in ovarian cancer. We have briefly described the contribution of miRNAs in the mechanisms of ovarian cancer invasion, metastasis, and chemotherapy sensitivity. We have also summarized the alterations underwent by microRNAs in solid ovarian tumors, in animal models for ovarian cancer, and in various ovarian cancer cell lines as compared to previous reviews that were only focused the circulating microRNAs as biomarkers. In this context, we consider that the biomarker screening should not be limited to circulating microRNAs per se, but rather to the simultaneous detection of the same microRNA alteration in solid tumors, in order to understand the differences between the detection of nucleic acids in early vs. late stages of cancer. Moreover, in vitro and in vivo models should also validate these microRNAs, which could be very helpful as preclinical testing platforms for pharmacological and/or molecular genetic approaches targeting microRNAs. The enormous quantity of data produced by preclinical and clinical studies regarding the role of microRNAs that act synergistically in tumorigenesis mechanisms that are associated with ovarian cancer subtypes, should be gathered, integrated, and compared by adequate methods, including molecular clustering. In this respect, molecular clustering analysis should contribute to the discovery of best biomarkers-based microRNAs assays that will enable rapid, efficient, and cost-effective detection of ovarian cancer in early stages. In conclusion, identifying the appropriate microRNAs as clinical biomarkers in ovarian cancer might improve the life quality of patients.
Collapse
|
12
|
Seo HA, Moeng S, Sim S, Kuh HJ, Choi SY, Park JK. MicroRNA-Based Combinatorial Cancer Therapy: Effects of MicroRNAs on the Efficacy of Anti-Cancer Therapies. Cells 2019; 9:cells9010029. [PMID: 31861937 PMCID: PMC7016872 DOI: 10.3390/cells9010029] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
The susceptibility of cancer cells to different types of treatments can be restricted by intrinsic and acquired therapeutic resistance, leading to the failure of cancer regression and remission. To overcome this problem, a combination therapy has been proposed as a fundamental strategy to improve therapeutic responses; however, resistance is still unavoidable. MicroRNA (miRNAs) are associated with cancer therapeutic resistance. The modulation of dysregulated miRNA levels through miRNA-based therapy comprising a replacement or inhibition approach has been proposed to sensitize cancer cells to other anti-cancer therapies. The combination of miRNA-based therapy with other anti-cancer therapies (miRNA-based combinatorial cancer therapy) is attractive, due to the ability of miRNAs to target multiple genes associated with the signaling pathways controlling therapeutic resistance. In this article, we present an overview of recent findings on the role of therapeutic resistance-related miRNAs in different types of cancer. We review the feasibility of utilizing dysregulated miRNAs in cancer cells and extracellular vesicles as potential candidates for miRNA-based combinatorial cancer therapy. We also discuss innate properties of miRNAs that need to be considered for more effective combinatorial cancer therapy.
Collapse
Affiliation(s)
- Hyun Ah Seo
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (H.A.S.); (S.M.); (S.Y.C.)
| | - Sokviseth Moeng
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (H.A.S.); (S.M.); (S.Y.C.)
| | - Seokmin Sim
- Generoath, Seachang-ro, Mapo-gu, Seoul 04168, Korea;
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (H.A.S.); (S.M.); (S.Y.C.)
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (H.A.S.); (S.M.); (S.Y.C.)
- Correspondence: or ; Tel.: +82-33-248-2114
| |
Collapse
|
13
|
Herdoiza Padilla E, Crauwels P, Bergner T, Wiederspohn N, Förstner S, Rinas R, Ruf A, Kleemann M, Handrick R, Tuckermann J, Otte K, Walther P, Riedel CU. mir-124-5p Regulates Phagocytosis of Human Macrophages by Targeting the Actin Cytoskeleton via the ARP2/3 Complex. Front Immunol 2019; 10:2210. [PMID: 31636629 PMCID: PMC6787173 DOI: 10.3389/fimmu.2019.02210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/02/2019] [Indexed: 01/20/2023] Open
Abstract
Phagocytosis is a cellular process crucial for recognition and removal of apoptotic cells and foreign particles, subsequently initiating appropriate immune responses. The process of phagocytosis is highly complex and involves major rearrangements of the cytoskeleton. Due to its complexity and importance for tissue homoeostasis and immune responses, it is tightly regulated. Over the last decade, microRNAs (miRNAs) have emerged as important regulators of biological pathways including the immune response by fine-tuning expression of gene regulatory networks. In order to identify miRNAs implicated in the regulation of phagocytosis, a systematic screening of all currently known, human miRNAs was performed using THP-1 macrophage-like cells and serum-opsonized latex beads. Of the total of 2,566 miRNAs analyzed, several led to significant changes in phagocytosis. Among these, we validated miR-124-5p as a novel regulator of phagocytosis. Transfection with miR-124-5p mimics reduced the number of phagocytic cells as well as the phagocytic activity of phorbol-12-myristate-13-acetate (PMA)-activated THP-1 cells and ex vivo differentiated primary human macrophages. In silico analysis suggested that miR-124-5p targets genes involved in regulation of the actin cytoskeleton. Transcriptional analyses revealed that expression of genes encoding for several subunits of the ARP2/3 complex, a crucial regulator of actin polymerization, is reduced upon transfection of cells with miR-124-5p. Further in silico analyses identified potential binding motifs for miR-124-5p in the mRNAs of these genes. Luciferase reporter assays using these binding motifs indicate that at least two of the genes (ARPC3 and ARPC4) are direct targets of miR-124-5p. Moreover, ARPC3 and ARPC4 protein levels were significantly reduced following miR-124-5p transfection. Collectively, the presented results suggest that miR-124-5p regulates phagocytosis in human macrophages by directly targeting expression of components of the ARP2/3 complex.
Collapse
Affiliation(s)
| | - Peter Crauwels
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Tim Bergner
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Nicole Wiederspohn
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Sabrina Förstner
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Rebecca Rinas
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Anna Ruf
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Michael Kleemann
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - René Handrick
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Kerstin Otte
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| |
Collapse
|
14
|
Yin B, Lu P, Liang J, Zhang W, Xin M, Pei K, Li Y. The ABCB1 3435C > T polymorphism influences docetaxel transportation in ovarian cancer. J Int Med Res 2019; 47:5256-5269. [PMID: 31638462 PMCID: PMC6997784 DOI: 10.1177/0300060519870354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/26/2019] [Indexed: 11/15/2022] Open
Abstract
Objective To investigate the effect of the ATP-binding cassette transporter superfamily B member 1 gene (ABCB1 ) 3435C > T single nucleotide polymorphism (SNP) on docetaxel transportation in ovarian cancer cells. Methods ES-2 and SKOV3 cells were transfected with an ABCB1 3435C > T recombinant plasmid, and mRNA expression was detected by real-time PCR. The MTT assay was used to detect the toxicity of docetaxel. High-performance liquid chromatography determined the drug concentration in different cell models to evaluate intracellular accumulation, and a transmembrane resistance experiment was used to assess permeability and evaluate the effect of P-gp activity on drug transportation. A tumor-bearing mouse model was established to evaluate the effect of ABCB1 3435C > T on docetaxel resistance. Results P-gp was overexpressed in cells transfected with the ABCB1 3435C > T plasmid, leading to a significant increase in drug resistance to docetaxel. ABCB1 3435C/wild-type transfection significantly promoted the transport of docetaxel mediated by P-gp compared with ABCB1 3435T/mutant transfection. Conclusion P-gp encoded by the ABCB1 variant allele appears to be more efficient at transporting docetaxel compared with the wild-type allele. The ABCB1 3435C > T SNP dramatically affected the efflux ability of P-gp against docetaxel, and may influence P-gp expression and activity.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Biological Transport/drug effects
- Cell Death/drug effects
- Cell Line, Tumor
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Docetaxel/pharmacology
- Docetaxel/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Female
- Humans
- Mice, Inbred BALB C
- Mice, Nude
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Polymorphism, Single Nucleotide/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Beibei Yin
- Department of Oncology, Shandong Provincial Qianfoshan
Hospital, Shandong University, Jinan, Shandong, China
| | - Ping Lu
- Department of Cardiac Surgery, Shandong Provincial
Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Jing Liang
- Department of Oncology, Shandong Provincial Qianfoshan
Hospital, Shandong University, Jinan, Shandong, China
| | - Wei Zhang
- Department of Ultrasound, Shandong Provincial
Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Meng Xin
- Department of Oncology, Shandong Provincial Qianfoshan
Hospital, Shandong University, Jinan, Shandong, China
| | - Ke Pei
- College of Traditional Chinese Medicine, Shandong
University of Traditional Chinese Medicine, Jinan, Shandong,
China
| | - Yan Li
- Department of Oncology, Shandong Provincial Qianfoshan
Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
15
|
Su S, Sun X, Zhang Q, Zhang Z, Chen J. CCL20 Promotes Ovarian Cancer Chemotherapy Resistance by Regulating ABCB1 Expression. Cell Struct Funct 2019; 44:21-28. [PMID: 30760665 DOI: 10.1247/csf.18029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ovarian cancer (OC) is one of prevalent tumors and this study aimed to explore CCL20's effects on doxorubicin resistance of OC and related mechanisms. Doxorubicin-resistant SKOV3 DR cells were established from SKOV3 cells via 6-month continuous exposure to gradient concentrations of doxorubicin. Quantitative PCR and Western blot assay showed that SKOV3 DR cells had higher level of CCL20 than SKOV3 cells, and doxorubicin upregulated CCL20 expression in SKOV3 cells. MTT and cell count assay found that CCL20 overexpression plasmid enhanced doxorubicin resistance of SKOV3 and OVCA433 cells compared to empty vector, as shown by the increase in cell viability. In contrast, CCL20 shRNA enhanced doxorubicin sensitivity of SKOV3 DR cells compared to control. CCL20 overexpression plasmid promoted NF-kB activation and positively regulated ABCB1 expression. Besides, ABCB1 overexpression plasmid enhanced the viability of SKOV3 and OVCA433 cells compared to empty vector under treatment with the same concentration of doxorubicin, whereas ABCB1 shRNA inhibited doxorubicin resistance of SKOV3 DR cells compared to control. In conclusion, CCL20 enhanced doxorubicin resistance of OC cells by regulating ABCB1 expression.Key words: CCL20, ovarian cancer, doxorubicin resistance, tumor-promoting, ABCB1.
Collapse
Affiliation(s)
- Shan Su
- Department of Gynecology, the Central Hospital of Zibo
| | - Xueqin Sun
- Department of Gynecology, the Central Hospital of Zibo
| | - Qinghua Zhang
- Department of Gynecology, the Central Hospital of Zibo
| | - Zhe Zhang
- Department of Gynecology, the Central Hospital of Zibo
| | - Ju Chen
- Department of Ultrasound, the Central Hospital of Zibo
| |
Collapse
|
16
|
Klinge CM, Piell KM, Tooley CS, Rouchka EC. HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells. Sci Rep 2019; 9:9430. [PMID: 31263129 PMCID: PMC6603045 DOI: 10.1038/s41598-019-45636-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are dysregulated in breast cancer. Heterogeneous Nuclear Ribonucleoprotein A2/B1 (HNRNPA2/B1) is a reader of the N(6)-methyladenosine (m6A) mark in primary-miRNAs (pri-miRNAs) and promotes DROSHA processing to precursor-miRNAs (pre-miRNAs). We examined the expression of writers, readers, and erasers of m6A and report that HNRNPA2/B1 expression is higher in tamoxifen-resistant LCC9 breast cancer cells as compared to parental, tamoxifen-sensitive MCF-7 cells. To examine how increased expression of HNRNPA2/B1 affects miRNA expression, HNRNPA2/B1 was transiently overexpressed (~5.4-fold) in MCF-7 cells for whole genome miRNA profiling (miRNA-seq). 148 and 88 miRNAs were up- and down-regulated, respectively, 48 h after transfection and 177 and 172 up- and down-regulated, respectively, 72 h after transfection. MetaCore Enrichment analysis identified progesterone receptor action and transforming growth factor β (TGFβ) signaling via miRNA in breast cancer as pathways downstream of the upregulated miRNAs and TGFβ signaling via SMADs and Notch signaling as pathways of the downregulated miRNAs. GO biological processes for mRNA targets of HNRNPA2/B1-regulated miRNAs included response to estradiol and cell-substrate adhesion. qPCR confirmed HNRNPA2B1 downregulation of miR-29a-3p, miR-29b-3p, and miR-222 and upregulation of miR-1266-5p, miR-1268a, miR-671-3p. Transient overexpression of HNRNPA2/B1 reduced MCF-7 sensitivity to 4-hydroxytamoxifen and fulvestrant, suggesting a role for HNRNPA2/B1 in endocrine-resistance.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| | - Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Christine Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Eric C Rouchka
- Bioinformatics and Biomedical Computing Laboratory, Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40292, USA
| |
Collapse
|
17
|
Li S, Liu Z, Fang XD, Wang XY, Fei BY. MicroRNA (miR)-597-5p Inhibits Colon Cancer Cell Migration and Invasion by Targeting FOS-Like Antigen 2 ( FOSL2). Front Oncol 2019; 9:495. [PMID: 31245295 PMCID: PMC6581747 DOI: 10.3389/fonc.2019.00495] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022] Open
Abstract
Our previous work had shown that FOS-like antigen 2 (FOSL2) is regulated by miR-143-5p in colorectal cancer (CRC). Given that it has been shown by others that FOSL2 is also a target of miR-597-5p in breast adenocarcinoma, the objective of the current work was to determine whether FOSL2 is regulated by miR-597-5p in CRC and the role of miR-597-5p in CRC. MiR-597-5p expression was determined in RNA obtained from 30 paired samples of colon cancer and tumor adjacent normal tissue, as well as in the LoVo (CRC cell line) and FHC (normal colonic epithelial cells) by quantitative real time polymerase chain reaction (qRT-PCR). MiR-597-5p expression was significantly downregulated in both CRC tissue and LoVo cells. Reporter assays using wild-type and miR-597-5p seed mutant FOSL2 confirmed that FOSL2 is a bona fide target of miR-597-5p. Modulating miR-597-5p expression levels in FHC and LoVo cells using antagomir and mimic, respectively, impacted expression of epithelial and mesenchymal cell markers as well as in vitro migration and invasion, without any effect on cell proliferation, showing that miR-597-5p functions as a suppressor of epithelial to mesenchymal transition. Restoration of FOSL2 expression rescued pro-metastatic functional properties of LoVo cells conforming that effect of miR-597-5p was being mediated by targeting FOSL2. Xenograft assays in athymic nude mice showed that miR-597-5p mimic did not reduce tumor incidence or growth in LoVo cells. However, using a hepatic metastasis model showed that miR-597-5p mimic can significantly prevent hepatic metastatic nodule formation as well as FOSL2 expression in these metastatic nodules. Importantly, FOSL2 mRNA and miR-597-5p expression was found to be inversely correlated in an independent cohort of 21 CRC patients Cumulatively our results show that miR-597-5p functions as a suppressor of metastatic progression in CRC by targeting FOSL2. Replenishment of miR-597-5p can be a potential therapeutic target where its expression along with FOSL2 can serve as potential diagnostic markers in CRC.
Collapse
Affiliation(s)
- Shuo Li
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhuo Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xue-Dong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiu-Ying Wang
- Medical Record Department, China Japan Union Hospital of Jilin University, Changchun, China
| | - Bing-Yuan Fei
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Wu W, He L, Huang Y, Hou L, Zhang W, Zhang L, Wu C. MicroRNA-510 Plays Oncogenic Roles in Non-Small Cell Lung Cancer by Directly Targeting SRC Kinase Signaling Inhibitor 1. Oncol Res 2019; 27:879-887. [PMID: 30982489 PMCID: PMC7848405 DOI: 10.3727/096504018x15451308507747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An increasing number of studies have demonstrated that microRNAs (miRNAs) may play key roles in various cancer carcinogenesis and progression, including non-small cell lung cancer (NSCLC). However, the expressions, roles, and mechanisms of miR-510 in NSCLC have, up to now, been largely undefined. In vivo assay showed that miR-510 was upregulated in NSCLC tissues compared with that in adjacent nontumor lung tissues. miR-510 expression was significantly correlated with TNM stage and lymph node metastasis. In vitro assay indicated that expressions of miR-510 were also increased in NSCLC cell lines. Downregulation of miR-510 suppressed NSCLC cell proliferation and invasion in vitro. We identified SRC kinase signaling inhibitor 1 (SRCIN1) as a direct target gene of miR-510 in NSCLC. Expression of SRCIN1 was downregulated in lung cancer cells and negatively correlated with miR-510 expression in tumor tissues. Downregulation of SRCIN1, leading to inhibition of miR-510 expression, reversed cell proliferation and invasion in NSCLC cells. These results showed that miR-510 acted as an oncogenic miRNA in NSCLC, partly by targeting SRCIN1, suggesting that miR-510 can be a potential approach for the treatment of patients with malignant lung cancer.
Collapse
Affiliation(s)
- Wei Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Linyan He
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Yan Huang
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Wei Zhang
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Liping Zhang
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
19
|
Yakusheva EN, Titov DS. Structure and Function of Multidrug Resistance Protein 1. BIOCHEMISTRY (MOSCOW) 2018; 83:907-929. [DOI: 10.1134/s0006297918080047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Chu P, Liang A, Jiang A, Zong L. miR-205 regulates the proliferation and invasion of ovarian cancer cells via suppressing PTEN/SMAD4 expression. Oncol Lett 2018; 15:7571-7578. [PMID: 29725462 PMCID: PMC5920363 DOI: 10.3892/ol.2018.8313] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are non-coding RNAs that post-transcriptionally control target genes, and are involved in tumorigenesis, apoptosis, proliferation, invasion, metastasis and chemoresistance. However, data concerning miRNAs in ovarian cancer remain incomplete. The present study aimed to identify miRNAs that affected the malignant phenotype of ovarian cancer, and to analyze their potential mechanisms. The data demonstrated that miR-205 promoted cell proliferation and invasion of ovarian cancer cells via suppressing Phosphatase and tensin homolog (PTEN)/mothers against decapentaplegic homolog 4 (SMAD4) expression. Based on the Cancer Genome Atlas database analysis results, it was identified that miR-205 was significantly upregulated in ovarian cancer tissues and markedly correlated with poor prognosis in patients with ovarian cancer; its abnormal expression was also confirmed in tissues from patients with ovarian cancer by reverse transcription quantitative polymerase chain reaction. Additional Gene Ontology analysis revealed that the target genes of miR-205 were associated with cell proliferation and invasion. Consistent with the database analysis, miR-205 overexpression significantly promoted ovarian cancer cell proliferation and invasion in vitro. To additionally explore the mechanism by which miR-205 was associated with proliferation and invasion of ovarian cancer cells, a protein-protein interaction network was constructed based on miR-205 target genes associated with proliferation and invasion, and it was revealed that PTEN and SMAD4 were key target genes of miR-205. In ovarian cancer tissues, the expression levels of PTEN and SMAD4 were significantly downregulated, suggesting that miR-205 may suppress the expression of PTEN and SMAD4 in vivo. In vitro, miR-205 overexpression markedly suppressed the expression of SMAD4 and PTEN, additionally verifying that PTEN and SMAD4 were the target genes of miR-205 in ovarian cancer cells. These results elucidated the tumor-promoting role of miR-205 and established miR-205 as a potential treatment target for ovarian cancer.
Collapse
Affiliation(s)
- Ping Chu
- Department of Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Aihua Liang
- Department of Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Aili Jiang
- Department of Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Lu Zong
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
21
|
Vrana D, Hlavac V, Brynychova V, Vaclavikova R, Neoral C, Vrba J, Aujesky R, Matzenauer M, Melichar B, Soucek P. ABC Transporters and Their Role in the Neoadjuvant Treatment of Esophageal Cancer. Int J Mol Sci 2018; 19:E868. [PMID: 29543757 PMCID: PMC5877729 DOI: 10.3390/ijms19030868] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
The prognosis of esophageal cancer (EC) is poor, despite considerable effort of both experimental scientists and clinicians. The tri-modality treatment consisting of neoadjuvant chemoradiation followed by surgery has remained the gold standard over decades, unfortunately, without significant progress in recent years. Suitable prognostic factors indicating which patients will benefit from this tri-modality treatment are missing. Some patients rapidly progress on the neoadjuvant chemoradiotherapy, which is thus useless and sometimes even harmful. At the same time, other patients achieve complete remission on neoadjuvant chemoradiotherapy and subsequent surgery may increase their risk of morbidity and mortality. The prognosis of patients ranges from excellent to extremely poor. Considering these differences, the role of drug metabolizing enzymes and transporters, among other factors, in the EC response to chemotherapy may be more important compared, for example, with pancreatic cancer where all patients progress on chemotherapy regardless of the treatment or disease stage. This review surveys published literature describing the potential role of ATP-binding cassette transporters, the genetic polymorphisms, epigenetic regulations, and phenotypic changes in the prognosis and therapy of EC. The review provides knowledge base for further research of potential predictive biomarkers that will allow the stratification of patients into defined groups for optimal therapeutic outcome.
Collapse
Affiliation(s)
- David Vrana
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 976/3, 77515 Olomouc, Czech Republic.
| | - Viktor Hlavac
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
| | - Veronika Brynychova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
| | - Radka Vaclavikova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
| | - Cestmir Neoral
- Department of Surgery, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 976/3, 77515 Olomouc, Czech Republic.
| | - Jiri Vrba
- Department of Surgery, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 976/3, 77515 Olomouc, Czech Republic.
| | - Rene Aujesky
- Department of Surgery, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 976/3, 77515 Olomouc, Czech Republic.
| | - Marcel Matzenauer
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 976/3, 77515 Olomouc, Czech Republic.
| | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 976/3, 77515 Olomouc, Czech Republic.
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
- Department of Surgery, Faculty Hospital Pilsen, Alej Svobody 80, 30460 Pilsen, Czech Republic.
| |
Collapse
|
22
|
Sun L, Zhai R, Zhang L, Zhao S. MicroRNA-149 suppresses the proliferation and increases the sensitivity of ovarian cancer cells to cisplatin by targeting X-linked inhibitor of apoptosis. Oncol Lett 2018; 15:7328-7334. [PMID: 29731888 DOI: 10.3892/ol.2018.8240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 12/06/2017] [Indexed: 12/18/2022] Open
Abstract
Currently, ovarian cancer is identified as one of the leading causes of cancer-associated mortality in females. Despite numerous efforts that were made on developing novel treatments for ovarian cancer, the survival rate remains unsatisfactory. Considering the important regulatory role of miRNAs in different types of cancer, the present study aims to identify a novel therapeutic target for treatment of ovarian cancer. The expression of miR-149 was detected using reverse transcription-quantitative polymerase chain reaction in cancerous and normal cells. Furthermore, the effects of miR-149 on ovarian cancer cell activities were investigated using MTT assay, colony formation, flow cytometry and western blotting analysis. In the present study, it was revealed that microRNA (miR)-149 was significantly downregulated in ovarian cancer tissues and cell lines, and that the miR-149 expression was correlated with the patient prognosis. In addition, it was observed that forced expression of miR-149 increased the sensitivity of ovarian cancer cell to cisplatin. Based on bioinformatics analysis and luciferase assay, X-linked inhibitor of apoptosis (XIAP) was identified as a direct target gene of miR-149 in ovarian cancer cells. It was also demonstrated that XIAP expression was upregulated in the ovarian cancer tissues and cell lines, while it was negatively correlated with miR-149 in these tissues and cells. Furthermore, results revealed that ectopic expression of XIAP was able to abolish the miR-149-enhanced cell sensitivity to cisplatin. In conclusion, the present study revealed that miR-149 functioned as a tumor suppressor in the progression of ovarian cancer, increasing the sensitivity of ovarian cancer cells to cisplatin treatment.
Collapse
Affiliation(s)
- Lin Sun
- Department of Gynecology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China.,Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272100, P.R. China
| | - Ruixia Zhai
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining, Shandong 272100, P.R. China
| | - Li Zhang
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272100, P.R. China
| | - Shuping Zhao
- Department of Gynecology, Qingdao Women and Children's Hospital of Qingdao University, Qingdao, Shandong 266034, P.R. China
| |
Collapse
|
23
|
Wang SM, Sun LL, Wu WS, Yan D. MiR-595 Suppresses the Cellular Uptake and Cytotoxic Effects of Methotrexate by Targeting SLC19A1 in CEM/C1 Cells. Basic Clin Pharmacol Toxicol 2018; 123:8-13. [PMID: 29345051 DOI: 10.1111/bcpt.12966] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/10/2018] [Indexed: 01/30/2023]
Abstract
The human solute carrier family 19 member 1 (SLC19A1) is the gene coding for reduced folate carrier 1 (RFC1). In our previous work, we showed that the miR-595-related polymorphism, rs1051296 G>T, which was located in the 3'-untranslated region (3'-UTR) of SLC19A1, was associated with high methotrexate (MTX) plasma concentrations in patients with paediatric acute lymphoblastic leukaemia (ALL). This study aimed to investigate the role of miR-595 in the regulation of SLC19A1 expression and its effects on the cellular uptake and cytotoxicity of MTX in ALL CEM/C1 cells. Luciferase reporter assay was performed to validate SLC19A1 as a miR-595 target. RFC1 protein expression was determined via Western blotting. Intracellular MTX concentrations were measured by enzyme-linked immunosorbent assay (ELISA). Cell viability and apoptosis were assessed using Cell Counting Kit-8 (CCK-8) assay and flow cytometer, respectively. Compared to the negative control, miR-595 mimics induced a significant decrease in the relative luciferase activity by binding to the 3'-UTR of SLC19A1 harbouring the rs1051296 T allele (p < 0.01). Treatment of CEM/C1 cells with miR-595 mimics substantially reduced RFC1 protein expression, intracellular MTX levels, MTX-induced cytotoxicity and apoptosis rates compared to those of negative control. However, opposite results were observed in cells transfected with a miR-595 inhibitor. These findings suggested that miR-595 acts as a phenotypic regulator of MTX sensitivity in CEM/C1 cells by targeting SLC19A1. This study helped us to understand the mechanisms underlying the variable MTX responses observed in patients with ALL.
Collapse
Affiliation(s)
- Shu-Mei Wang
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lu-Lu Sun
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wan-Shui Wu
- Department of Pediatrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Dan Yan
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Cui Y, Wu F, Tian D, Wang T, Lu T, Huang X, Zhang P, Qin L. miR-199a-3p enhances cisplatin sensitivity of ovarian cancer cells by targeting ITGB8. Oncol Rep 2018; 39:1649-1657. [PMID: 29436681 PMCID: PMC5868401 DOI: 10.3892/or.2018.6259] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/12/2018] [Indexed: 11/06/2022] Open
Abstract
Drug resistance remains a large obstacle for the treatment of ovarian cancer. miRNAs have been reported to be involved in cisplatin (CDDP) resistance in ovarian cancer. The aim of the present study was to investigate the function and mechanism of miR-199a-3p in the CDDP resistance in ovarian cancer. We found that miR-199a-3p was significantly downregulated in chemoresistant ovarian cancer tissues, as well as CDDP-resistant SKOV3/CDDP cells, compared to chemosensitive carcinomas and SKOV3 cells. Restoration of miR-199a-3p in SKOV3/CDDP cells reduced cell proliferation, G1 phase cell cycle arrest, cell invasion, and increased cell apoptosis, resulting in enhanced CDDP sensitivity, while miR-199a-3p inhibition resulted in the opposite effects. Luciferase reporter assay showed that integrin β8 (ITGB8), one of the integrins that is involved in the regulation of cell cycle and motility, was a direct target of miR-199a-3p. Overexpression of miR-199a-3p downregulated ITGB8 expression via binding to its 3'-UTR. In addition, overexpression of ITGB8 restored CDDP resistance inhibited by miR-199a-3p. Moreover, orthotopic ovarian cancer mouse model showed that miR‑199a-3p enhanced CDDP sensitivity of ovarian cancer in vivo. Therefore, our results indicate that miR-199a-3p enhances CDDP sensitivity of ovarian cancer cells through downregulating ITGB8 expression, and miR-199a-3p may serve as a therapeutic target for the treatment of ovarian cancer patients with CDDP-resistance.
Collapse
Affiliation(s)
- Yajie Cui
- Department of Obstetrics and Gynecology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710002, P.R. China
| | - Fengqin Wu
- Department of Gynecology, Shangluo Central Hospital, Shangluo, Shaanxi 726000, P.R. China
| | - Defu Tian
- Department of General Surgery, Shaanxi Provincial Fourth People's Hospital, Xi'an, Shaanxi 710006, P.R. China
| | - Ting Wang
- Reproductive Medicine Center, Northwest Women and Children's Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Tianjie Lu
- Department of Obstetrics and Gynecology, Xi'an No. 1 Hospital, Xi'an, Shaanxi 710002, P.R. China
| | - Xiying Huang
- Department of Obstetrics and Gynecology, Xi'an No. 1 Hospital, Xi'an, Shaanxi 710002, P.R. China
| | - Peilian Zhang
- Department of Obstetrics and Gynecology, Xi'an No. 1 Hospital, Xi'an, Shaanxi 710002, P.R. China
| | - Li Qin
- Department of Obstetrics and Gynecology, Shaanxi Province People's Hospital, Xi'an, Shaanxi 710033, P.R. China
| |
Collapse
|
25
|
Srivastava SK, Ahmad A, Zubair H, Miree O, Singh S, Rocconi RP, Scalici J, Singh AP. MicroRNAs in gynecological cancers: Small molecules with big implications. Cancer Lett 2017; 407:123-138. [PMID: 28549791 PMCID: PMC5601032 DOI: 10.1016/j.canlet.2017.05.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/14/2022]
Abstract
Gynecological cancers (GCs) are often diagnosed at advanced stages, limiting the efficacy of available therapeutic options. Thus, there remains an urgent and unmet need for innovative research for the efficient clinical management of GC patients. Research over past several years has revealed the enormous promise of miRNAs. These small non-coding RNAs can aid in the diagnosis, prognosis and therapy of all major GCs, viz., ovarian cancers, cervical cancers and endometrial cancers. Mechanistic details of the miRNAs-mediated regulation of multiple biological functions are under constant investigation, and a number of miRNAs are now believed to influence growth, proliferation, invasion, metastasis, chemoresistance and the relapse of different GCs. Modulation of tumor microenvironment by miRNAs can possibly explain some of their reported biological effects. miRNA signatures have been proposed as biomarkers for the early detection of GCs, even the various subtypes of individual GCs. miRNA signatures are also being pursued as predictors of response to therapies. This review catalogs the knowledge gained from collective studies, so as to assess the progress made so far. It is time to ponder over the knowledge gained, so that more meaningful pre-clinical and translational studies can be designed to better realize the potential that miRNAs have to offer.
Collapse
Affiliation(s)
- Sanjeev K Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Haseeb Zubair
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Orlandric Miree
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Rodney P Rocconi
- Division of Gynecologic Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Jennifer Scalici
- Division of Gynecologic Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Ajay P Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
26
|
Zhao Y, Qi X, Chen J, Wei W, Yu C, Yan H, Pu M, Li Y, Miao L, Li C, Ren J. The miR-491-3p/Sp3/ABCB1 axis attenuates multidrug resistance of hepatocellular carcinoma. Cancer Lett 2017; 408:102-111. [PMID: 28844709 DOI: 10.1016/j.canlet.2017.08.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/05/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
Abstract
As one of main obstacles in the treatment and prognosis of hepatocellular carcinoma (HCC), multidrug resistance (MDR) is usually associated with the overexpression of the drug efflux pump P-glycoprotein (P-gp/ABCB1) which is responsible for reducing the intracellular concentration of chemotherapeutic agents. In current work, we discovered the novel role of miR-491-3p in ABCB1-mediated multidrug resistance in HCC and revealed the underlying mechanism in which miR-491-3p downregulated the expression of ABCB1 and its transcription factor Sp3 by directly targeting their 3'-UTR. Moreover, overexpressing ABCB1 or Sp3 reversed the sensitivity to chemotherapeutics in Hep3B cells induced by miR-491-3p, confirming miR-491-3p/Sp3/ABCB1 regulatory loop plays an important role in enhancing the drugs sensitivity of HCC. Meanwhile, the discovery of that the expression level of miR-491-3p was inversely correlated with that of ABCB1 and Sp3 in HCC cell lines and clinical samples pointed out the possibility of miR-491-3p in clinical use. In summary, our results reveal a pivotal role of miR-491-3p in the regulation of MDR in HCC, and suggest the potential application of miR-491-3p as a therapeutic strategy for modulating MDR in cancer cells.
Collapse
Affiliation(s)
- Yang Zhao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinming Qi
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxin Wei
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Cunzhi Yu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Yan
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengfan Pu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Li
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Miao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunzhu Li
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Qin X, Sun L, Wang J. Restoration of microRNA-708 sensitizes ovarian cancer cells to cisplatin via IGF2BP1/Akt pathway. Cell Biol Int 2017; 41:1110-1118. [PMID: 28685895 DOI: 10.1002/cbin.10819] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/05/2017] [Indexed: 01/02/2023]
Abstract
A previous study has shown that microRNA-708 (miR-708) functions as a metastasis suppressor in ovarian cancer. In this study, we aimed to explore its implication in regulating cisplatin sensitivity in ovarian cancer cells. To this end, ovarian cancer cells were transfected with miR-708-expressing plasmids or vector before treatment with different concentrations of cisplatin for 48 h. The 50% inhibitory concentration (IC50 ) value was calculated. Apoptosis was analyzed by measuring caspase-3 activity. The target gene mediating the function of miR-708 was identified. Ectopic expression of miR-708 sensitized SKOV3 and A2780 cells to cisplatin, decreasing the IC50 value by two- to threefold. miR-708 overexpression significantly augmented cisplatin-induced apoptosis in ovarian cancer cells, which was coupled with increased caspase-3 activity by two- to fourfold. Similarly, overexpression of miR-708 increased the sensitivity of cisplatin-resistant SKOV3/DDP and A2780/DDP cells to cisplatin-induced toxicity, reducing the IC50 by three- and fivefold, respectively. Delivery of miR-708 enhanced cisplatin-induced elevation in caspase-3 activity in both cisplatin-resistant and parental ovarian cancer cells. Mechanistically, miR-708 downregulated the expression of insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) and suppressed Akt phosphorylation. Silencing of IGF2BP1 markedly blocked the phosphorylation of Akt. Overexpression of IGF2BP1 restored cisplatin resistance and Akt phosphorylation in miR-708-overexpressing ovarian cancer cells. Collectively, miR-708 increases the susceptibility of ovarian cancer cells to cisplatin by targeting IGF2BP1 and inhibiting Akt signaling. Delivery of miR-708 may represent a promising strategy for improving cisplatin chemotherapy.
Collapse
Affiliation(s)
- Xuying Qin
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, People's Republic of China
| | - Linlin Sun
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, People's Republic of China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Dezhou People's Hospital, Dezhou, People's Republic of China
| |
Collapse
|
28
|
Li W, Wang M, Meng B, Yu J, Chen Q, Li H, Liu Y. MicroRNA-153 regulated AKT1 expression and suppressed cell proliferation of epithelial ovarian cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:7417-7426. [PMID: 31966584 PMCID: PMC6965221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 03/17/2017] [Indexed: 06/10/2023]
Abstract
Epithelial ovarian cancer (EOC) is the most fatal malignancies in females worldwide, with increasing incidence recently in China. MiR-153 was reported to be dysregulated in some human cancers, including EOC. In this study, we explored the roles of miR-153 and its target AKT1 in regulating growth and migration in EOC. Cell proliferation was measured with a CCK-8 assay. Real-time quantitative RT-PCR was performed to investigate expression levels of miR-153. Cell cycle features were analyzed by Flow cytometry system. The direct target gene was confirmed by dual-luciferase reporter assay. We found the expression levels of miR-153 were generally lower in the EOC tissues than in the matched normal tissues. The miR-153 mimics caused significant G0/G1 arrest in A2780 cells. Overexpression of miR-153 suppressed cell proliferation and migration in ovarian cancer. Results of dual-luciferase reporter assay suggested that AKT1 was a direct target of miR-153 in ovarian cancer cells. Overexpression of AKT1 reverses the inhibition effect of miR-153 on cell proliferation. Introduction of miR-153 into EOC cell lines leaded to inhibition of cell proliferation and migration by directly targeting AKT1. MiR-153 may have prognostic or therapeutic value for the future management of ovarian cancer patients.
Collapse
Affiliation(s)
- Weizhen Li
- Department of Clinical Laboratory, The Taixing People’s HospitalTaixing, Jiangsu, China
| | - Mengjie Wang
- Bengbu Medical SchoolBengbu, Anhui, China
- Department of Radiotherapy, The Taixing People’s HospitalTaixing, Jiangsu, China
| | - Bi Meng
- Bengbu Medical SchoolBengbu, Anhui, China
- Department of Radiotherapy, The Taixing People’s HospitalTaixing, Jiangsu, China
| | - Jingwen Yu
- Bengbu Medical SchoolBengbu, Anhui, China
- Department of Obstetrics and Gynecology, The Taixing People’s HospitalTaixing, Jiangsu, China
| | - Qiaoyun Chen
- Department of Central Laboratory, The Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Hao Li
- Department of Clinical Laboratory, The Taixing People’s HospitalTaixing, Jiangsu, China
| | - Yangchen Liu
- Department of Radiotherapy, The Taixing People’s HospitalTaixing, Jiangsu, China
| |
Collapse
|
29
|
Genovese I, Ilari A, Assaraf YG, Fazi F, Colotti G. Not only P-glycoprotein: Amplification of the ABCB1- containing chromosome region 7q21 confers multidrug resistance upon cancer cells by coordinated overexpression of an assortment of resistance-related proteins. Drug Resist Updat 2017; 32:23-46. [DOI: 10.1016/j.drup.2017.10.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/01/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023]
|
30
|
Huang SX, Zhao ZY, Weng GH, He XY, Wu CJ, Fu CY, Sui ZY, Ma YS, Liu T. Upregulation of miR-181a suppresses the formation of glioblastoma stem cells by targeting the Notch2 oncogene and correlates with good prognosis in patients with glioblastoma multiforme. Biochem Biophys Res Commun 2017; 486:1129-1136. [DOI: 10.1016/j.bbrc.2017.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/02/2017] [Indexed: 11/17/2022]
|