1
|
Dupuy J, Cogo E, Fouché E, Guéraud F, Pierre F, Plaisancié P. Epithelial-mesenchymal interaction protects normal colonocytes from 4-HNE-induced phenotypic transformation. PLoS One 2024; 19:e0302932. [PMID: 38669265 PMCID: PMC11051638 DOI: 10.1371/journal.pone.0302932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Recent studies have shown that epithelial-stromal interactions could play a role in the development of colorectal cancer. Here, we investigated the role of fibroblasts in the transformation of normal colonocytes induced by 4-HNE. METHODS Normal Co colonocytes and nF fibroblasts from the same mouse colon were exposed, in monoculture (m) or coculture (c), to 4-HNE (5 μM) twice weekly for 3 weeks. Gene expression was then analysed and the ability of Co colonocytes to grow in anchorage-independent conditions was tested in soft agar. Fibroblasts previously treated or not with 4-HNE were also seeded in culture inserts positioned above the agar layers to allow paracrine exchanges with colonocytes. RESULTS First, 60% of the genes studied were modulated by coculture in Co colonocytes, with notably increased expression of BMP receptors. Furthermore, while 4-HNE increased the ability of monoculture-treated Co colonocytes to form colonies, this effect was not observed in coculture-treated Co colonocytes. Adding a selective BMPR1 inhibitor during the treatment phase abolished the protective effect of coculture. Conversely, addition of a BMP4 agonist to the medium of monoculture-treated Co colonocytes prevented phenotypic transformation by 4-HNE. Second, the presence of nF(m)-HNE fibroblasts during the soft agar assay increased the number and size of Co(m) colonocyte colonies, regardless of whether these cells had been previously treated with 4-HNE in monoculture. For soft agar assays performed with nF(c) and Co(c) cells initially treated in coculture, only the reassociation between Co(c)-HNE and nF(c)-HNE resulted in a small increase in the number of colonies. CONCLUSIONS During the exposure phase, the epithelial-mesenchymal interaction protected colonocytes from 4-HNE-induced phenotypic transformation via activation of the BMP pathway. This intercellular dialogue also limited the ability of fibroblasts to subsequently promote colonocyte-anchorage-independent growth. In contrast, fibroblasts pre-exposed to 4-HNE in monoculture strongly increased the ability of Co(m) colonocytes to form colonies.
Collapse
Affiliation(s)
- Jacques Dupuy
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Emma Cogo
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Edwin Fouché
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Françoise Guéraud
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Fabrice Pierre
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Pascale Plaisancié
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
2
|
Yue S, Feng X, Cai Y, Ibrahim SA, Liu Y, Huang W. Regulation of Tumor Apoptosis of Poriae cutis-Derived Lanostane Triterpenes by AKT/PI3K and MAPK Signaling Pathways In Vitro. Nutrients 2023; 15:4360. [PMID: 37892435 PMCID: PMC10610537 DOI: 10.3390/nu15204360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Poria cocos is traditionally used as both food and medicine. Triterpenoids in Poria cocos have a wide range of pharmacological activities, such as diuretic, sedative and tonic properties. In this study, the anti-tumor activities of poricoic acid A (PAA) and poricoic acid B (PAB), purified by high-speed counter-current chromatography, as well as their mechanisms and signaling pathways, were investigated using a HepG2 cell model. After treatment with PAA and PAB on HepG2 cells, the apoptosis was obviously increased (p < 0.05), and the cell cycle arrested in the G2/M phase. Studies showed that PAA and PAB can also inhibit the occurrence and development of tumor cells by stimulating the generation of ROS in tumor cells and inhibiting tumor migration and invasion. Combined Polymerase Chain Reaction and computer simulation of molecular docking were employed to explore the mechanism of tumor proliferation inhibition by PAA and PAB. By interfering with phosphatidylinositol-3-kinase/protein kinase B, Mitogen-activated protein kinases and p53 signaling pathways; and further affecting the expression of downstream caspases; matrix metalloproteinase family, cyclin-dependent kinase -cyclin, Intercellular adhesion molecules-1, Vascular Cell Adhesion Molecule-1 and Cyclooxygenase -2, may be responsible for their anti-tumor activity. Overall, the results suggested that PAA and PAB induced apoptosis, halted the cell cycle, and inhibited tumor migration and invasion through multi-pathway interactions, which may serve as a potential therapeutic agent against cancer.
Collapse
Affiliation(s)
- Shuai Yue
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xi Feng
- Department of Nutrition, Food Science and Packaging, San Jose State University, San Jose, CA 95192, USA;
| | - Yousheng Cai
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China;
| | - Salam A. Ibrahim
- Department of Family and Consumer Sciences, North Carolina A&T State University, 171 Carver Hall, Greensboro, NC 27411, USA;
| | - Ying Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Wen Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
3
|
Pereira VS, Alves BDCA, Waisberg J, Fonseca F, Gehrke F. Detection of COX-2 in liquid biopsy of patients with prostate cancer. J Clin Pathol 2023; 76:189-193. [PMID: 34782424 DOI: 10.1136/jclinpath-2021-207755] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/14/2021] [Indexed: 01/10/2023]
Abstract
AIMS To determine the profile of COX-2 gene expression in patients with prostate cancer attended at the ABC University Health Center outpatient clinic and correlate the results with patients' anatomopathological examinations. Prostate cancer is the sixth most common type of cancer worldwide and the second in Brazil. COX-2 expression is associated with an unfavourable prognosis. METHODS 15.0 mL of peripheral blood were collected from 24 patients and 25 healthy men. RNA extraction was performed using the QIAamp RNA Blood Mini Kit. Complementary DNA synthesis was performed using SuperScript II RNAse Reverse Transcriptase. Quantitative real-time PCR was performed with specific COX-2 oligonucleotides and the endogenous GAPDH gene. RESULTS The mean age of the patients was 69 years old. The Gleason scoring system showed 37.5% of patients with Gleason 6 (slow growth, low risk), 45.8% with Gleason 7 (intermediate risk) and 16.7% with Gleason 8 or 9 (risk of high-grade cancer). The median COX-2 expression in the study group was 0.97, while in the control group it was 0.11 (p<0.045). CONCLUSIONS Patients with prostate cancer showed higher COX-2 expression at diagnosis compared with the control group. Since COX-2 detection associated with prostate-specific antigen dosage shows promise as a biomarker for diagnosis and prognosis in patients with prostate cancer, further research is required to confirm these findings.
Collapse
Affiliation(s)
| | | | - Jaques Waisberg
- Programa de Pós-Graduação em Ciência Cirúrgica Interdisciplinar, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil.,Cirurgia, Centro Universitário FMABC, Santo André, Brazil
| | - Fernando Fonseca
- Laboratório de Análises Clínicas, Centro Universitário FMABC, Santo André, Brazil.,Ciências Farmacêuticas, Universidade Federal de São Paulo/UNIFESP, Diadema, Brazil
| | - Flavia Gehrke
- Programa de Pós Graduação em Ciências da Saúde, Iamspe, São Paulo, Brazil .,Patologia, Centro Universitário FMABC, Santo André, Brazil
| |
Collapse
|
4
|
Anti-Periodontitis Effects of Dendropanax morbiferus H.Lév Leaf Extract on Ligature-Induced Periodontitis in Rats. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020849. [PMID: 36677905 PMCID: PMC9862488 DOI: 10.3390/molecules28020849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Periodontitis is caused by pathogens in the oral cavity. It is a chronic infectious disease that causes symptoms including gingival bleeding and tooth loss resulting from the destruction of periodontal tissues coupled with inflammation. Dendropanax morbiferus H.Lév (DM) is a natural product that exhibits various biological activities with few side effects. In this study, the potential of DM leaf hot-water extracts (DMWE) as a treatment for periodontitis was determined and its anti-oxidant and anti-inflammatory effects were evaluated. Compounds in DMWE were identified by high-performance liquid chromatography (HPLC) and nitric oxide (NO) and prostaglandin E2 (PGE2) production was measured in RAW 264.7 cells. We measured the gingival index and gingival sulcus depth, and micro-CT was performed in vivo using a ligature-induced periodontitis rat model, which is similar to human periodontitis. The DMWE-treated group exhibited a decrease in cytokine concentration and relieved the gingival index and gingival sulcus depth compared with the periodontitis-induced control group. In addition, micro-CT and histological analysis revealed that DMWE exhibited anti-inflammatory effects and improved alveolar bone loss in periodontitis-induced rats. These findings suggest that DMWE has excellent anti-oxidant and anti-inflammatory effects that protect and prevent periodontal tissue damage and tooth loss caused by the inflammatory response.
Collapse
|
5
|
Jatyan R, Singh P, Sahel DK, Karthik YG, Mittal A, Chitkara D. Polymeric and small molecule-conjugates of temozolomide as improved therapeutic agents for glioblastoma multiforme. J Control Release 2022; 350:494-513. [PMID: 35985493 DOI: 10.1016/j.jconrel.2022.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/31/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022]
Abstract
Temozolomide (TMZ), an imidazotetrazine, is a second-generation DNA alkylating agent used as a first-line treatment of glioblastoma multiforme (GBM). It was approved by FDA in 2005 and declared a blockbuster drug in 2008. Although TMZ has shown 100% oral bioavailability and crosses the blood-brain barrier effectively, however it suffers from limitations such as a short half-life (∼1.8 h), rapid metabolism, and lesser accumulation in the brain (∼10-20%). Additionally, development of chemoresistance has been associated with its use. Since it is a potential chemotherapeutic agent with an unmet medical need, advanced delivery strategies have been explored to overcome the associated limitations of TMZ. Nanocarriers including liposomes, solid lipid nanoparticles (SLNs), nanostructure lipid carriers (NLCs), and polymeric nanoparticles have demonstrated their ability to improve its circulation time, stability, tissue-specific accumulation, sustained release, and cellular uptake. Because of the appreciable water solubility of TMZ (∼5 mg/mL), the physical loading of TMZ in these nanocarriers is always challenging. Alternatively, the conjugation approach, wherein TMZ has been conjugated to polymers or small molecules, has been explored with improved outcomes in vitro and in vivo. This review emphasized the practical evidence of the conjugation strategy to improve the therapeutic potential of TMZ in the treatment of glioblastoma multiforme.
Collapse
Affiliation(s)
- Reena Jatyan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Prabhjeet Singh
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Deepak Kumar Sahel
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Y G Karthik
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India.
| |
Collapse
|
6
|
Didem Kara I, Cakir A, Ozaslan M, Halil Kili I, Tepe B, Akdogan E, Kazaz C. Anticancer Agents from Xanthium strumarium Fruits Against C6 Glioma Cells. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.437.454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Salemizadeh Parizi M, Salemizadeh Parizi F, Abdolhosseini S, Vanaei S, Manzouri A, Ebrahimzadeh F. Myeloid-derived suppressor cells (MDSCs) in brain cancer: challenges and therapeutic strategies. Inflammopharmacology 2021; 29:1613-1624. [PMID: 34613567 DOI: 10.1007/s10787-021-00878-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022]
Abstract
The most fatal malignancy of the central nervous system (CNS) is glioblastoma. Brain cancer is a 'cold' tumor because of fewer immunoregulatory cells and more immunosuppressive cells. Due to the cold nature of brain cancers, conventional treatments which are used to manage glioma patients show little effectiveness. Glioma patients even showed resistance to immune checkpoint blockade (ICB) and no significant efficacy. It has been shown that myeloid-derived suppressor cells (MDSCs) account for approximately 30-50% of the tumor mass in glioma. This study aimed to review MDSC function in brain cancer, as well as possible treatments and related challenges. In brain cancer and glioma, several differences in the context of MDSCs have been reported, including disagreements about the MDSC subtype that has the most inhibitory function in the brain, or inhibitory function of regulatory B cells (Bregs). There are also serious challenges in treating glioma patients. In addition to the cold nature of glioma, there are reports of an increase in MDSCs following conventional chemotherapy treatments. As a result, targeting MDSCs in combination with other therapies, such as ICB, is essential, and recent studies with the combination therapy approach have shown promising therapeutic effects in brain cancer.
Collapse
Affiliation(s)
| | | | | | - Shohreh Vanaei
- Department of Biomedical Engineering, Northeastern University, Boston, MA, USA
| | - Ali Manzouri
- School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Yin D, Jin G, He H, Zhou W, Fan Z, Gong C, Zhao J, Xiong H. Celecoxib reverses the glioblastoma chemo-resistance to temozolomide through mitochondrial metabolism. Aging (Albany NY) 2021; 13:21268-21282. [PMID: 34497154 PMCID: PMC8457578 DOI: 10.18632/aging.203443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/01/2021] [Indexed: 01/04/2023]
Abstract
Temozolomide (TMZ) is used for the treatment of high-grade gliomas. Acquired chemoresistance is a serious limitation to the therapy with more than 90% of recurrent gliomas showing little response to a second line of chemotherapy. Therefore, it is necessary to explore an alternative strategy to enhance the sensitivity of glioblastoma (GBM) to TMZ in neuro-oncology. Celecoxib is well known and widely used in anti-inflammatory and analgesic. Cyclooxygenase-2 (COX-2) expression has been linked to the prognosis, angiogenesis, and radiation sensitivity of many malignancies such as primitive neuroectodermal tumor and advanced melanoma. The objective of this study was to explore the chemotherapy-sensitizing effect of celecoxib on TMZ in GBM cells and its potential mechanisms. From the study, we found that the combination therapy (TMZ 250uM+celecoxib 30uM) showed excellent inhibitory effect to the GBM, the LN229 and LN18, which were the TMZ resistant GBM cell lines. Our data suggest that the combination therapy may inhibits cell proliferation, increases apoptosis, and increases the autophagy on LN229 and LN18. The potential molecular mechanisms were related to mitochondrial metabolism and respiratory chain inhibition.
Collapse
Affiliation(s)
- Delong Yin
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Guoqing Jin
- Department of Intensive Care Unit, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Hong He
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Wei Zhou
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Zhenbo Fan
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Chen Gong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
9
|
Sluter MN, Hou R, Li L, Yasmen N, Yu Y, Liu J, Jiang J. EP2 Antagonists (2011-2021): A Decade's Journey from Discovery to Therapeutics. J Med Chem 2021; 64:11816-11836. [PMID: 34352171 PMCID: PMC8455147 DOI: 10.1021/acs.jmedchem.1c00816] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the wake of health disasters associated with the chronic use of cyclooxygenase-2 (COX-2) inhibitor drugs, it has been widely proposed that modulation of downstream prostanoid synthases or receptors might provide more specificity than simply shutting down the entire COX cascade for anti-inflammatory benefits. The pathogenic actions of COX-2 have long been thought attributable to the prostaglandin E2 (PGE2) signaling through its Gαs-coupled EP2 receptor subtype; however, the truly selective EP2 antagonists did not emerge until 2011. These small molecules provide game-changing tools to better understand the EP2 receptor in inflammation-associated conditions. Their applications in preclinical models also reshape our knowledge of PGE2/EP2 signaling as a node of inflammation in health and disease. As we celebrate the 10-year anniversary of this breakthrough, the exploration of their potential as drug candidates for next-generation anti-inflammatory therapies has just begun. The first decade of EP2 antagonists passes, while their future looks brighter than ever.
Collapse
Affiliation(s)
- Madison N Sluter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ruida Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Lexiao Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jiawang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Medicinal Chemistry Core, Office of Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
10
|
Khafaga AF, Shamma RN, Abdeen A, Barakat AM, Noreldin AE, Elzoghby AO, Sallam MA. Celecoxib repurposing in cancer therapy: molecular mechanisms and nanomedicine-based delivery technologies. Nanomedicine (Lond) 2021; 16:1691-1712. [PMID: 34264123 DOI: 10.2217/nnm-2021-0086] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
While cancer remains a significant global health problem, advances in cancer biology, deep understanding of its underlaying mechanism and identification of specific molecular targets allowed the development of new therapeutic options. Drug repurposing poses several advantages as reduced cost and better safety compared with new compounds development. COX-2 inhibitors are one of the most promising drug classes for repurposing in cancer therapy. In this review, we provide an overview of the detailed mechanism and rationale of COX-2 inhibitors as anticancer agents and we highlight the most promising research efforts on nanotechnological approaches to enhance COX-2 inhibitors delivery with special focus on celecoxib as the most widely studied agent for chemoprevention or combined with chemotherapeutic and herbal drugs for combating various cancers.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Rehab N Shamma
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | | | - Ahmed E Noreldin
- Department of Histology & Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22516, Egypt
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Marwa A Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
11
|
Wach J, Apallas S, Schneider M, Güresir A, Schuss P, Herrlinger U, Vatter H, Güresir E. Baseline Serum C-Reactive Protein and Plasma Fibrinogen-Based Score in the Prediction of Survival in Glioblastoma. Front Oncol 2021; 11:653614. [PMID: 33747971 PMCID: PMC7970301 DOI: 10.3389/fonc.2021.653614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
Objective: The present study investigates a score based on baseline C-reactive protein (CRP) and fibrinogen values (FC score) in 173 consecutive glioblastoma (GBM) patients. Methods: The optimal cut-off value for fibrinogen and CRP was defined as 3.5 g/dl and 3.0 mg/L, respectively, according to previous reports. Patients with elevated CRP and fibrinogen were classified with a score of 2, those with an elevation of only one of these parameters were allocated a score of 1, and those without any abnormalities were assigned a score of 0. Results: No significant differences in age, gender, tumor area, molecular pathology, physical status, or extent of resection were identified among the three groups defined by this score. Univariate survival analysis demonstrated that a high baseline FC score (≥1) is significantly associated with a shortened overall survival (OS) (HR: 1.52, 95% CI: 1.05–2.20, p = 0.027). A multivariate Cox regression analysis considering age (>65/≤65), extent of resection (GTR/STR), MGMT promoter status (hypermethylated/non-hypermethylated), and FC score (0/≥1) confirmed that an elevated FC score (≥1) is an independent predictor of shortened OS (HR: 1.71, 95% CI: 1.16–2.51, p = 0.006). Conclusions: The baseline fibrinogen and CRP score thus serves as an independent predictor of OS in GBM. Further investigations of the role of inflammation in the prediction of a prognosis are needed.
Collapse
Affiliation(s)
- Johannes Wach
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Stefanos Apallas
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | | | - Agi Güresir
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Patrick Schuss
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Ulrich Herrlinger
- Division of Clinical Neuro-Oncology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
12
|
Privorotskiy A, Bhavsar SP, Lang FF, Hu J, Cata JP. Impact of anesthesia and analgesia techniques on glioblastoma progression. A narrative review. Neurooncol Adv 2020; 2:vdaa123. [PMID: 33205044 PMCID: PMC7653686 DOI: 10.1093/noajnl/vdaa123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive malignant CNS tumor with a median survival of 15 months after diagnosis. Standard therapy for GBM includes surgical resection, radiation, and temozolomide. Recently, anesthetics and analgesics have received attention for their potential involvement in mediating tumor growth. This narrative review investigated whether various members of the 2 aforementioned classes of drugs have a definitive impact on GBM progression by summarizing pertinent in vitro, in vivo, and clinical studies. Recent publications regarding general anesthetics have been inconsistent, showing that they can be pro-tumoral or antitumoral depending on the experimental context. The local anesthetic lidocaine has shown consistent antitumoral effects in vitro. Clinical studies looking at anesthetics have not concluded that their use improves patient outcomes. In vitro and in vivo studies looking at opioid involvement in GBM have demonstrated inconsistent findings regarding whether these drugs are pro-tumoral or antitumoral. Nonsteroidal anti-inflammatory drugs, and specifically COX-2 inhibitors, have shown inconsistent findings across multiple studies looking at whether they are beneficial in halting GBM progression. Until multiple repeatable studies show that anesthetics and analgesics can suppress GBM growth, there is no strong evidence to recommend changes in the anesthetic care of these patients.
Collapse
Affiliation(s)
| | - Shreyas P Bhavsar
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Juan P Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
13
|
Shono K, Yamaguchi I, Mizobuchi Y, Kagusa H, Sumi A, Fujihara T, Nakajima K, Kitazato KT, Matsuzaki K, Saya H, Takagi Y. Downregulation of the CCL2/CCR2 and CXCL10/CXCR3 axes contributes to antitumor effects in a mouse model of malignant glioma. Sci Rep 2020; 10:15286. [PMID: 32943658 PMCID: PMC7499211 DOI: 10.1038/s41598-020-71857-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 08/17/2020] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma multiforme involves glioma stem cells (GSCs) that are resistant to various therapeutic approaches. Here, we studied the importance of paracrine signaling in the glioma microenvironment by focusing on the celecoxib-mediated role of chemokines C–C motif ligand 2 (CCL2), C-X-C ligand 10 (CXCL10), and their receptors, CCR2 and CXCR3, in GSCs and a GSC-bearing malignant glioma model. C57BL/6 mice were injected with orthotopic GSCs intracranially and divided into groups administered either 10 or 30 mg/kg celecoxib, or saline to examine the antitumor effects associated with chemokine expression. In GSCs, we analyzed cell viability and expression of chemokines and their receptors in the presence/absence of celecoxib. In the malignant glioma model, celecoxib exhibited antitumor effects in a dose dependent manner and decreased protein and mRNA levels of Ccl2 and CxcL10 and Cxcr3 but not of Ccr2. CCL2 and CXCL10 co-localized with Nestin+ stem cells, CD16+ or CD163+ macrophages and Iba-1+ microglia. In GSCs, celecoxib inhibited Ccl2 and Cxcr3 expression in a nuclear factor-kappa B-dependent manner but not Ccr2 and CxcL10. Moreover, Ccl2 silencing resulted in decreased GSC viability. These results suggest that celecoxib-mediated regulation of the CCL2/CCR2 and CXCL10/ CXCR3 axes may partially contribute to glioma-specific antitumor effects.
Collapse
Affiliation(s)
- Kenji Shono
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Izumi Yamaguchi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yoshifumi Mizobuchi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Hiroshi Kagusa
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Akiko Sumi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Toshitaka Fujihara
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Kohei Nakajima
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Keiko T Kitazato
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Kazuhito Matsuzaki
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yasushi Takagi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
14
|
Feng D, Liu M, Liu Y, Zhao X, Sun H, Zheng X, Zhu J, Shang F. Micheliolide suppresses the viability, migration and invasion of U251MG cells via the NF-κB signaling pathway. Oncol Lett 2020; 20:67. [PMID: 32863900 PMCID: PMC7436293 DOI: 10.3892/ol.2020.11928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/16/2020] [Indexed: 11/06/2022] Open
Abstract
Micheliolide (MCL), a sesquiterpene lactone isolated from Michelia compressa and Michelia champaca, has been used previously to inhibit the NF-κB signaling pathway. MCL has exerted various therapeutic effects in numerous types of disease, such as inflammatory and cancer. However, to the best of our knowledge, its underlying anticancer mechanism remains to be understood. The present study aimed to investigate the effects of MCL on human glioma U251MG cells and to determine the potential anticancer mechanism of action of MCL. From Cell Counting Kit-8, colony formation assay, apoptosis assay and Confocal immunofluorescence imaging analysis, the results revealed that MCL significantly inhibited cell viability in vitro and induced cell apoptosis via activation of the cytochrome c/caspase-dependent apoptotic pathway. In addition, MCL also suppressed cell invasion and metastasis via the wound healing and Transwell invasion assays. Furthermore, western blot and reverse transcription PCR analyses demonstrated that MCL significantly downregulated cyclooxygenase-2 (COX-2) expression levels, which may have partially occurred through the inactivation of the NF-κB signaling pathway. In conclusion, the results of the present study indicated that MCL may inhibit glioma carcinoma growth by downregulating the NF-κB/COX-2 signaling pathway, which suggested that MCL may be a novel and alternative antitumor agent for the treatment of human glioma carcinoma.
Collapse
Affiliation(s)
- Dingkun Feng
- Department of Neurosurgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Min Liu
- Department of Neurology, Xinhua Hospital affiliated to Dalian University, Dalian, Liaoning 116021, P.R. China
| | - Yanting Liu
- Department of Neurosurgery, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China.,Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China
| | - Xiaojin Zhao
- Department of Gastroenterology, The Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Huan Sun
- Department of Neurosurgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Xu Zheng
- Department of Neurosurgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Jiabin Zhu
- Department of Neurosurgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China
| | - Fajun Shang
- Department of Neurosurgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
15
|
Palumbo P, Lombardi F, Augello FR, Giusti I, Dolo V, Leocata P, Cifone MG, Cinque B. Biological effects of selective COX-2 inhibitor NS398 on human glioblastoma cell lines. Cancer Cell Int 2020; 20:167. [PMID: 32435158 PMCID: PMC7222447 DOI: 10.1186/s12935-020-01250-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background Cyclooxygenase-2 (COX-2), an inflammation-associated enzyme, has been implicated in tumorigenesis and progression of glioblastoma (GBM). The poor survival of GBM was mainly associated with the presence of glioma stem cells (GSC) and the markedly inflammatory microenvironment. To further explore the involvement of COX-2 in glioma biology, the effects of NS398, a selective COX-2 inhibitor, were evaluated on GSC derived from COX-2 expressing GBM cell lines, i.e., U87MG and T98G, in terms of neurospheres' growth, autophagy, and extracellular vesicle (EV) release. Methods Neurospheres' growth and morphology were evaluated by optical and scanning electron microscopy. Autophagy was measured by staining acidic vesicular organelles. Extracellular vesicles (EV), released from neurospheres, were analyzed by transmission electron microscopy. The autophagic proteins Beclin-1 and LC3B, as well as the EV markers CD63 and CD81, were analyzed by western blotting. The scratch assay test was used to evaluate the NS398 influence on GBM cell migration. Results Both cell lines were strongly influenced by NS398 exposure, as showed by morphological changes, reduced growth rate, and appearance of autophagy. Furthermore, the inhibitor led to a functional change of EV released by neurospheres. Indeed, EV secreted by NS398-treated GSC, but not those from control cells, were able to significantly inhibit adherent U87MG and T98G cell migration and induced autophagy in recipient cells, thus leading to effects quite similar to those directly caused by NS398 in the same cells. Conclusion Despite the intrinsic diversity and individual genetic features of U87MG and T98G, comparable effects were exerted by the COX-2 inhibitor NS398 on both GBM cell lines. Overall, our findings support the crucial role of the inflammatory-associated COX-2/PGE2 system in glioma and glioma stem cell biology.
Collapse
Affiliation(s)
- Paola Palumbo
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | | | - Ilaria Giusti
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Vincenza Dolo
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Pietro Leocata
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Maria Grazia Cifone
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
16
|
Over-expression of cyclo-oxygenase-2 predicts poor survival of patients with nasopharyngeal carcinoma: a meta-analysis. The Journal of Laryngology & Otology 2020; 134:338-343. [PMID: 32172705 DOI: 10.1017/s0022215120000614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The conclusive prognostic significance of cyclo-oxygenase-2 has been determined in various cancers but not in nasopharyngeal carcinoma. Therefore, this study aimed to evaluate the relationship of cyclo-oxygenase-2 expression with the survival outcome and treatment response of nasopharyngeal carcinoma patients via a systematic meta-analysis approach. METHODS A meta-analysis was conducted in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses ('PRISMA') checklist. The primary clinical characteristics of patients, and hazard ratios with 95 per cent confidence intervals of overall survival data, were tabulated from eligible studies. The relationship of cyclo-oxygenase-2 expression with survival outcome (expressed as hazard ratio) and treatment response (expressed as odds ratio) in nasopharyngeal carcinoma patients was analysed, and explained with the aid of forest plot charts. RESULTS AND CONCLUSION The pooled hazard ratio for overall survival was 2.02 (95 per cent confidence interval = 1.65-2.47). This indicates that the over-expression of cyclo-oxygenase-2 is significantly associated with the poor survival of nasopharyngeal carcinoma patients. The pooled odds ratio of 0.98 (95 per cent confidence interval = 0.27-3.49) reveals that over-expression of cyclo-oxygenase-2 was not significantly related to the treatment outcome.
Collapse
|
17
|
Qiu J, Li Q, Bell KA, Yao X, Du Y, Zhang E, Yu JJ, Yu Y, Shi Z, Jiang J. Small-molecule inhibition of prostaglandin E receptor 2 impairs cyclooxygenase-associated malignant glioma growth. Br J Pharmacol 2019; 176:1680-1699. [PMID: 30761522 DOI: 10.1111/bph.14622] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/18/2018] [Accepted: 01/27/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE An up-regulation of COX-2 in malignant gliomas causes excessive synthesis of PGE2 , which is thought to facilitate brain tumour growth and invasion. However, which downstream PGE2 receptor subtype (i.e., EP1 -EP4 ) directly contributes to COX activity-promoted glioma growth remains largely unknown. EXPERIMENTAL APPROACH Using a publicly available database from The Cancer Genome Atlas research network, we compared the expression of PGE2 signalling-associated genes in human lower grade glioma and glioblastoma multiforme (GBM) samples. The Kaplan-Meier analysis was performed to determine the relationship between their expression and survival probability. A time-resolved FRET method was used to identify the EP subtype that mediates COX-2/PGE2 -initiated cAMP signalling in human GBM cells. Taking advantage of a recently identified novel selective bioavailable brain-permeable small-molecule antagonist, we studied the effect of pharmacological inhibition of the EP2 receptor on glioma cell growth in vitro and in vivo. KEY RESULTS The EP2 receptor is a key Gαs -coupled receptor that mediates COX-2/PGE2 -initiated cAMP signalling pathways in human malignant glioma cells. Inhibition of EP2 receptors reduced COX-2 activity-driven GBM cell proliferation, invasion, and migration and caused cell cycle arrest at G0-G1 and apoptosis of GBM cells. Glioma cell growth in vivo was also substantially decreased by post-treatment with an EP2 antagonist in both subcutaneous and intracranial tumour models. CONCLUSION AND IMPLICATIONS Taken together, our results suggest that PGE2 signalling via the EP2 receptor increases the malignant potential of human glioma cells and might represent a novel therapeutic target for GBM.
Collapse
Affiliation(s)
- Jiange Qiu
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China.,Cell Signal Transduction and Proteomics Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Qianqian Li
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Katherine A Bell
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | - Xue Yao
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Yifeng Du
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Erik Zhang
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jane J Yu
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Zhi Shi
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Jianxiong Jiang
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
18
|
Guenzle J, Garrelfs NWC, Goeldner JM, Weyerbrock A. Cyclooxygenase (COX) Inhibition by Acetyl Salicylic Acid (ASA) Enhances Antitumor Effects of Nitric Oxide in Glioblastoma In Vitro. Mol Neurobiol 2019; 56:6046-6055. [DOI: 10.1007/s12035-019-1513-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
|
19
|
Ke J, Wu R, Chen Y, Abba ML. Inhibitor of DNA binding proteins: implications in human cancer progression and metastasis. Am J Transl Res 2018; 10:3887-3910. [PMID: 30662638 PMCID: PMC6325517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Inhibitor of DNA binding (ID) proteins are a class of helix-loop-helix (HLH) transcription regulatory factors that act as dominant-negative antagonists of other basic HLH proteins through the formation of non-functional heterodimers. These proteins have been shown to play critical roles in a wide range of tumor-associated processes, including cell differentiation, cell cycle progression, migration and invasion, epithelial-mesenchymal transition, angiogenesis, stemness, chemoresistance, tumorigenesis, and metastasis. The aberrant expression of ID proteins has not only been detected in many types of human cancers, but is also associated with advanced tumor stages and poor clinical outcome. In this review, we provide an overview of the key biological functions of ID proteins including affiliated signaling pathways. We also describe the regulation of ID proteins in cancer progression and metastasis, and elaborate on expression profiles in cancer and the implications for prognosis. Lastly, we outline strategies for the therapeutic targeting of ID proteins as a promising and effective approach for anticancer therapy.
Collapse
Affiliation(s)
- Jing Ke
- Department of Liver Disease, The Fourth Affiliated Hospital of Anhui Medical UniversityHefei 230022, China
- Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, University of HeidelbergMannheim 68167, Germany
| | - Ruolin Wu
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, First Affiliated Hospital of Anhui Medical University218 Jixi Avenue, Hefei 230022, Anhui, China
- Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, University of HeidelbergMannheim 68167, Germany
| | - Yong Chen
- Department of Medical Oncology, Subei People’s HospitalYangzhou, Jiangsu 225000, China
| | - Mohammed L Abba
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of HeidelbergMannheim, Germany
| |
Collapse
|
20
|
Drug Repurposing of Metabolic Agents in Malignant Glioma. Int J Mol Sci 2018; 19:ijms19092768. [PMID: 30223473 PMCID: PMC6164672 DOI: 10.3390/ijms19092768] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022] Open
Abstract
Gliomas are highly invasive brain tumors with short patient survival. One major pathogenic factor is aberrant tumor metabolism, which may be targeted with different specific and unspecific agents. Drug repurposing is of increasing interest in glioma research. Drugs interfering with the patient’s metabolism may also influence glioma metabolism. In this review, we outline definitions and methods for drug repurposing. Furthermore, we give insights into important candidates for a metabolic drug repurposing, namely metformin, statins, non-steroidal anti-inflammatory drugs, disulfiram and lonidamine. Advantages and pitfalls of drug repurposing will finally be discussed.
Collapse
|
21
|
Cruickshanks N, Zhang Y, Hine S, Gibert M, Yuan F, Oxford M, Grello C, Pahuski M, Dube C, Guessous F, Wang B, Deveau C, Saoud K, Gallagher I, Wulfkuhle J, Schiff D, Phan S, Petricoin E, Abounader R. Discovery and Therapeutic Exploitation of Mechanisms of Resistance to MET Inhibitors in Glioblastoma. Clin Cancer Res 2018; 25:663-673. [PMID: 30201763 DOI: 10.1158/1078-0432.ccr-18-0926] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/13/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE Glioblastoma (GBM) is the most common and most lethal primary malignant brain tumor. The receptor tyrosine kinase MET is frequently upregulated or overactivated in GBM. Although clinically applicable MET inhibitors have been developed, resistance to single modality anti-MET drugs frequently occurs, rendering these agents ineffective. We aimed to determine the mechanisms of MET inhibitor resistance in GBM and use the acquired information to develop novel therapeutic approaches to overcome resistance.Experimental Design: We investigated two clinically applicable MET inhibitors: crizotinib, an ATP-competitive small molecule inhibitor of MET, and onartuzumab, a monovalent monoclonal antibody that binds to the extracellular domain of the MET receptor. We developed new MET inhibitor-resistant cells lines and animal models and used reverse phase protein arrays (RPPA) and functional assays to uncover the compensatory pathways in MET inhibitor-resistant GBM. RESULTS We identified critical proteins that were altered in MET inhibitor-resistant GBM including mTOR, FGFR1, EGFR, STAT3, and COX-2. Simultaneous inhibition of MET and one of these upregulated proteins led to increased cell death and inhibition of cell proliferation in resistant cells compared with either agent alone. In addition, in vivo treatment of mice bearing MET-resistant orthotopic xenografts with COX-2 or FGFR pharmacological inhibitors in combination with MET inhibitor restored sensitivity to MET inhibition and significantly inhibited tumor growth. CONCLUSIONS These data uncover the molecular basis of adaptive resistance to MET inhibitors and identify new FDA-approved multidrug therapeutic combinations that can overcome resistance.
Collapse
Affiliation(s)
- Nichola Cruickshanks
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Ying Zhang
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Sarah Hine
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Myron Gibert
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Fang Yuan
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Madison Oxford
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Cassandra Grello
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Mary Pahuski
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Collin Dube
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Fadila Guessous
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia.,University Mohammed 6 for Health Sciences, Casablanca, Morocco
| | - Baomin Wang
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Ciana Deveau
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Karim Saoud
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Isela Gallagher
- George Mason University Center for Applied Proteomics and Molecular Medicine, Manassas, Virginia
| | - Julia Wulfkuhle
- George Mason University Center for Applied Proteomics and Molecular Medicine, Manassas, Virginia
| | - David Schiff
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| | - See Phan
- Genentech Inc. South San Francisco, California
| | - Emanuel Petricoin
- George Mason University Center for Applied Proteomics and Molecular Medicine, Manassas, Virginia
| | - Roger Abounader
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia. .,Department of Neurology, University of Virginia, Charlottesville, Virginia.,The Cancer Center, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
22
|
El-Husseiny WM, El-Sayed MAA, Abdel-Aziz NI, El-Azab AS, Asiri YA, Abdel-Aziz AAM. Structural alterations based on naproxen scaffold: Synthesis, evaluation of antitumor activity and COX-2 inhibition, and molecular docking. Eur J Med Chem 2018; 158:134-143. [PMID: 30216848 DOI: 10.1016/j.ejmech.2018.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022]
Abstract
A new series of non-carboxylic naproxen analogues, bearing a variety of ring systems, such as oxadiazoles 3a-c and 6a-c, cycloalkanes 4a-d, cyclic imides 5a-c, and triazoles 7-9 and 10a-c, was synthesized. In addition, in vitro antitumor activity and cyclooxygenase isozymes (COX-1/COX-2) inhibition assay of the target compounds 3-10 was studied. The results of the antitumor activity assays indicated that compounds 4b, 6c, 10b, and 10c exhibited the greatest antitumor activities against the tested cell lines MCF-7, MDA-231, HeLa, and HCT-116, with an IC50 range of 4.83-14.49 μM. By comparison, the reference drugs doxorubicin, afatinib, and celecoxib yielded IC50 values of 3.18-26.79, 6.20-11.40, and 22.79-42.74 μM, respectively. Furthermore, in vitro COX-1/COX-2 inhibition testing showed that the compounds 4b, 6c, 10b, and 10c exhibited effective COX-2 inhibition, with IC50 values of 0.40-1.20 μM, and selectivity index (SI) values of >62.50-20.83, using celecoxib as a reference drug (IC50 = 0.11 μM; COX-2 SI: >227.20). Compounds 6c and 10c, which were potent COX-2 inhibitors, were docked into the COX-2 binding site, where these compounds exhibited strong interactions.
Collapse
Affiliation(s)
- Walaa M El-Husseiny
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Magda A-A El-Sayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Naglaa I Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Egypt
| | - Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia; Department of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Yousif A Asiri
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
23
|
Huang YC, Farn SS, Chou YC, Yeh CN, Chang CW, Chung YH, Chen TW, Huang WS, Yu CS. Synthesis of para
-[ 18
F]Fluorofenbufen Octylamide for PET Imaging of Brain Tumors. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201700300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ying-Cheng Huang
- Department of Neurosurgery, Chang-Gung Memorial Hospital at Linkou; Chang Gung University; Taiwan
| | - Shiou-Shiow Farn
- Department of Biomedical Engineering and Environmental Sciences; National Tsinghua University; Hsinchu 300 Taiwan
- Isotope Application Division; Institute of Nuclear Energy Research; Taoyuan 32546 Taiwan
| | - Yo-Cheng Chou
- Department of Biomedical Engineering and Environmental Sciences; National Tsinghua University; Hsinchu 300 Taiwan
| | - Chun-Nan Yeh
- Department of Surgery, Chang-Gung Memorial Hospital at Linkou; Chang Gung University; Taiwan
| | - Chi-Wei Chang
- Department of Nuclear Medicine; Veterans General Hospital at Taipei; Taiwan
| | - Yi-Hsiu Chung
- Center for Advanced Molecular Imaging and Translation; Chang Gung Memorial Hospital; Taiwan
| | - Tsong-Wen Chen
- Department of Surgery, Chang-Gung Memorial Hospital at Linkou; Chang Gung University; Taiwan
| | - Wen-Sheng Huang
- Department of Nuclear Medicine; Veterans General Hospital at Taipei; Taiwan
| | - Chung-Shan Yu
- Department of Biomedical Engineering and Environmental Sciences; National Tsinghua University; Hsinchu 300 Taiwan
- Institute of Nuclear Engineering and Science; National Tsing-Hua University; Hsinchu 300 Taiwan
| |
Collapse
|
24
|
Jalota A, Kumar M, Das BC, Yadav AK, Chosdol K, Sinha S. A drug combination targeting hypoxia induced chemoresistance and stemness in glioma cells. Oncotarget 2018; 9:18351-18366. [PMID: 29719610 PMCID: PMC5915077 DOI: 10.18632/oncotarget.24839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 02/21/2018] [Indexed: 12/18/2022] Open
Abstract
Hypoxia is a characteristic of solid tumors especially Glioblastoma and is critical to chemoresistance. Cancer stem cells present in hypoxic niches are known to be a major cause of the progression, metastasis and relapse. We tried to identify synergistic combinations of drugs effective in both hypoxia and normoxia in tumor cells as well as in cancer stem cells. Since COX-2 is over-expressed in subset of glioblastoma and is also induced in hypoxia, we studied combinations of a prototype Cyclooxygenase (COX-2) inhibitor, NS-398 with various drugs (BCNU, Temozolomide, 2-Deoxy-D-glucose and Cisplatin) for their ability to abrogate chemoresistance under both severe hypoxia (0.2% O2) and normoxia (20% O2) in glioma cells. The only effective combination was of NS-398 and BCNU which showed a synergistic effect in both hypoxia and normoxia. This synergism was evident at sub-lethal doses for either of the single agent. The effectiveness of the combination resulted from increased pro- apoptotic and decreased anti-apoptotic molecules and increased caspase activity. PGE2 levels, a manifestation of COX-2 activity were increased during hypoxia, but were reduced by the combination during both hypoxia and normoxia. The combination reduced the levels of epithelial-mesenchymal transition (EMT) markers. It also resulted in a greater reduction of cell migration. While single drugs could reduce the number of gliomaspheres, the combination successfully abrogated their formation. The combination also resulted in a greater reduction of the cancer stem cell marker CD133. This combination could be a prototype of possible therapy in a tumor with a high degree of hypoxia like glioma.
Collapse
Affiliation(s)
- Akansha Jalota
- National Brain Research Centre, Manesar, Gurgaon-122051, India.,Department of Biochemistry, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Mukesh Kumar
- National Brain Research Centre, Manesar, Gurgaon-122051, India
| | - Bhudev C Das
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India.,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida-201313, India
| | - Ajay K Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Subrata Sinha
- National Brain Research Centre, Manesar, Gurgaon-122051, India.,Department of Biochemistry, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
25
|
Chang CY, Li JR, Wu CC, Wang JD, Yang CP, Chen WY, Wang WY, Chen CJ. Indomethacin induced glioma apoptosis involving ceramide signals. Exp Cell Res 2018; 365:66-77. [DOI: 10.1016/j.yexcr.2018.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 01/31/2023]
|
26
|
Clinicopathological and prognostic significance of cyclooxygenase-2 expression in head and neck cancer: A meta-analysis. Oncotarget 2018; 7:47265-47277. [PMID: 27323811 PMCID: PMC5216940 DOI: 10.18632/oncotarget.10059] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/04/2016] [Indexed: 12/28/2022] Open
Abstract
Several studies have assessed the clinicopathological and prognostic value of cyclooxygenase-2 (COX-2) expression in patients with head and neck cancer (HNC), but their results remain controversial. To address this issue, a meta-analysis was carried out. A total of 29 studies involving 2430 patients were subjected to final analysis. Our results indicated that COX-2 expression was not statistically associated with advanced tumor stage (OR, 1.23; 95% CI, 0.98–1.55) but correlated with high risk of lymph node metastasis (OR, 1.28; 95% CI, 1.03–1.60) and advanced TNM stage (OR, 1.33; 95% CI, 1.06–1.66). Moreover, COX-2 expression had significant effect on poor OS (HR, 1.93; 95% CI, 1.29–2.90), RFS (HR, 2.02; 95% CI, 1.00–4.08) and DFS (HR, 5.14; 95% CI, 2.84–9.31). The results of subgroup analyses revealed that COX-2 expression was related with high possibility of lymph node metastasis in oral cancer (OR, 1.49; 95% CI, 1.01–2.20) and advanced TNM stage in oral cancer (OR, 1.58; 95% CI, 1.05–2.37) and no site-specific HNC (OR, 1.64; 95% CI, 1.02–2.62). However, subgroup analyses only showed a tendency without statistically significant association between COX-2 expression and survival. Significant heterogeneity was not found when analyzing clinicopathological data, but it appeared when considering survival data. No publication bias was detected in this study. This meta-analysis suggested that COX-2 expression could act as a prognostic factor for patients with HNC.
Collapse
|
27
|
Abstract
Prostaglandin E2 (PGE2) has been thought to be an important mediator of inflammation in peripheral tissues, but recent studies clearly show the involvement of PGE2 in inflammatory brain diseases. In some animal models of brain disease, the genetic disruption and chemical inhibition of cyclooxygenase (COX)-2 resulted in the reduction of PGE2 and amelioration of symptoms, and it had been thought that PGE2 produced by COX-2 may be involved in the progression of injuries. However, COX-2 produces not only PGE2, but also some other prostanoids, and thus the protective effects of COX-2 inhibition, as well as severe side effects, may be caused by the inhibition of prostanoids other than PGE2. Therefore, to elucidate the role of PGE2, studies of microsomal prostaglandin E synthase-1 (mPGES-1), an inducible terminal enzyme for PGE2 synthesis, have recently been an active area of research. Studies from mPGES-1 deficient mice provide compelling evidence for its role in a variety of inflammatory brain diseases, such as ischemic stroke, Alzheimer's disease and epilepsy, and clues for developing new therapeutic treatments for brain diseases by targeting mPGES-1. Considering that COX inhibitors may non-selectively suppress the production of many types of prostanoids that are essential for normal physiological functioning of the brain and peripheral tissues, as well as induce gastro-intestinal, renal and cardiovascular complications, mPGES-1 inhibitors are expected to be injury-selective and have fewer side-effects when treating human brain diseases. Thus, this paper focuses on recent studies that have demonstrated the involvement of mPGES-1 in pathological brain diseases.
Collapse
Affiliation(s)
- Yuri Ikeda-Matsuo
- Laboratory of Pharmacology, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University
| |
Collapse
|
28
|
Aberrantly activated Cox-2 and Wnt signaling interact to maintain cancer stem cells in glioblastoma. Oncotarget 2017; 8:82217-82230. [PMID: 29137258 PMCID: PMC5669884 DOI: 10.18632/oncotarget.19283] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/16/2017] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma recurrence after aggressive therapy typically occurs within six months, and patients inevitably succumb to their disease. Tumor recurrence is driven by a subpopulation of cancer stem cells in glioblastoma (glioblastoma stem-like cells, GSCs), which exhibit resistance to cytotoxic therapies, compared to their non-stem-cell counterparts. Here, we show that the Cox-2 and Wnt signaling pathways are aberrantly activated in GSCs and interact to maintain the cancer stem cell identity. Cox-2 stimulates GSC self-renewal and proliferation through prostaglandin E2 (PGE2), which in turn activates the Wnt signaling pathway. Wnt signaling underlies PGE2-induced GSC self-renewal and independently directs GSC self-renewal and proliferation. Inhibition of PGE2 enhances the effect of temozolomide on GSCs, but affords only a modest survival advantage in a xenograft model in the setting of COX-independent Wnt activation. Our findings uncover an aberrant positive feedback interaction between the Cox-2/PGE2 and Wnt pathways that mediates the stem-like state in glioblastoma.
Collapse
|
29
|
Evaluation of human glioma using in-vivo proton magnetic resonance spectroscopy combined with expression of cyclooxygenase-2: a preliminary clinical trial. Neuroreport 2017; 28:414-420. [PMID: 28306608 DOI: 10.1097/wnr.0000000000000771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We sought to investigate the correlation between in-vivo proton magnetic resonance spectroscopy (H-MRS) and cyclooxygenase-2 (COX-2) expression in human glioma, and to advance their roles in diagnostic mapping and monitoring of glioma biological behavior. Thirty-nine patients with different grades of glioma (WHO classification I-IV) included in this study were scanned at 3.0 T MR before operation or biopsy puncture. Tumor morphology and H-MRS metabolites ratio [choline (Cho)/creatine (Cr)] were evaluated independently by two experienced radiologists. Paraffin-embedded glioma specimens were detected for the COX-2 expression using immunohistochemistry. Parametric and nonparametric tests including correlation, logistic regression and receiver operating characteristic analysis were applied to assess the predicative roles and relation diagram of H-MRS and COX-2. The COX-2 expression showed a significant difference between low and high grade gliomas (P<0.01). Varying degrees of COX-2 expression have positive correlation with the Cho/Cr values in tumor zone (r=0.49, P=0.013), and showed not significant correlation with sex, age, and tumor location. For patients with high grade gliomas after surgery and radiation, COX-2 was associated with shortened survival in univariate analysis (P=0.025). The COX-2, Cho/Cr value and age were the significant prognostic indicators shown in multivariate survival analysis. The COX-2 and Cho/Cr value of H-MRS have correlation, and are both positive indicators for overall survival of human high grade glioma, and could be combined as a joint role to provide more evidences to assess the biological behavior.
Collapse
|
30
|
Li Z, Chang CM, Wang L, Zhang P, Shu HKG. Cyclooxygenase-2 Induction by Amino Acid Deprivation Requires p38 Mitogen-Activated Protein Kinase in Human Glioma Cells. Cancer Invest 2017; 35:237-247. [PMID: 28333553 PMCID: PMC6300144 DOI: 10.1080/07357907.2017.1292517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 11/02/2016] [Accepted: 02/05/2017] [Indexed: 02/07/2023]
Abstract
Glioblastomas (GBMs) are malignant brain tumors that can outstrip nutrient supplies due to rapid growth. Cyclooxygenase-2 (COX-2) has been linked to GBMs and may contribute to their aggressive phenotypes. Amino acid starvation results in COX-2 mRNA and protein induction in multiple human glioma cell lines in a process requiring p38 mitogen-activated protein kinase (p38-MAPK) and the Sp1 transcription factor. Increased vascular endothelial growth factor expression results from starvation-dependent COX-2 induction. These data suggest that COX-2 induction with amino acid deprivation may be a part of the adaptation of glioma cells to these conditions, and potentially alter cellular response to anti-neoplastic therapy.
Collapse
Affiliation(s)
- Zhiwen Li
- Department of Radiation Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Departments of Anesthesiology First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Chi-Ming Chang
- Department of Radiation Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Lanfang Wang
- Department of Radiation Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Ping Zhang
- Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Hui-Kuo G. Shu
- Department of Radiation Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
31
|
Li LY, Xiao J, Liu Q, Xia K. Parecoxib inhibits glioblastoma cell proliferation, migration and invasion by upregulating miRNA-29c. Biol Open 2017; 6:311-316. [PMID: 27895048 PMCID: PMC5374396 DOI: 10.1242/bio.021410] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma (GBM) is one of the most lethal brain cancers worldwide, and there is an urgent need for development of novel therapeutic approaches. Parecoxib is a well-known cyclooxygenase-2 (COX-2) inhibitor, and had already been developed for postoperative analgesia with high efficacy and low adverse reaction. A recent study has suggested that parecoxib potently enhances immunotherapeutic efficacy of GBM, but its effects on GBM growth, migration and invasion have not previously been studied. In the present study, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and BrdU (5-bromo-2-deoxyuridine) incorporation assays were used to evaluate the cell proliferation of GBM cells. Wound-healing and transwell assays were preformed to analyze GBM cell migration and invasion, respectively. The results suggested that parecoxib inhibits cell proliferation, migration and invasion of GBM cells in a dose-dependent manner. RT-qPCR (real-time quantitative PCR) analysis demonstrated that miRNA-29c can be significantly induced by parecoxib. Furthermore, our data suggests that a miRNA-29c inhibitor can significantly attenuate parecoxib's effect on proliferation, migration and invasion of GBM. In conclusion, the present study suggests that parecoxib inhibits GBM cell proliferation, migration and invasion by upregulating miRNA-29c.
Collapse
Affiliation(s)
- Lin-Yong Li
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China, 410078.,Department of Neurosurgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China, 410013
| | - Jie Xiao
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China, 410013
| | - Qiang Liu
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China, 410013
| | - Kun Xia
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China, 410078
| |
Collapse
|
32
|
Blocking COX-2 induces apoptosis and inhibits cell proliferation via the Akt/survivin- and Akt/ID3 pathway in low-grade-glioma. J Neurooncol 2017; 132:231-238. [PMID: 28283800 PMCID: PMC6763415 DOI: 10.1007/s11060-017-2380-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/08/2016] [Indexed: 12/23/2022]
Abstract
Approximately half of surgically-treated patients with low-grade-glioma (LGG) suffer recurrence or metastasis. Currently there is no effective drug treatment. While the selective COX-2 inhibitor celecoxib showed anti-neoplastic activity against several malignant tumors, its effects against LGG remain to be elucidated. Ours is the first report that the expression level of COX-2 in brain tissue samples from patients with LGG and in LGG cell lines is higher than in the non-neoplastic region and in normal brain cells. We found that celecoxib attenuated LGG cell proliferation in a dose-dependent manner. It inhibited the generation of prostaglandin E2 and induced apoptosis and cell-cycle arrest. We also show that celecoxib hampered the activation of the Akt/survivin- and the Akt/ID3 pathway in LGGs. These findings suggest that celecoxib may have a promising therapeutic potential and that the early treatment of LGG patients with the drug may be beneficial.
Collapse
|
33
|
Schötterl S, Hübner M, Armento A, Veninga V, Wirsik NM, Bernatz S, Lentzen H, Mittelbronn M, Naumann U. Viscumins functionally modulate cell motility-associated gene expression. Int J Oncol 2017; 50:684-696. [DOI: 10.3892/ijo.2017.3838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/19/2016] [Indexed: 11/05/2022] Open
|
34
|
Qiu J, Shi Z, Jiang J. Cyclooxygenase-2 in glioblastoma multiforme. Drug Discov Today 2016; 22:148-156. [PMID: 27693715 DOI: 10.1016/j.drudis.2016.09.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/25/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme (GBM) represents the most prevalent brain primary tumor, yet there is a lack of effective treatment. With current therapies, fewer than 5% of patients with GBM survive more than 5 years after diagnosis. Mounting evidence from epidemiological studies reveals that the regular use of nonsteroidal anti-inflammatory drugs (NSAIDs) is correlated with reduced incidence of GBM, suggesting that cyclooxygenase-2 (COX-2) and its major product within the brain, prostaglandin E2 (PGE2), are involved in the development and progression of GBM. Here, we highlight our current understanding of COX-2 in GBM proliferation, apoptosis, invasion, angiogenesis, and immunosuppression by focusing on recent in vitro and in vivo experimental data. We also discuss the feasibility of COX-2 as a therapeutic target for GBM in light of the latest human studies.
Collapse
Affiliation(s)
- Jiange Qiu
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China; Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267-0514, USA
| | - Zhi Shi
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Jianxiong Jiang
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267-0514, USA.
| |
Collapse
|
35
|
Liu J, Wu J, Zhou L, Pan C, Zhou Y, Du W, Chen JM, Zhu X, Shen J, Chen S, Liu RY, Huang W. ZD6474, a new treatment strategy for human osteosarcoma, and its potential synergistic effect with celecoxib. Oncotarget 2016; 6:21341-52. [PMID: 26050198 PMCID: PMC4673269 DOI: 10.18632/oncotarget.4179] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 05/12/2015] [Indexed: 12/23/2022] Open
Abstract
ZD6474, a small molecule VEGFR and EGFR tyrosine kinase inhibitor, has been considered as a promising tumor-targeted drug in various malignancies. EGFR and cyclooxygenase-2 (COX-2) were found overexpressed in osteosarcoma in previous reports, so here we tried to explore the anti-osteosarcoma effect of ZD6474 alone or combination with celecoxib, a COX-2 inhibitor. The data demonstrated that ZD6474 inhibited the growth of osteosarcoma cells, and promoted G1-phase cell cycle arrest and apoptosis by inhibiting the activity of EGFR tyrosine kinase, and consequently suppressing its downstream PI3k/Akt and MAPK/ERK pathway. Additionally, daily administration of ZD6474 produced a dose-dependent inhibition of tumor growth in nude mice. Celecoxib also significantly inhibited the growth of osteosarcoma cells in dose-dependent manner, while combination of ZD6474 and celecoxib displayed a synergistic or additive antitumor effect on osteosarcoma in vitro and in vivo. The possible molecular mechanisms to address the synergism are likely that ZD6474 induces the down-regulation of COX-2 expression through inhibiting ERK phosphorylation, while celecoxib promotes ZD6474-directed inhibition of ERK phosphorylation. In conclusion, ZD6474 exerts direct anti-proliferative effects on osteosarcoma cells, and the synergistic antitumor effect of the combination of ZD6474 with celecoxib may indicate a new strategy of the combinative treatment of human osteosarcoma.
Collapse
Affiliation(s)
- Jiani Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,Department of Oncology, Jingzhou Hospital, Tongji Medical College of Huazhong University of Science and Technology, Jingzhou, Hubei, China
| | - Jiangxue Wu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ling Zhou
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Changchuan Pan
- Medical Oncology, Sichuan Cancer Hospital and Institute, Second People's Hospital of Sichuan Province, Chengdu, China
| | - Yi Zhou
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wuying Du
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jie-Min Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Xiaofeng Zhu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jingnan Shen
- Musculoskeletal Oncology Department, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shuai Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ran-Yi Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wenlin Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Tumor Targeted Drugs and Guangzhou Enterprise Key Laboratory of Gene Medicine, Guangzhou Doublle Bioproducts Co. Ltd., Guangzhou, China
| |
Collapse
|
36
|
Sever B, Altıntop MD, Kuş G, Özkurt M, Özdemir A, Kaplancıklı ZA. Indomethacin based new triazolothiadiazine derivatives: Synthesis, evaluation of their anticancer effects on T98 human glioma cell line related to COX-2 inhibition and docking studies. Eur J Med Chem 2016; 113:179-86. [DOI: 10.1016/j.ejmech.2016.02.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/29/2016] [Accepted: 02/14/2016] [Indexed: 11/16/2022]
|
37
|
Xu K, Wang L, Feng W, Feng Y, Shu HK. Phosphatidylinositol-3 kinase-dependent translational regulation of Id1 involves the PPM1G phosphatase. Oncogene 2016; 35:5807-5816. [PMID: 27065332 PMCID: PMC5064830 DOI: 10.1038/onc.2016.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/04/2016] [Accepted: 01/22/2016] [Indexed: 12/30/2022]
Abstract
Id1 is a helix-loop-helix transcriptional modulator that increases the aggressiveness of malignant glial neoplasms. Since most glioblastomas (GBMs) show increased phosphatidylinositol-3 kinase (PI-3K) signaling, we sought to determine whether this pathway regulates Id1 expression. Higher basal Id1 expression correlates with dysregulated PI-3K signaling in multiple established GBM cell lines. Further characterization of PI-3K-dependent Id1 regulation reveals that chemical or genetic inhibition of PI-3K signaling reduces Id1 protein but not mRNA expression. Overall, PI-3K signaling appears to enhance Id1 translation with no significant effect on its stability. PI-3K signaling is known to regulate protein translation through mTORC1-dependent phosphorylation of 4E-BP1, which reduces its association with and inhibition of the translation initiation factor eIF4E. Interestingly, while inhibition of PI-3K and AKT lowers 4E-BP1 phosphorylation and expression of Id1 in all cases, inhibition of TORC1 with rapamycin does not consistently have a similar effect suggesting an alternative mechanism for PI-3K-dependent regulation of Id1 translation. We now identify a potential role for the serine-threonine phosphatase PPM1G in translational regulation of Id1 protein expression. PPM1G knockdown by siRNA increase both 4E-BP1 phosphorylation and Id1 expression and PPM1G and 4E-BP1 co-associates in GBM cells. Furthermore, PPM1G is a phosphoprotein and this phosphorylation appears to be regulated by PI-3K activity. Finally, PI-3K inhibition increases PPM1G activity when assessed by an in vitro phosphatase assay. Our findings provide the first evidence that the PI-3K/AKT signaling pathway modulates PPM1G activity resulting in a shift in the balance between hyper- and hypo-phosphorylated 4E-BP1 and translational regulation of Id1 expression.
Collapse
Affiliation(s)
- K Xu
- Department of Radiation Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - L Wang
- Department of Radiation Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - W Feng
- Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - Y Feng
- Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - H-Kg Shu
- Department of Radiation Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
38
|
Li J, Tang C, Li L, Li R, Fan Y. Quercetin sensitizes glioblastoma to t-AUCB by dual inhibition of Hsp27 and COX-2 in vitro and in vivo. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:61. [PMID: 27039073 PMCID: PMC4818891 DOI: 10.1186/s13046-016-0331-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/21/2016] [Indexed: 01/14/2023]
Abstract
Background Evidences indicate that inflammatory process plays pivotal role in tumor disease. Soluble epoxide hydrolase inhibitors (sEHIs) have been shown to participate in anti-inflammation and tumorigenesis by protecting epoxyeicosatrienoic acids (EETs). Although we have previously revealed some effects of t-AUCB on glioma in vitro, further investigations are needed to demonstrate its effects on glioblastoma growth in vivo and how to strengthen its antitumor effect. Methods CCK-8 kit was used to test cell growth. Cell migration capacity was performed by wound healing assays. Transwell assay was used to test cell invasion potency. Cell-cycle analysis and cell apoptosis was performed by flow cytometry. The activity of caspase-3 in cells was measured using caspase-3 activity assay kits. Total RNA was extracted from cells lysated by TRIzol reagent. qRT-PCR was performed by ABI 7500 fast RT- PCR system. Lipofectamine RNAiMAX Transfection Reagent (Invitrogen) was used for siRNA transfection. Western blootting was used to test protein expression. Tumor cell xenograft mouse models were used for in vivo study. The SPSS version 17.0 software was applied for statistical analysis. Results Our data shown that t-AUCB inhibits cell proliferation, migration and invasion and induces cell cycle G1 phase arrest in vitro but induces no cell apoptosis; increased Hsp27 activation and following COX-2 overexpression confer resistance to t-AUCB treatment in glioblastoma both in vitro and in vivo; quercetin sensitizes glioblastoma to t-AUCB by dual inhibition of Hsp27 and COX-2 in vitro and in vivo. Conclusions These results indicate that combination of t-AUCB and quercetin may be a potential approach to treating glioblastoma.
Collapse
Affiliation(s)
- Junyang Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing City, 210002, Jiangsu Province, China.
| | - Chao Tang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing City, 210002, Jiangsu Province, China
| | - Liwen Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing City, 210002, Jiangsu Province, China
| | - Rujun Li
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, China
| | - Youwu Fan
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing City, 210002, Jiangsu Province, China.
| |
Collapse
|
39
|
Cook PJ, Thomas R, Kingsley PJ, Shimizu F, Montrose DC, Marnett LJ, Tabar VS, Dannenberg AJ, Benezra R. Cox-2-derived PGE2 induces Id1-dependent radiation resistance and self-renewal in experimental glioblastoma. Neuro Oncol 2016; 18:1379-89. [PMID: 27022132 DOI: 10.1093/neuonc/now049] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 02/19/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In glioblastoma (GBM), Id1 serves as a functional marker for self-renewing cancer stem-like cells. We investigated the mechanism by which cyclooxygenase-2 (Cox-2)-derived prostaglandin E2 (PGE2) induces Id1 and increases GBM self-renewal and radiation resistance. METHODS Mouse and human GBM cells were stimulated with dimethyl-PGE2 (dmPGE2), a stabilized form of PGE2, to test for Id1 induction. To elucidate the signal transduction pathway governing the increase in Id1, a combination of short interfering RNA knockdown and small molecule inhibitors and activators of PGE2 signaling were used. Western blotting, quantitative real-time (qRT)-PCR, and chromatin immunoprecipitation assays were employed. Sphere formation and radiation resistance were measured in cultured primary cells. Immunohistochemical analyses were carried out to evaluate the Cox-2-Id1 axis in experimental GBM. RESULTS In GBM cells, dmPGE2 stimulates the EP4 receptor leading to activation of ERK1/2 MAPK. This leads, in turn, to upregulation of the early growth response1 (Egr1) transcription factor and enhanced Id1 expression. Activation of this pathway increases self-renewal capacity and resistance to radiation-induced DNA damage, which are dependent on Id1. CONCLUSIONS In GBM, Cox-2-derived PGE2 induces Id1 via EP4-dependent activation of MAPK signaling and the Egr1 transcription factor. PGE2-mediated induction of Id1 is required for optimal tumor cell self-renewal and radiation resistance. Collectively, these findings identify Id1 as a key mediator of PGE2-dependent modulation of radiation response and lend insight into the mechanisms underlying radiation resistance in GBM patients.
Collapse
Affiliation(s)
- Peter J Cook
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York (P.J.C., R.T., R.B.); Department of Molecular Biology, Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, New York (R.T.); Departments of Biochemistry, Chemistry, and Pharmacology, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee (P.J.K., L.J.M.); Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York (F.S., V.S.T); Department of Medicine, Weill Cornell Medical College, New York, (D.C.M, A.J.D.)
| | - Rozario Thomas
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York (P.J.C., R.T., R.B.); Department of Molecular Biology, Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, New York (R.T.); Departments of Biochemistry, Chemistry, and Pharmacology, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee (P.J.K., L.J.M.); Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York (F.S., V.S.T); Department of Medicine, Weill Cornell Medical College, New York, (D.C.M, A.J.D.)
| | - Philip J Kingsley
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York (P.J.C., R.T., R.B.); Department of Molecular Biology, Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, New York (R.T.); Departments of Biochemistry, Chemistry, and Pharmacology, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee (P.J.K., L.J.M.); Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York (F.S., V.S.T); Department of Medicine, Weill Cornell Medical College, New York, (D.C.M, A.J.D.)
| | - Fumiko Shimizu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York (P.J.C., R.T., R.B.); Department of Molecular Biology, Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, New York (R.T.); Departments of Biochemistry, Chemistry, and Pharmacology, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee (P.J.K., L.J.M.); Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York (F.S., V.S.T); Department of Medicine, Weill Cornell Medical College, New York, (D.C.M, A.J.D.)
| | - David C Montrose
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York (P.J.C., R.T., R.B.); Department of Molecular Biology, Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, New York (R.T.); Departments of Biochemistry, Chemistry, and Pharmacology, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee (P.J.K., L.J.M.); Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York (F.S., V.S.T); Department of Medicine, Weill Cornell Medical College, New York, (D.C.M, A.J.D.)
| | - Lawrence J Marnett
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York (P.J.C., R.T., R.B.); Department of Molecular Biology, Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, New York (R.T.); Departments of Biochemistry, Chemistry, and Pharmacology, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee (P.J.K., L.J.M.); Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York (F.S., V.S.T); Department of Medicine, Weill Cornell Medical College, New York, (D.C.M, A.J.D.)
| | - Viviane S Tabar
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York (P.J.C., R.T., R.B.); Department of Molecular Biology, Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, New York (R.T.); Departments of Biochemistry, Chemistry, and Pharmacology, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee (P.J.K., L.J.M.); Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York (F.S., V.S.T); Department of Medicine, Weill Cornell Medical College, New York, (D.C.M, A.J.D.)
| | - Andrew J Dannenberg
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York (P.J.C., R.T., R.B.); Department of Molecular Biology, Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, New York (R.T.); Departments of Biochemistry, Chemistry, and Pharmacology, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee (P.J.K., L.J.M.); Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York (F.S., V.S.T); Department of Medicine, Weill Cornell Medical College, New York, (D.C.M, A.J.D.)
| | - Robert Benezra
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York (P.J.C., R.T., R.B.); Department of Molecular Biology, Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, New York (R.T.); Departments of Biochemistry, Chemistry, and Pharmacology, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee (P.J.K., L.J.M.); Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York (F.S., V.S.T); Department of Medicine, Weill Cornell Medical College, New York, (D.C.M, A.J.D.)
| |
Collapse
|
40
|
Shi D, Xiao X, Tian Y, Qin L, Xie F, Sun R, Wang J, Li W, Liu T, Xiao Y, Yu W, Guo W, Xiong Y, Qiu H, Kang T, Huang W, Zhao C, Deng W. Activating enhancer-binding protein-2α induces cyclooxygenase-2 expression and promotes nasopharyngeal carcinoma growth. Oncotarget 2016; 6:5005-21. [PMID: 25669978 PMCID: PMC4467130 DOI: 10.18632/oncotarget.3215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/26/2014] [Indexed: 12/29/2022] Open
Abstract
Activating enhancer-binding protein-2α (AP-2α) regulates the expression of many cancer-related genes. Here, we demonstrated a novel mechanism by which AP-2α up-regulated cyclooxygenase-2 (COX-2) expression to promote the growth of nasopharyngeal carcinomas (NPCs). High expression of AP-2α in NPC cell lines and tumor tissues from NPC patients was detected and significantly correlated with COX-2 expression. Overexpression of AP-2α and COX-2 in tumor tissues was associated with advanced tumor stage, clinical progression, and short survival of patients with NPCs. Knockdown of AP-2α by siRNA markedly inhibited COX-2 expression and PGE2 production in NPC cells. Exogenous expression of AP-2α up-regulated the COX-2 and PGE2. Knockdown of AP-2α also significantly suppressed cell proliferation in NPC cells in vitro and tumor growth in a NPC xenograft mouse model. Moreover, we found that p300 played an important role in the AP-2α/COX-2 pathway. AP-2α could co-localize and interact with p300 in NPC cells. Overexpression of the p300, but not its histone acetyltransferase (HAT) domain deletion mutant, promoted the acetylation of AP-2α and its binding on the COX-2 promoter, thereby up-regulated COX-2 expression. Our results indicate that AP-2α activates COX-2 expression to promote NPC growth and suggest that the AP-2α/COX-2 signaling is a potential therapeutic target for NPC treatment.
Collapse
Affiliation(s)
- Dingbo Shi
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Xiangsheng Xiao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yun Tian
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Lijun Qin
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fangyun Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Rui Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jingshu Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wenbin Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Tianze Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yao Xiao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wendan Yu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wei Guo
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuqing Xiong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Huijuan Qiu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Tiebang Kang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wenlin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China
| | - Chong Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China
| |
Collapse
|
41
|
Brocard E, Oizel K, Lalier L, Pecqueur C, Paris F, Vallette FM, Oliver L. Radiation-induced PGE2 sustains human glioma cells growth and survival through EGF signaling. Oncotarget 2016; 6:6840-9. [PMID: 25749386 PMCID: PMC4466653 DOI: 10.18632/oncotarget.3160] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/16/2014] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma Multiforme (GBM) is the most common brain cancer in adults. Radiotherapy (RT) is the most effective post-operative treatment for the patients even though GBM is one of the most radio-resistant tumors. Dead or dying cells within the tumor are thought to promote resistance to treatment through mechanisms that are very poorly understood. We have evaluated the role of Prostaglandin E2 (PGE2), a versatile bioactive lipid, in GBM radio-resistance. We used an in vitro approach using 3D primary cultures derived from representative GBM patients. We show that irradiated glioma cells produced and released PGE2 in important quantities independently of the induction of cell death. We demonstrate that the addition of PGE2 enhances cell survival and proliferation though its ability to trans-activate the Epithelial Growth Factor receptor (EGFR) and to activate β-catenin. Indeed, PGE2 can substitute for EGF to promote primary cultures survival and growth in vitro and the effect is likely to occur though the Prostaglandin E2 receptor EP2.
Collapse
Affiliation(s)
- Emeline Brocard
- Centre de Recherche en Cancérologie Nantes Angers UMR INSERM 892, CNRS 6299, Université de Nantes, 44007 Nantes, France.,Université de Nantes, Faculté de Médecine, 44007 Nantes, France
| | - Kristell Oizel
- Centre de Recherche en Cancérologie Nantes Angers UMR INSERM 892, CNRS 6299, Université de Nantes, 44007 Nantes, France.,Université de Nantes, Faculté de Médecine, 44007 Nantes, France
| | - Lisenn Lalier
- Centre de Recherche en Cancérologie Nantes Angers UMR INSERM 892, CNRS 6299, Université de Nantes, 44007 Nantes, France.,Université de Nantes, Faculté de Médecine, 44007 Nantes, France.,LaBCT, Institut de Cancérologie de l'Ouest, 44805 St Herblain cedex, France
| | - Claire Pecqueur
- Centre de Recherche en Cancérologie Nantes Angers UMR INSERM 892, CNRS 6299, Université de Nantes, 44007 Nantes, France.,Université de Nantes, Faculté de Médecine, 44007 Nantes, France
| | - François Paris
- Centre de Recherche en Cancérologie Nantes Angers UMR INSERM 892, CNRS 6299, Université de Nantes, 44007 Nantes, France.,Université de Nantes, Faculté de Médecine, 44007 Nantes, France.,LaBCT, Institut de Cancérologie de l'Ouest, 44805 St Herblain cedex, France
| | - François M Vallette
- Centre de Recherche en Cancérologie Nantes Angers UMR INSERM 892, CNRS 6299, Université de Nantes, 44007 Nantes, France.,Université de Nantes, Faculté de Médecine, 44007 Nantes, France.,LaBCT, Institut de Cancérologie de l'Ouest, 44805 St Herblain cedex, France
| | - Lisa Oliver
- Centre de Recherche en Cancérologie Nantes Angers UMR INSERM 892, CNRS 6299, Université de Nantes, 44007 Nantes, France.,Université de Nantes, Faculté de Médecine, 44007 Nantes, France.,CHU de Nantes, 44093 Nantes, France
| |
Collapse
|
42
|
Zhong J, Dong X, Xiu P, Wang F, Liu J, Wei H, Xu Z, Liu F, Li T, Li J. Blocking autophagy enhances meloxicam lethality to hepatocellular carcinoma by promotion of endoplasmic reticulum stress. Cell Prolif 2015; 48:691-704. [PMID: 26481188 DOI: 10.1111/cpr.12221] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/01/2015] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Meloxicam, a selective cyclooxygenase-2 (COX-2) inhibitor, has been demonstrated to exert anti-tumour effects against various malignancies. However, up to now, mechanisms involved in meloxicam anti-hepatocellular carcinoma effects have remained unclear. MATERIALS AND METHODS Cell viability and apoptosis were assessed by CCK-8 and flow cytometry. Endoplasmic reticulum (ER) stress and autophagy-associated molecules were analysed by western blotting and immunofluorescence assay. GRP78 and Atg5 knock-down by siRNA or chemical inhibition was used to investigate cytotoxic effects of meloxicam treatment on HCC cells. RESULTS We found that meloxicam led to apoptosis and autophagy in HepG2 and Bel-7402 cells via a mechanism that involved ER stress. Up-regulation of GRP78 signalling pathway from meloxicam-induced ER stress was critical for activation of autophagy. Furthermore, autophagy activation attenuated ER stress-related cell death. Blocking autophagy by 3-methyladenine (3-MA) or Atg5 siRNA knock-down enhanced meloxicam lethality for HCC by activation of ER stress-related apoptosis. In addition, GRP78 seemed to lead to autophagic activation via the AMPK-mTOR signalling pathway. Blocking AMPK with a chemical inhibitor inhibited autophagy suggesting that meloxicam-regulated autophagy requires activation of AMPK. CONCLUSIONS Our results revealed that both ER stress and autophagy were involved in cell death evoked by meloxicam in HCC cells. This inhibition of autophagy to enhance meloxicam lethality, suggests a novel therapeutic strategy against HCC.
Collapse
Affiliation(s)
- Jingtao Zhong
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China
| | - Xiaofeng Dong
- Department of Hepatobiliary Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Peng Xiu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China
| | - Fuhai Wang
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China
| | - Ju Liu
- Laboratory of Medicrovascular Medicine and Medical Research Center, Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China
| | - Honglong Wei
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China
| | - Zongzhen Xu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China
| | - Feng Liu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China
| | - Tao Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China
| | - Jie Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China
| |
Collapse
|
43
|
Zhen Y, Zhang W, Liu C, He J, Lu Y, Guo R, Feng J, Zhang Y, Chen J. Exogenous hydrogen sulfide promotes C6 glioma cell growth through activation of the p38 MAPK/ERK1/2-COX-2 pathways. Oncol Rep 2015; 34:2413-22. [PMID: 26351820 DOI: 10.3892/or.2015.4248] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/07/2015] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide (H2S) participates in multifarious physiological and pathophysiologic progresses of cancer both in vitro and in vivo. We have previously demonstrated that exogenous H2S promoted liver cancer cells proliferation/anti‑apoptosis/angiogenesis/migration effects via amplifying the activation of NF-κB pathway. However, the effects of H2S on cancer cell proliferation and apoptosis are controversial and remain unclear in C6 glioma cells. The present study investigated the effects of exogenous H2S on cancer cells growth via activating p38 MAPK/ERK1/2-COX-2 pathways in C6 glioma cells. C6 glioma cells were treated with 400 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of phosphorylated (p)-p38 MAPK, total (t)-p38 MAPK, p-ERK1/2, t-ERK1/2, cyclooxygenase-2 (COX-2) and caspase-3 were measured by western blotting assay. Cell viability was detected by Cell Counting Kit-8 (CCK-8). Apoptotic cells were observed by Hoechst 33258 staining assay. Cell proliferation was directly detected under fully automatic inverted microscope. Exposure of C6 glioma cells to NaHS resulted in cell proliferation, as evidenced by an increase in cell viability. In addition, NaHS treatment reduced apoptosis, as indicated by the decreased apoptotic percentage and the cleaved caspase-3 expression. Importantly, exposure of the cells to NaHS increased the expression levels of p-p38 MAPK, p-ERK1/2 and COX-2. Notably, co-treatment of C6 glioma cells with 400 µmol/l NaHS and AOAA (an inhibitor of CBS) largely suppressed the above NaHS-induced effects. Combined treatment with NaHS and SB203580 (an inhibitor of p38 MAPK) or PD-98059 (an inhibitor of ERK1/2) resulted in the synergistic reduction of COX-2 expression and increase of caspase-3 expression, a decreased number of apoptotic cells, along with decreased cell viability. Combined treatment with NS-398 (an inhibitor of COX-2) and NaHS also resulted in the synergistic increase of caspase-3, a decreased in the number of apoptotic cells and the decrease in cell viability. The findings of the present study provide novel evidence that p38 MAPK/ERK1/2-COX-2 pathways are involved in NaHS-induced cancer cell proliferation and anti-apoptosis in C6 glioma cells.
Collapse
Affiliation(s)
- Yulan Zhen
- Oncology Center, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Wei Zhang
- Department of Cardiovasology and Cardiac Care Unit (CCU), Huangpu Division of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chujie Liu
- Department of Neurology, Dalang Hospital, Dongguan, Guangdong 523700, P.R. China
| | - Jing He
- The First People's Hospital of Yueyang, Yueyang, Hunan 414000, P.R. China
| | - Yun Lu
- Department of Infectious Disease I, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Ruixian Guo
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Jianqiang Feng
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Ying Zhang
- Oncology Center, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Jingfu Chen
- Department of Cardiovasology and Cardiac Care Unit (CCU), Huangpu Division of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
44
|
Dyakova L, Culita DC, Zhivkova T, Georgieva M, Kalfin R, Miloshev G, Alexandrov M, Marinescu G, Patron L, Alexandrova R. 3d metal complexes with meloxicam as therapeutic agents in the fight against human glioblastoma multiforme and cervical carcinoma. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1074873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
45
|
Chua CY, Liu Y, Granberg KJ, Hu L, Haapasalo H, Annala MJ, Cogdell DE, Verploegen M, Moore LM, Fuller GN, Nykter M, Cavenee WK, Zhang W. IGFBP2 potentiates nuclear EGFR-STAT3 signaling. Oncogene 2015; 35:738-47. [PMID: 25893308 PMCID: PMC4615268 DOI: 10.1038/onc.2015.131] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 03/17/2015] [Accepted: 03/20/2015] [Indexed: 02/04/2023]
Abstract
Insulin-like growth factor binding protein 2 (IGFBP2) is a pleiotropic oncogenic protein that has both extracellular and intracellular functions. Despite a clear causal role in cancer development, the tumor-promoting mechanisms of IGFBP2 are poorly understood. The contributions of intracellular IGFBP2 to tumor development and progression are also unclear. Here we present evidence that both exogenous IGFBP2 treatment and cellular IGFBP2 overexpression lead to aberrant activation of EGFR, which subsequently activates STAT3 signaling. Furthermore, we demonstrate that IGFBP2 augments the nuclear accumulation of EGFR to potentiate STAT3 transactivation activities, via activation of the nuclear EGFR signaling pathway. Nuclear IGFBP2 directly influences the invasive and migratory capacities of human glioblastoma cells, providing a direct link between intracellular (and particularly nuclear) IGFBP2 and cancer hallmarks. These activities are also consistent with the strong association between IGFBP2 and STAT3-activated genes derived from the TCGA database for human glioma. A high level of all 3 proteins (IGFBP2, EGFR and STAT3) was strongly correlated with poorer survival in an independent patient dataset. These results identify a novel tumor-promoting function for IGFBP2 of activating EGFR/STAT3 signaling and facilitating EGFR accumulation in the nucleus, thereby deregulating EGFR signaling by 2 distinct mechanisms. As targeting EGFR in glioma has been relatively unsuccessful, this study suggests that IGFBP2 may be a novel therapeutic target.
Collapse
Affiliation(s)
- C Y Chua
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Y Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,ISB-MDA Genome Data Analysis Center, The Cancer Genome Atlas, Seattle, WA/Houston, TX, USA
| | - K J Granberg
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Signal Processing, Tampere University of Technology, Tampere, Finland.,Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - L Hu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H Haapasalo
- Department of Pathology, Fimlab Laboratories and University of Tampere, Tampere, Finland
| | - M J Annala
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Signal Processing, Tampere University of Technology, Tampere, Finland.,Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - D E Cogdell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Verploegen
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L M Moore
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - G N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA.,ISB-MDA Genome Data Analysis Center, The Cancer Genome Atlas, Seattle, WA/Houston, TX, USA
| | - M Nykter
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - W K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - W Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA.,ISB-MDA Genome Data Analysis Center, The Cancer Genome Atlas, Seattle, WA/Houston, TX, USA
| |
Collapse
|
46
|
Zhao Y, Sun Y, Zhang H, Liu X, Du W, Li Y, Zhang J, Chen L, Jiang C. HGF/MET signaling promotes glioma growth via up-regulation of Cox-2 expression and PGE2 production. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:3719-3726. [PMID: 26097553 PMCID: PMC4466940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/20/2015] [Indexed: 06/04/2023]
Abstract
Cyclooxygenase2 (Cox-2) is well known for glioma growth through up-regulation of prostaglandin E2 (PGE2) levels. MET, a hepatocyte growth factor (HGF) receptor, is also frequently high expressed in glioma, which promotes glioma growth and invasion. Here, we demonstrate that HGF/MET signaling can promote PGE2 production in glioma cells via Cox-2 up-regulation. RNA inhibition of MET suggested that MET signaling is essential for Cox-2 up-regulation. Moreover, HGF could enhance Cox-2 expression and PGE2 release. Knockdown of Cox-2 inhibited growth-promoting effects of HGF, suggesting that HGF/MET functioned via Cox-2/PGE2 pathway. Therefore, our work reveals a critical relationship of Cox-2/PGE2 and HGF/MET signaling in promoting glioma cells proliferation. Further, targeting MET and Cox-2 may represent an attractive target therapy for glioma.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150086, China
| | - Ying Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150086, China
| | - Haiyan Zhang
- Department of Obstetrics and Gynecology, International Peace Maternal and Children’s Hospital, Shanghai Jiaotong UniversityShanghai, China
| | - Xing Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150086, China
| | - Wenzong Du
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150086, China
| | - Yongli Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150086, China
| | - Junhe Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150086, China
| | - Lingchao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150086, China
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai 200040, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150086, China
| |
Collapse
|
47
|
Zhen Y, Pan W, Hu F, Wu H, Feng J, Zhang Y, Chen J. Exogenous hydrogen sulfide exerts proliferation/anti-apoptosis/angiogenesis/migration effects via amplifying the activation of NF-κB pathway in PLC/PRF/5 hepatoma cells. Int J Oncol 2015; 46:2194-204. [PMID: 25738635 DOI: 10.3892/ijo.2015.2914] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/13/2015] [Indexed: 01/08/2023] Open
Abstract
Hydrogen sulfide (H2S) takes part in a diverse range of intracellular pathways and hss physical and pathological properties in vitro and in vivo. However, the effects of H2S on cancer are controversial and remain unclear. The present study investigates the effects of H2S on liver cancer progression via activating NF-κB pathway in PLC/PRF/5 hepatoma cells. PLC/PRF/5 hepatoma cells were pretreated with 500 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of CSE, CBS, phosphosphorylate (p)-NF-κB p65, caspase-3, COX-2, p-IκB and MMP-2 were measured by western blot assay. Cell viability was detected by cell counter kit 8 (CCK-8). Apoptotic cells were observed by Hoechst 33258 staining assay. The production level of H2S in cell culture medium was measured by using the sulfur-sensitive electrode method. The production of vascular endothelial growth factor (VEGF) was tested by enzyme-linked immunosorbent assay (ELISA). Our results showed that the production of H2S was dramatically increased in the PLC/PRF/5 hepatoma cells, compared with human LO2 hepatocyte cells group, along with the overexpression levels of CSE and CBS. Treatment of PLC/PRF/5 hepatoma cells with 500 µmol/l NaHS (a donor of H2S) for 24 h markedly increased the expression levels of CSE, CBS, p-IκB and NF-κB activation, leading to COX-2 and MMP-2 overexpression, and decreased caspase-3 production, as well as increased cell viability and decreased number of apoptotic cells. Otherwise, the production level of H2S and VEGF were also significantly increased. Furthermore, co-treatment of PLC/PRF/5 hepatoma cells with 500 µmol/l NaHS and 200 µmol/l PDTC for 24 h significantly overturned these indexes. The findings of the present study provide evidence that the NF-κB is involved in the NaHS-induced cell proliferation, anti-apoptisis, angiogenesis, and migration in PLC/PRF/5 hepatoma cells, and that the PDTC against the NaHS-induced effects were by inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Yulan Zhen
- Oncology Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Wanying Pan
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Fen Hu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Hongfu Wu
- Department of Physiology, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Jianqiang Feng
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ying Zhang
- Oncology Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Jingfu Chen
- Department of Cardiovasology and Cardiac Care Unit (CCU), Huangpu Division, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| |
Collapse
|
48
|
Ślebioda TJ, Kmieć Z. Tumour necrosis factor superfamily members in the pathogenesis of inflammatory bowel disease. Mediators Inflamm 2014; 2014:325129. [PMID: 25045210 PMCID: PMC4087264 DOI: 10.1155/2014/325129] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/29/2014] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of inflammatory conditions of the gastrointestinal tract of unclear aetiology of which two major forms are Crohn's disease (CD) and ulcerative colitis (UC). CD and UC are immunologically distinct, although they both result from hyperactivation of proinflammatory pathways in intestines and disruption of intestinal epithelial barrier. Members of the tumour necrosis factor superfamily (TNFSF) are molecules of broad spectrum of activity, including direct disruption of intestinal epithelial barrier integrity and costimulation of proinflammatory functions of lymphocytes. Tumour necrosis factor (TNF) has a well-established pathological role in IBD which also serves as a target in IBD treatment. In this review we discuss the role of TNF and other TNFSF members, notably, TL1A, FasL, LIGHT, TRAIL, and TWEAK, in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Tomasz J. Ślebioda
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| |
Collapse
|