1
|
Anwar MM, Boseila AA, Mabrouk AA, Abdelkhalek AA, Amin A. Impact of Lyophilized Milk Kefir-Based Self-Nanoemulsifying System on Cognitive Enhancement via the Microbiota-Gut-Brain Axis. Antioxidants (Basel) 2024; 13:1205. [PMID: 39456459 PMCID: PMC11504727 DOI: 10.3390/antiox13101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Chronic inflammatory bowel disorders (IBDs) are characterized by altered intestinal permeability, prompting inflammatory, oxidative stress, and immunological factors. Gut microbiota disorders impact brain function via the bidirectional gut-brain axis, influencing behavior through inflammatory cascades, oxidative stress, and neurotransmitter levels. This study highlights the potential effect of integrating lyophilized milk kefir alone and lyophilized milk kefir as solid carriers loaded with a self-nanoemulsifying self-nanosuspension (SNESNS) of licorice extract on an induced chronic IBD-like model in rats. Licorice-SNESNS was prepared by the homogenization of 30 mg of licorice extract in 1 g of the selected SNEDDS (30% Caraway oil, 60% Tween 20, and 10% propylene glycol (w/w)). Licorice-SNESNS was mixed with milk kefir and then freeze-dried. Dynamic TEM images and the bimodal particle size curve confirmed the formation of the biphasic nanosystems after dilution (nanoemulsion and nanosuspension). Daily oral administration of lyophilized milk kefir (100 mg/kg) loaded with SNESNS (10 mg/kg Caraway oil and 1 mg/kg licorice) restored normal body weight and intestinal mucosa while significantly reducing submucosal inflammatory cell infiltration in induced rats. Importantly, this treatment demonstrated superior efficacy compared to lyophilized milk kefir alone by leading to a more significant alleviation of neurotransmitter levels and improved memory functions, thereby addressing gut-brain axis disorders. Additionally, it normalized fecal microbiome constituents, inflammatory cytokine levels, and oxidative stress in examined tissues and serum. Moreover, daily administration of kefir-loaded SNESNS normalized the disease activity index, alleviated histopathological changes induced by IBD induction, and partially restored the normal gut microbiota. These alterations are associated with improved cognitive functions, attributed to the maintenance of normal neurotransmitter levels and the alleviation of triggered inflammatory factors and oxidative stress levels.
Collapse
Affiliation(s)
- Mai M. Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Giza 12654, Egypt; (M.M.A.)
| | - Amira A. Boseila
- Department of Pharmaceutics, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Giza 12654, Egypt;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia 41636, Egypt
| | - Abeer A. Mabrouk
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Giza 12654, Egypt; (M.M.A.)
| | | | - Amr Amin
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
2
|
Adibsaber F, Ansari S, Elmieh A, Barkadehi B. Vitamin D3 Supplementation and Aquatic Exercise Combination as a Safe- Efficient Therapeutic Strategy to Ameliorate Interleukin-6 and 10, and Social Interaction in Children with Autism. IRANIAN JOURNAL OF CHILD NEUROLOGY 2024; 18:91-102. [PMID: 38988841 PMCID: PMC11231685 DOI: 10.22037/ijcn.v18i3.43021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/20/2023] [Indexed: 07/12/2024]
Abstract
Objectives Increasing evidence demonstrated that there are altered levels of both pro-and anti-inflammatory cytokines in autism spectrum disorder (ASD) and pointed out that immune dysfunction may also relate to social deficits. This study aimed to investigate the effect of aquatic exercise combined with vitamin D supplementation on social interaction and two related cytokines (Interleukin-6 and Interleukin-10) in children with ASD. Materials & Methods Forty boys with ASD (mean age: 10.90; age range: 6-14 years) were randomly assigned to the three interventions (groups 1, 2, and 3) and one control group (each 10 participants). Participants in the group 1 and 3 received a 10-week aquatic exercise program. Subjects in groups 2 and 3 took orally 50,000 IU of vitamin D3/week. This study evaluated the serum levels of IL-6 and IL-10, as well as the participants' social interaction at baseline and post-intervention. Results Compared to the control group, all three interventions improved social skills scores (p< 0.001). Surprisingly, the combination strategy could significantly reduce IL-6 and increase IL-10 serum levels in children with ASD. Conclusion Aqua-based exercise programs combined with vitamin D supplementation are recommended to benefit children with ASD and improve social and communication dysfunction.
Collapse
Affiliation(s)
- Fahimeh Adibsaber
- Department of Physical Education, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Soleyman Ansari
- Department of Physical Education, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Alireza Elmieh
- Department of Physical Education, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Babak Barkadehi
- Department of Physical Education, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
3
|
Verheijden RJ, Cabané Ballester A, Smit KC, van Eijs MJM, Bruijnen CP, van Lindert ASR, Suijkerbuijk KPM, May AM. Physical activity and checkpoint inhibition: association with toxicity and survival. J Natl Cancer Inst 2024; 116:573-579. [PMID: 38001030 PMCID: PMC10995850 DOI: 10.1093/jnci/djad245] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Although animal experiments suggest beneficial effects of physical activity (PA) on antitumor immunity, little is known about the effects of PA on immune checkpoint inhibitor (ICI) toxicity and effectiveness in humans. We assessed the association of PA with immune-related adverse events (irAE) and survival in patients undergoing ICI. METHODS Patients receiving ICI who completed the Dutch short questionnaire to assess health enhancing physical activity (SQUASH) questionnaire at the start of treatment as part of the prospective UNICIT study in an academic hospital were included. PA was quantified by calculating total metabolic equivalent task hours per week (total PA) and hours per week of moderate- to vigorous-intensity PA during sport and leisure time (MVPA-SL). Associations of PA with severe irAE occurrence within 1 year and overall survival (OS) were evaluated using logistic regression and Cox proportional hazard regression, respectively, with adjustment for probable confounders. RESULTS In total, 251 patients were included, with a median follow-up of 20 months. Moderate and high levels of total PA were associated with lower odds of severe irAE occurrence compared to low levels of total PA (adjusted OR: 0.34 [95% CI = 0.12 to 0.90] and 0.19 [95% CI = 0.05 to 0.55], respectively). Moderate and high levels of total PA were also associated with prolonged survival (adjusted HR: 0.58 [95% CI = 0.32 to 1.04] and 0.48 [95% CI = 0.27 to 0.89], respectively). Similar associations were observed in patients who performed more MVPA-SL. CONCLUSIONS Higher physical activity levels at the start of ICI treatment are associated with lower risk of severe irAEs and probably prolonged survival. Randomized controlled trials are needed to investigate whether patients indeed benefit from increasing PA levels after diagnosis.
Collapse
Affiliation(s)
- Rik J Verheijden
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Anna Cabané Ballester
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Karel C Smit
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Mick J M van Eijs
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Cheryl P Bruijnen
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Anne S R van Lindert
- Department of Pulmonology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Karijn P M Suijkerbuijk
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Anne M May
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
4
|
Gundogdu K, Kılıc Erkek O, Gundogdu G, Sayin D, Abban Mete G. Anti-inflammatory effects of sericin and swimming exercise in treating experimental Achilles tendinopathy in rat. Appl Physiol Nutr Metab 2024; 49:501-513. [PMID: 38284362 DOI: 10.1139/apnm-2023-0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The aim of this study was to assess the effectiveness of combining sericin with swimming exercise as a treatment for type-I collagenase-induced Achilles tendinopathy (AT) in rats, with a focus on inflammatory cytokines. An experimental AT model was established using type-I collagenase in male Sprague-Dawley rats, categorized into five groups: Group 1 (Control + Saline), Group 2 (AT), Group 3 (AT + exercise), Group 4 (AT + sericin), and Group 5 (AT + sericin + exercise). Intratendinous sericin administration (0.8 g/kg/mL) took place from days 3 to 6, coupled with 30 min daily swimming exercise sessions (5 days/week, 4 weeks). Serum samples were analyzed using ELISA for tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-10 (IL-10), and total antioxidant-oxidant status (TAS-TOS), alongside histopathological and immunohistochemical assessments of Achilles tendon samples. Elevated TNF-α and IL-1β and decreased IL-10 levels were evident in Group 2; Of these, TNF-α and IL-1β were effectively reduced and IL-10 increased across all treatment groups, particularly groups 4 and 5. Serum TAS was notably lower in Group 2 and significantly increased in Group 5 compared to Group 2. Histopathologically, Group 2 displayed severe degeneration, irregular fibers, and round cell nuclei, while Group 5 exhibited decreased degeneration and spindle-shaped fibers. The Bonar score increased in Group 2 and decreased in groups 4 and 5. Collagen type-I alpha-1 (Col1A1) expression was notably lower in Group 2 (P = 0.001) and significantly increased in groups 4 and 5 compared to Group 2 (P = 0.011 and 0.028, respectively). This study underscores the potential of sericin and swimming exercises in mitigating inflammation and oxidative stress linked to AT pathogenesis, presenting a promising combined therapeutic strategy.
Collapse
Affiliation(s)
- Koksal Gundogdu
- Department of Orthopedics and Traumatology, Denizli State Hospital, Denizli, Turkey
| | - Ozgen Kılıc Erkek
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Gulsah Gundogdu
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Dilek Sayin
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Gulcin Abban Mete
- Department of Histology and Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
5
|
Neves MB, da Silva UN, Gonçalves ADF, Fagundes LS, de Abreu AC, Takita LC, Aydos RD, Ramalho RT. The effect of aerobic and resistance exercise on the progression of colorectal cancer in an animal model. Acta Cir Bras 2023; 38:e384923. [PMID: 37878986 PMCID: PMC10592869 DOI: 10.1590/acb384923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/12/2023] [Indexed: 10/27/2023] Open
Abstract
PURPOSE The aim of this study was to assess the effects of resistance and aerobic exercise on colorectal cancer (CRC) development in mice induced by azoxymethane (AOM) coupled with colitis. METHODS Forty animals induced with CRC were used, divided into five groups of eight animals each: sedentary; continuous aerobics; continuous anaerobic; aerobic PI; and anaerobic PI. AOM was administered to the animals in two doses of 10 mg/kg each over the course of two weeks, the first dose administered in the third week and the second administered in the fourth. For the colitis, three cycles of dextran sodium sulfate were administered for five days, separated by two weeks of water. The 14th week of the experiment saw the euthanasia, the removal of their colons, and the creation of microscopy slides for histological analysis. RESULTS Preneoplastic lesions developed in all five groups; there were no significant differences between them. However, in terms of inflammatory symptoms, mucosal ulceration was much more frequently in the exercise groups than in the sedentary group (p = 0.016). The number of polyps overall (p = 0.002), the distal region's polyp development (p = 0.003), and the proximal region's polyp development (p = 0.04) were all statistically different than sedentary group. CONCLUSIONS The study discovered no significant difference in disease activity index scores between groups, but there was a significant difference in the number of polyps and the presence of mucosal ulceration in the colon.
Collapse
Affiliation(s)
- Marcelo Barbosa Neves
- Universidade Federal do Rio de Janeiro – Postgraduate Program in Biological Sciences – Rio de Janeiro (RJ) – Brazil
| | - Udenilson Nunes da Silva
- Universidade Federal do Mato Grosso do Sul – Health and Development Postgraduate Program – Campo Grande (MS) – Brazil
| | | | - Letícia Silva Fagundes
- Universidade Federal do Mato Grosso do Sul – Health and Development in the Midwest Region – Campo Grande (MS) – Brazil
| | - Antônio Carlos de Abreu
- Universidade Federal do Mato Grosso do Sul – Health and Development in the Midwest Region – Campo Grande (MS) – Brazil
| | - Luiz Carlos Takita
- Universidade Federal do Mato Grosso do Sul – Medical School – Campo Grande (MS) – Brazil
| | - Ricardo Dutra Aydos
- Universidade Federal do Mato Grosso do Sul – Health and Development in the Midwest Region – Campo Grande (MS) – Brazil
| | - Rondon Tosta Ramalho
- Universidade Federal do Mato Grosso do Sul – Health and Development in the Midwest Region – Campo Grande (MS) – Brazil
| |
Collapse
|
6
|
Yang H, Zhang Y, Zhang D, Qian L, Yang T, Wu X. Crocin exerts anti-tumor effect in colon cancer cells <em>via</em> repressing the JAK pathway. Eur J Histochem 2023; 67:3697. [PMID: 37700733 PMCID: PMC10543190 DOI: 10.4081/ejh.2023.3697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
Crocin has been reported to have therapeutic effects on multiple cancers including colon cancer, but its specific mechanism is still ambiguous and needs to be further explored. Human colorectal adenocarcinoma cells (HCT-116) and human normal colonic epithelial cells (CCD841) were first treated with increasing concentrations of crocin. Subsequently, with 150 and 200 μM of crocin, the cell vitality was examined by cell counting kit 8. Cell apoptosis and proliferation were tested by TUNEL staining and colony formation assay, respectively. The expression of Ki-67 was assessed by immunofluorescence. Enzyme-linked immunosorbent assay was used to evaluate the level of inflammation- and oxidative-related factors. The reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) were examined by flow cytometer. Janus kinase (JAK), signal transducer and activator of transcription 3 (STAT3), and extracellular regulated protein kinases (ERK) in HCT-116 cells were tested by Western blot. Different concentrations of crocin barely affected the CCD841 cell vitality, while crocin restrained the HCT-116 cells vitality, proliferation and the expression of Ki-67, while inducing apoptosis in a concentration-dependent manner. Moreover, the contents of inflammation- and oxidative-related factors in HCT-116 cells were largely blunted by crocin that enhanced ROS and restrained the MMP and suppressed p-JAK2/JAK2, p-STAT3/STAT3, and p-ERK/ERK expression in HCT-116 cells. Crocin induced apoptosis and restored mitochondrial function in HCT-116 cells via repressing the JAK pathway. If the threptic effect works in patients, it could herald a new, effective treatment for colon cancer, improving the patients' prognosis and quality of life.
Collapse
Affiliation(s)
- Hui Yang
- Department of Gastroenterology, Changxing People's Hospital, Huzhou, Zhejiang.
| | - Yunlong Zhang
- Department of Ultrasound, The First People's Hospital of Linping District, Hangzhou, Zhejiang.
| | - Desheng Zhang
- Department of Radiology, Affiliated Center Hospital of Huzhou University, Huzhou, Zhejiang.
| | - Liping Qian
- Department of Radiology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang.
| | - Tianxing Yang
- Department of Oncology, Sanmen County People's Hospital, Taizhou, Zhejiang.
| | - Xiaocheng Wu
- Pathology Laboratory, Hangzhou Dean Medical Laboratory, Hangzhou, Zhejiang.
| |
Collapse
|
7
|
Almási N, Török S, Al-awar A, Veszelka M, Király L, Börzsei D, Szabó R, Varga C. Voluntary Exercise-Mediated Protection in TNBS-Induced Rat Colitis: The Involvement of NETosis and Prdx Antioxidants. Antioxidants (Basel) 2023; 12:1531. [PMID: 37627526 PMCID: PMC10451893 DOI: 10.3390/antiox12081531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are autoimmune disorders of the gut. It is increasingly clear that voluntary exercise (VE) may exert protection against IBDs, but the exact background mechanism needs to be elucidated. In the present study, we aimed to investigate the possible role of NETosis and the antioxidant peroxiredoxin (Prdx) enzyme family in VE-induced protection. Wistar Han rats were randomly divided into two groups: sedentary (SED) and VE. After the 6-week voluntary wheel running, animals were treated with 2,4,6-trinitrobenzene sulphonic acid (TNBS) as a model of colitis. Here, we found that VE significantly decreased inflammation and ulceration of the colon in the VE TNBS group compared with SED TNBS. We also found that VE significantly decreased the expression of protein arginine deiminase 4 (PAD4) and myeloperoxidase (MPO), and markedly reduced citrullinated histone H3 (citH3) compared with SED TNBS. Furthermore, VE caused a significant increase in the levels of Prdx6 in the control and TNBS groups. Taken together, we found that a prior 6-week VE effectively reduces inflammation in TNBS-induced colitis, and we suggest that the protective effect of VE may be mediated via the inhibition of NETosis and upregulation of Prdx6 antioxidant.
Collapse
Affiliation(s)
- Nikoletta Almási
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Amin Al-awar
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Médea Veszelka
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - László Király
- Zala-Cereália Kft, H-8790 Zalaszentgrót-Tüskeszentpéter, Hungary;
| | - Denise Börzsei
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Renáta Szabó
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| |
Collapse
|
8
|
Kolahi Z, Yaghoubi A, Rezaeian N, Khazaei M. Exercise Improves Clinical Symptoms, Pathological Changes and Oxidative/Antioxidative Balance in Animal Model of Colitis. Int J Prev Med 2023; 14:46. [PMID: 37351030 PMCID: PMC10284199 DOI: 10.4103/ijpvm.ijpvm_162_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/27/2022] [Indexed: 06/24/2023] Open
Abstract
Background Ulcerative colitis is one of the major phenotypic forms of inflammatory bowel diseases. The present study aimed to investigate the effect of force swimming exercise on clinical symptoms (disease activity index; DAI), colon histopathology, inflammation and fibrosis, and oxidant/antioxidant balance in dextran sulfate sodium (DSS)-induced colitis mice. Methods Male C57BL6 mice were randomly divided into five groups (n = 6 each): control, exercise, colitis, colitis + sulfasalazine, and colitis + exercise. Exercise was performed by forced swimming six weeks before and during the experiment. Colitis was induced by 1.5% DSS in drinking water. The animals were evaluated for body weight changes and DAI (including changes of body weight, stool consistency, rectal bleeding, and prolapse) during the induction of colitis and treatment. At the end of experiment, colons and spleens were evaluated by H and E and Masson Trichrome stainings. Oxidant (Malon dialdehyde; MDA), and antioxidant markers [total thiol groups, superoxide dismutase (SOD), and catalase activity] were also measured in colon tissue. Results Results indicated that exercise in colitis mice significantly improved DAI, colon length, spleen weight, and histological injury score and alleviated fibrotic changes in colon tissue that were comparable to sulfasalazine group. Exercise also restored the oxidant/antioxidant balance in colitis mice by reducing MDA and increasing antioxidative markers including total thiol groups, SOD, and catalase activity. Conclusions Taken together, aerobic exercise could improve clinical symptoms and colonic inflammation through, at least, the balancing the oxidative stress markers. Thus, it can be considered in management of colitis patients as effective method.
Collapse
Affiliation(s)
- Zohreh Kolahi
- Department of Physical Education and Sport Science, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | - Ali Yaghoubi
- Department of Physical Education and Sport Science, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | - Najmeh Rezaeian
- Department of Physical Education and Sport Science, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | - Majid Khazaei
- Department of Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Ordille AJ, Phadtare S. Intensity-specific considerations for exercise for patients with inflammatory bowel disease. Gastroenterol Rep (Oxf) 2023; 11:goad004. [PMID: 36814502 PMCID: PMC9940700 DOI: 10.1093/gastro/goad004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/02/2022] [Accepted: 12/22/2022] [Indexed: 02/22/2023] Open
Abstract
The rising prevalence of inflammatory bowel disease (IBD) necessitates that patients be given increased access to cost-effective interventions to manage the disease. Exercise is a non-pharmacologic intervention that advantageously affects clinical aspects of IBD, including disease activity, immune competency, inflammation, quality of life, fatigue, and psychological factors. It is well established that exercise performed at low-to-moderate intensity across different modalities manifests many of these diseased-related benefits while also ensuring patient safety. Much less is known about higher-intensity exercise. The aim of this review is to summarize findings on the relationship between strenuous exercise and IBD-related outcomes. In healthy adults, prolonged strenuous exercise may unfavorably alter a variety of gastrointestinal (GI) parameters including permeability, blood flow, motility, and neuro-endocrine changes. These intensity- and gut-specific changes are hypothesized to worsen IBD-related clinical presentations such as diarrhea, GI bleeding, and colonic inflammation. Despite this, there also exists the evidence that higher-intensity exercise may positively influence microbiome as well as alter the inflammatory and immunomodulatory changes seen with IBD. Our findings recognize that safety for IBD patients doing prolonged strenuous exercise is no more compromised than those doing lower-intensity work. Safety with prolonged, strenuous exercise may be achieved with adjustments including adequate hydration, nutrition, drug avoidance, and careful attention to patient history and symptomatology. Future work is needed to better understand this intensity-dependent relationship so that guidelines can be created for IBD patients wishing to participate in high-intensity exercise or sport.
Collapse
Affiliation(s)
- Andrew J Ordille
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Sangita Phadtare
- Corresponding author. Department of Biomedical Sciences, Cooper Medical School of Rowan University, 401 S Broadway, Camden, NJ 08103, USA.
| |
Collapse
|
10
|
Qiu Y, Fernández-García B, Lehmann HI, Li G, Kroemer G, López-Otín C, Xiao J. Exercise sustains the hallmarks of health. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:8-35. [PMID: 36374766 PMCID: PMC9923435 DOI: 10.1016/j.jshs.2022.10.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 05/23/2023]
Abstract
Exercise has long been known for its active role in improving physical fitness and sustaining health. Regular moderate-intensity exercise improves all aspects of human health and is widely accepted as a preventative and therapeutic strategy for various diseases. It is well-documented that exercise maintains and restores homeostasis at the organismal, tissue, cellular, and molecular levels to stimulate positive physiological adaptations that consequently protect against various pathological conditions. Here we mainly summarize how moderate-intensity exercise affects the major hallmarks of health, including the integrity of barriers, containment of local perturbations, recycling and turnover, integration of circuitries, rhythmic oscillations, homeostatic resilience, hormetic regulation, as well as repair and regeneration. Furthermore, we summarize the current understanding of the mechanisms responsible for beneficial adaptations in response to exercise. This review aimed at providing a comprehensive summary of the vital biological mechanisms through which moderate-intensity exercise maintains health and opens a window for its application in other health interventions. We hope that continuing investigation in this field will further increase our understanding of the processes involved in the positive role of moderate-intensity exercise and thus get us closer to the identification of new therapeutics that improve quality of life.
Collapse
Affiliation(s)
- Yan Qiu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Benjamin Fernández-García
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo 33011, Spain; Department of Morphology and Cell Biology, Anatomy, University of Oviedo, Oviedo 33006, Spain
| | - H Immo Lehmann
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75231, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif 94805, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris 75015, France.
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo 33006, Spain; Centro de Investigación Biomédica en Red Enfermedades Cáncer (CIBERONC), Oviedo 33006, Spain.
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
11
|
Mimicking Gene-Environment Interaction of Higher Altitude Dwellers by Intermittent Hypoxia Training: COVID-19 Preventive Strategies. BIOLOGY 2022; 12:biology12010006. [PMID: 36671699 PMCID: PMC9855005 DOI: 10.3390/biology12010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Cyclooxygenase 2 (COX2) inhibitors have been demonstrated to protect against hypoxia pathogenesis in several investigations. It has also been utilized as an adjuvant therapy in the treatment of COVID-19. COX inhibitors, which have previously been shown to be effective in treating previous viral and malarial infections are strong candidates for improving the COVID-19 therapeutic doctrine. However, another COX inhibitor, ibuprofen, is linked to an increase in the angiotensin-converting enzyme 2 (ACE2), which could increase virus susceptibility. Hence, inhibiting COX2 via therapeutics might not always be protective and we need to investigate the downstream molecules that may be involved in hypoxia environment adaptation. Research has discovered that people who are accustomed to reduced oxygen levels at altitude may be protected against the harmful effects of COVID-19. It is important to highlight that the study's conclusions only applied to those who regularly lived at high altitudes; they did not apply to those who occasionally moved to higher altitudes but still lived at lower altitudes. COVID-19 appears to be more dangerous to individuals residing at lower altitudes. The downstream molecules in the (COX2) pathway have been shown to adapt in high-altitude dwellers, which may partially explain why these individuals have a lower prevalence of COVID-19 infection. More research is needed, however, to directly address COX2 expression in people living at higher altitudes. It is possible to mimic the gene-environment interaction of higher altitude people by intermittent hypoxia training. COX-2 adaptation resulting from hypoxic exposure at altitude or intermittent hypoxia exercise training (IHT) seems to have an important therapeutic function. Swimming, a type of IHT, was found to lower COX-2 protein production, a pro-inflammatory milieu transcription factor, while increasing the anti-inflammatory microenvironment. Furthermore, Intermittent Hypoxia Preconditioning (IHP) has been demonstrated in numerous clinical investigations to enhance patients' cardiopulmonary function, raise cardiorespiratory fitness, and increase tissues' and organs' tolerance to ischemia. Biochemical activities of IHP have also been reported as a feasible application strategy for IHP for the rehabilitation of COVID-19 patients. In this paper, we aim to highlight some of the most relevant shared genes implicated with COVID-19 pathogenesis and hypoxia. We hypothesize that COVID-19 pathogenesis and hypoxia share a similar mechanism that affects apoptosis, proliferation, the immune system, and metabolism. We also highlight the necessity of studying individuals who live at higher altitudes to emulate their gene-environment interactions and compare the findings with IHT. Finally, we propose COX2 as an upstream target for testing the effectiveness of IHT in preventing or minimizing the effects of COVID-19 and other oxygen-related pathological conditions in the future.
Collapse
|
12
|
Ma Y, Liu H, Wang Y, Xuan J, Gao X, Ding H, Ma C, Chen Y, Yang Y. Roles of physical exercise-induced MiR-126 in cardiovascular health of type 2 diabetes. Diabetol Metab Syndr 2022; 14:169. [PMID: 36376958 PMCID: PMC9661802 DOI: 10.1186/s13098-022-00942-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Although physical activity is widely recommended for preventing and treating cardiovascular complications of type 2 diabetes mellitus (T2DM), the underlying mechanisms remain unknown. MicroRNA-126 (miR-126) is an angiogenetic regulator abundant in endothelial cells (ECs) and endothelial progenitor cells (EPCs). It is primarily involved in angiogenesis, inflammation and apoptosis for cardiovascular protection. According to recent studies, the levels of miR-126 in the myocardium and circulation are affected by exercise protocol. High-intensity interval training (HIIT) or moderate-and high-intensity aerobic exercise, whether acute or chronic, can increase circulating miR-126 in healthy adults. Chronic aerobic exercise can effectively rescue the reduction of myocardial and circulating miR-126 and vascular endothelial growth factor (VEGF) in diabetic mice against diabetic vascular injury. Resistance exercise can raise circulating VEGF levels, but it may have a little influence on circulating miR-126. The Several targets of miR-126 have been suggested for cardiovascular fitness, such as sprouty-related EVH1 domain-containing protein 1 (SPRED1), phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2), vascular cell adhesion molecule 1 (VCAM1), high-mobility group box 1 (HMGB1), and tumor necrosis factor receptor-associated factor 7 (TRAF7). Here, we present a comprehensive review of the roles of miR-126 and its downstream proteins as exercise mechanisms, and propose that miR-126 can be applied as an exercise indicator for cardiovascular prescriptions and as a preventive or therapeutic target for cardiovascular complications in T2DM.
Collapse
Affiliation(s)
- Yixiao Ma
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| | - Hua Liu
- Laboratory of Physical Fitness Monitoring & Chronic Disease Intervention, Wuhan Sports University, Wuhan, 430079, China
| | - Yong Wang
- Laboratory of Physical Fitness Monitoring & Chronic Disease Intervention, Wuhan Sports University, Wuhan, 430079, China
| | - Junjie Xuan
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| | - Xing Gao
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| | - Huixian Ding
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| | - Chunlian Ma
- Laboratory of Physical Fitness Monitoring & Chronic Disease Intervention, Wuhan Sports University, Wuhan, 430079, China
| | - Yanfang Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Yi Yang
- Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan Sports University, Wuhan, 430079, China.
| |
Collapse
|
13
|
Wang W, Xu Y, Wang X, Chu Y, Zhang H, Zhou L, Zhu H, Li J, Kuai R, Zhou F, Yang D, Peng H. Swimming Impedes Intestinal Microbiota and Lipid Metabolites of Tumorigenesis in Colitis-Associated Cancer. Front Oncol 2022; 12:929092. [PMID: 35847876 PMCID: PMC9285133 DOI: 10.3389/fonc.2022.929092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/03/2022] [Indexed: 12/09/2022] Open
Abstract
Background Accumulating data support that regular physical activity potentially inhibits chronic colitis, a risk factor for colitis-associated cancer (CAC). However, possible effects of physical activity on CAC and the underlying mechanisms remain poorly understood. Methods A pretreatment of swimming on azoxymethane/dextran sodium sulfate (AOM/DSS)-induced CAC mice was implemented to determine its protective effect. Inflammation and tumorigenesis were assessed using colorectums from C57BL/6 mice. In order to determine how swimming alters colonic lipid metabolism and gene expression, a comparative analysis was conducted. Meanwhile, alterations in intestinal microbiota and short-chain fatty acids (SCFAs) were detected and analyzed. Finally, an integration analysis of colonic lipid metabolism with gene expression and intestinal microbiota was performed respectively. Result Swimming pretreatment relieved bowel inflammation and minimized tumor formation. We demonstrated that prostaglandin E2 (PGE2)/PGE2 receptor 2 subtype (EP2) signaling as a potential regulatory target for swimming induces colonic lipid metabolites. Swimming-induced genera, Erysipelatoclostridium, Parabacteroides, Bacteroides, and Rikenellaceae_RC9_gut_group, induced intestinal SCFAs and affected the function of colonic lipid metabolites enriched in glycerophospholipid metabolism and choline metabolism in cancer. Conclusion According to our experiments, swimming pretreatment can protect mice from CAC by intervention in the possible link between colonic lipid metabolites and PGE2/EP2 signaling. Further, swimming-induced genera and probiotics promoted glycerophospholipid metabolism and choline metabolism in cancer, the major constituents of colonic lipid metabolites, and increased SCFAs, which were also important mechanisms for the anti-inflammatory and anti-tumorigenic effects of swimming.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Daming Yang
- *Correspondence: Haixia Peng, ; Daming Yang,
| | - Haixia Peng
- *Correspondence: Haixia Peng, ; Daming Yang,
| |
Collapse
|
14
|
da Silva ACA, Severo JS, Dos Santos BLB, Mendes PHM, Nobre LMS, de Oliveira AP, Ferreira FCS, Medeiros JVR, Lima-Junior RC, Havt A, Palheta-Junior RC, Dos Santos AA, Tolentino M. Moderate Physical Exercise Activates ATR 2 Receptors, Improving Inflammation and Oxidative Stress in the Duodenum of 2K1C Hypertensive Rats. Front Physiol 2021; 12:734038. [PMID: 34777003 PMCID: PMC8588860 DOI: 10.3389/fphys.2021.734038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Background: In addition to the cardiovascular and renal systems, the gastrointestinal tract also contains angiotensin ATR1a, ATR1b, and ATR2. We previously observed that the 2Kidney-1Clip hypertension model elicits physical exercise and gastrointestinal dysmotility, which is prevented by renin-angiotensin system blockers. Here, we investigate the effect of physical exercise on inflammation, stress biomarkers, and angiotensin II receptors in the duodenum of 2K1C rats. Methods: Arterial hypertension was induced by the 2K1C surgical model. The rats were allocated in Sham, 2K1C, or 2K1C+Exercise groups. One week after surgery, they were submitted to a physical exercise protocol (running 5x/week, 60min/day). Next, we assessed their intestinal contractility, cytokine levels (TNF-α, IL-1β, and IL-6), oxidative stress levels (MPO, GSH, MDA, and SOD), and the gene expression of angiotensin receptors (ATR1A, ATR1B, and ATR2). Results: In comparison with the Sham group, the 2K1C arterial hypertension decreased (p<0.05) the intestinal contractility. In comparison with 2K1C, the 2K1C+Exercise group exhibited lower (p<0.05) MPO activity (22.04±5.90 vs. 78.95±18.09 UMPO/mg tissue) and higher (p<0.05) GSH concentrations in intestinal tissues (67.63±7.85 vs. 31.85±5.90mg NPSH/mg tissue). The 2K1C+Exercise group showed lower (p<0.05) cytokine levels in the intestine than 2K1C rats. In comparison with the Sham group, the 2K1C+Exercise rats showed higher (p<0.05) gene expression of ATR2 in the duodenum. Conclusion: 2K-1C hypertension elicits an oxidative stress and inflammation process in the duodenum. Physical exercise modulates the expression twice as much of ATR2 receptors, suggesting possible anti-inflammatory and antioxidant effects induced by exercise.
Collapse
Affiliation(s)
- Alda Cássia Alves da Silva
- Graduate Program in Pharmacology, Federal University of Piauí, Teresina, Brazil.,Laboratory of Exercise and Gastrointestinal Tract, Department of Physical Education, Federal University of Piauí, Teresina, Brazil
| | - Juliana Soares Severo
- Laboratory of Exercise and Gastrointestinal Tract, Department of Physical Education, Federal University of Piauí, Teresina, Brazil.,Graduate Program in Food and Nutrition, Federal University of Piauí, Teresina, Brazil
| | - Brenda Lois Barros Dos Santos
- Laboratory of Exercise and Gastrointestinal Tract, Department of Physical Education, Federal University of Piauí, Teresina, Brazil
| | - Pedro Henrique Moraes Mendes
- Laboratory of Exercise and Gastrointestinal Tract, Department of Physical Education, Federal University of Piauí, Teresina, Brazil
| | - Lívia Maria Soares Nobre
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | - Jand Venes Rolim Medeiros
- Graduate Program in Pharmacology, Federal University of Piauí, Teresina, Brazil.,Graduate Program in Biotechnology, Federal University of Delta do Parnaíba, Parnaíba, Brazil
| | - Roberto Cesar Lima-Junior
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Alexandre Havt
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | - Armênio Aguiar Dos Santos
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Moisés Tolentino
- Graduate Program in Pharmacology, Federal University of Piauí, Teresina, Brazil.,Laboratory of Exercise and Gastrointestinal Tract, Department of Physical Education, Federal University of Piauí, Teresina, Brazil.,Graduate Program in Food and Nutrition, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
15
|
Li X, Li X. Obesity Promotes Experimental Colitis by Increasing Oxidative Stress and Mitochondrial Dysfunction in the Colon. Inflammation 2021; 43:1884-1892. [PMID: 32495128 DOI: 10.1007/s10753-020-01261-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although obesity is associated with inflammatory bowel disease (IBD), the underlying molecular mechanism still remains unclear. In this study, we evaluated the effects of high-fat diet (HFD)-induced obesity on the development of experimental colitis in mice. The C57BL/6 mice were fed with a HFD for 12 weeks to develop obesity. The concentrations of free fatty acids (FFA), triglycerides, and cholesterol in plasma were significantly increased in HFD-fed mice compared to low-fat diet (LFD)-fed mice. We found that HFD-induced obesity could exacerbate 2,4,6-trinitro-benzene-sulfonic acid (TNBS)-induced experimental colitis in mice resembling Crohn's disease (CD). HFD-fed mice showed shorter colon length, higher clinical scores and histological scores, more production of mucosal tumor necrosis factor-α (TNF-α), and greater destruction of colonic epithelial barrier than LFD-fed mice after TNBS induction. HFD feeding also promoted reactive oxygen species (ROS) production in colonic epithelial cells, thus activating the pro-apoptotic pathway to damage colonic epithelial barrier induced by TNBS. After HCT116 cells were treated with palmitate acid (PA) and/or TNF-α for 24 h, the combination of PA and TNF-α increased ROS production, promoted mitochondrial dysfunction, and activated the pro-apoptotic pathway, but these effects were markedly attenuated by a ROS inhibitor. Taken together, these observations suggest that HFD-induced obesity promotes experimental colitis by increasing oxidative stress and mitochondrial dysfunction, which triggers the activation of pro-apoptotic pathway in the colon.
Collapse
Affiliation(s)
- Xue Li
- Institute of Health Sciences, China Medical University, Shenyang, 110122, China
| | - Xin Li
- Department of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
16
|
Protective Effect of Gochujang on Inflammation in a DSS-Induced Colitis Rat Model. Foods 2021; 10:foods10051072. [PMID: 34066160 PMCID: PMC8150376 DOI: 10.3390/foods10051072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 12/27/2022] Open
Abstract
Gochujang is a traditional Korean fermented soy-based spicy paste made of meju (fermented soybean), red pepper powder, glutinous rice, and salt. This study investigated the anti-inflammatory effects of Gochujang containing salt in DSS-induced colitis. Sprague-Dawley (SD) rats were partitioned into five groups: normal control, DSS control, DSS + salt, DSS + mesalamine, and DSS + Gochujang groups. They were tested for 14 days. Gochujang improved the disease activity index (DAI), colon weight/length ratio, and colon histomorphology, with outcomes similar to results of mesalamine administration. Moreover, Gochujang decreased the serum levels of IL-1β and IL-6 and inhibited TNF-α, IL-6, and IL-1β mRNA expression in the colon. Gochujang downregulated the expression of iNOS and COX-2 and decreased the activation of NF-κB in the colon. Gochujang induced significant modulation in gut microbiota by significantly increasing the number of Akkermansia muciniphila while decreasing the numbers of Enterococcus faecalis and Staphylococcus sciuri. However, compared with the DSS group, the salt group did not significantly change the symptoms of colitis or cytokine levels in serum and colon. Moreover, the salt group significantly decreased the gut microflora diversity. Gochujang mitigated DSS-induced colitis in rats by modulating inflammatory factors and the composition of gut microflora, unlike the intake of salt alone.
Collapse
|
17
|
Li Q, Li K, Hu T, Liu F, Liao S, Zou Y. 6,7-Dihydroxy-2,4-Dimethoxyphenanthrene from Chinese Yam Peels Alleviates DSS-Induced Intestinal Mucosal Injury in Mice via Modulation of the NF-κB/COX-2 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4720-4731. [PMID: 33760601 DOI: 10.1021/acs.jafc.1c00487] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, we evaluated the protective effect and molecular mechanism of a dominant phenanthrene, (6,7-dihydroxy-2,4-dimethoxyphenanthrene, CYP4), from Chinese yam peels on intestinal epithelial integrity. Three doses of Chinese yam phenolic extract (CYPE) and Chinese yam phenanthrene 4 (CYP4) were administered to BALB/c mice for 7 days before dextran sulfate sodium (DSS) treatment, with berberine hydrochloride as a positive control (PC). Results showed that both disease activity indexes (DAIs), histological damage score (HDS) and survival rate in DSS mice, were improved with preintervention of CYPE and CYP4, which exhibited better efficiency than PC. Further studies showed that administration of CYP4 downregulated the oxidative stress-associated factors, MPO and NO, and improved tight junction protein occludin. Besides, the CYP4 treatment substantially downregulated the caspase-3 expression and the apoptosis rate of intestinal epithelial cells. In addition, the CYP4 treatment ameliorated the production of inflammatory cytokines including TNF-α, IFN-γ, IL-10, and IL-23 in the colon. Furthermore, the protein expression of ERK1/2, NF-κB p65, pNF-κB, and COX-2 was suppressed in CYE4 groups as compared with that in model control (MC). These findings suggested that CHP4 could effectively inhibit the activation of NF-κB/COX-2 in an experimental UC model in vivo. It was demonstrated for the first time that CYPE and CYP4 protected intestinal mucosa from damage and prevented DSS-induced colitis in mice. CYP4 was one of the active principles obligatory for the biological effect of Chinese yam in protecting intestinal health. These findings indicated that CYP4 might be a promising and useful approach for treatment of UC in humans.
Collapse
Affiliation(s)
- Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Konghui Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Tenggen Hu
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Fan Liu
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Sentai Liao
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yuxiao Zou
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| |
Collapse
|
18
|
Heydari H, Ghiasi R, Hamidian G, Ghaderpour S, Keyhanmanesh R. Voluntary exercise improves sperm parameters in high fat diet receiving rats through alteration in testicular oxidative stress, mir-34a/SIRT1/p53 and apoptosis. Horm Mol Biol Clin Investig 2021; 42:253-263. [PMID: 33638320 DOI: 10.1515/hmbci-2020-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/19/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVES High fat diet can lead to testicular structural and functional disturbances, spermatogenesis disorders as well as infertility. So, the present investigation was proposed to clarify whether voluntary exercise could prevent high fat diet induced reproductive complications in rats through testicular stress oxidative and apoptosis. METHODS Forty male Wistar rats were randomly divided into four groups; control (C), voluntary exercise (VE), high fat diet (HFD) and high fat diet and voluntary exercise (VE + HFD) groups. The rats in the VE and VE + HFD groups were accommodated in apart cages that had running wheels and the running distance was assessed daily for 10 weeks. In VE + HFD group, animals were fed with HFD for five weeks before commencing exercise. The sperm parameters, the expressions of testicular miR-34a gene, and P53 and SIRT1 proteins as well as testicular apoptosis were analyzed in all groups. RESULTS The results indicated that voluntary exercise in VE + HFD group led to significantly increased GPX and SOD activities, SIRT1 protein expression, sperm parameters, and decreased the expression of miR34a gene and Acp53 protein, and cellular apoptosis index compared to HFD group (p<0.001 to p<0.05). The SOD and catalase activities, SIRT1 protein expression, sperm parameters in VE + HFD group were lower than of those of VE group, however, MDA content, expression of Acp53 protein, apoptosis indexes in VE + HFD group was higher than that of VE group (p<0.001 to p<0.05). CONCLUSION This study revealed that voluntary exercise improved spermatogenesis, in part by decreasing the testicular oxidative stress status, apoptosis through alteration in miR-34a/SIRT1/p53 pathway.
Collapse
Affiliation(s)
- Hamed Heydari
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rafighe Ghiasi
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Saber Ghaderpour
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Wang SS, Li K, Liu Z, Gui S, Liu N, Liu X. Aerobic exercise ameliorates benign prostatic hyperplasia in obese mice through downregulating the AR/androgen/PI3K/AKT signaling pathway. Exp Gerontol 2020; 143:111152. [PMID: 33189835 DOI: 10.1016/j.exger.2020.111152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Emerging evidence has suggested that physical activities can reduce the risk of benign prostatic hyperplasia (BPH). Here, we evaluated the effect of aerobic exercise in a model of BPH using obese mice. METHODS Obese C57BL/6J mice in the control group, obesity group (OB), and obesity group plus exercise (OB + E) with eight weeks training were inspected for morphological alterations via hematoxylin-eosin (H&E) staining, lipid and sex hormone metabolites via enzyme-linked immunosorbent assays (ELISAs), relative protein expression via Western blotting, and prostate cancer-up-regulated long noncoding RNA (PlncRNA) and androgen receptor (AR) mRNA levels via quantitative real-time PCR (qRT-PCR). RESULTS Aerobic exercise training slowed fat-mass gain in OB mice. Prostate volume (PV) and area of lumen was significantly decreased in OB mice and was slightly increased following aerobic exercise. Epithelial volume density in the OB group was higher than that in the control group. Furthermore, aerobic exercise lowered serum low-density lipoprotein (LDL), triglyceride, and free fatty acid (FFA) levels, whereas it raised high-density lipoprotein (HDL) levels in OB + E mice. Additionally, the hormonal ratio of estradiol/testosterone (E2/T) approached that of the control group following aerobic exercise in OB + E mice. Mechanistically, aerobic exercise downregulated the PlncRNA-AR/androgen signaling pathway via the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) axis in the prostates of OB + E mice. CONCLUSION These data demonstrate that aerobic exercise may alleviate BPH in obese mice through regulation of the AR/androgen/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Sha-Sha Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Kai Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Zhiwei Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shukang Gui
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Nian Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiangyun Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
20
|
de Oliveira Santos R, da Silva Cardoso G, da Costa Lima L, de Sousa Cavalcante ML, Silva MS, Cavalcante AKM, Severo JS, de Melo Sousa FB, Pacheco G, Alves EHP, Nobre LMS, Medeiros JVR, Lima-Junior RC, Dos Santos AA, Tolentino M. L-Glutamine and Physical Exercise Prevent Intestinal Inflammation and Oxidative Stress Without Improving Gastric Dysmotility in Rats with Ulcerative Colitis. Inflammation 2020; 44:617-632. [PMID: 33128666 DOI: 10.1007/s10753-020-01361-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
The aim of this study was to evaluate the effects of glutamine supplementation or exercise on gastric emptying and intestinal inflammation in rats with ulcerative colitis (UC). Strength exercise consisted of jump training 4 × 10 repetitions/5 days a week/8 weeks with progressive overload. Endurance exercise consisted of swimming without overload for a period of 1 h a day/5 days a week/8 weeks. Another group (sedentary) of animals was supplemented with L-glutamine (1 g/kg of body weight) orally for 8 weeks before induction of UC. Colitis was induced by intra-colonic administration of 1 mL of 4% acetic acid. We assessed gastric emptying, macroscopic and microscopic scoring, oxidative stress markers, and IL-1β, IL-6, and (TNF-α) levels. The UC significantly increased (p < 0.05) the gastric emptying compared with the saline control group. We observed a significantly decrease (p < 0.05) in body weight gain in UC rats compared with the control groups. Both exercise interventions and L-glutamine supplementation significantly prevented (p < 0.05) weight loss compared with the UC group. Strength and endurance exercises significantly prevented (p < 0.05) the increase of microscopic scores and oxidative stress (p < 0.05). L-glutamine supplementation in UC rats prevented hemorrhagic damage and improved oxidative stress markers (p < 0.05). Strength and endurance exercises and glutamine decreased the concentrations of inflammatory cytokines IL-1β, IL-6, and TNF-α compared with the UC group (p < 0.05). Strength and endurance exercises and L-glutamine supplementation prevented intestinal inflammation and improved cytokines and oxidative stress levels without altering gastric dysmotility in rats with UC.
Collapse
Affiliation(s)
| | - Geovane da Silva Cardoso
- Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Center for Health Sciences, Federal University of Piauí, Teresina, PI, 64049-550, Brazil
| | - Lara da Costa Lima
- Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Center for Health Sciences, Federal University of Piauí, Teresina, PI, 64049-550, Brazil
| | | | - Mariana Sousa Silva
- Graduate Program in Pharmacology, Federal University of Piauí, Teresina, PI, Brazil
| | | | - Juliana Soares Severo
- Graduate Program in Food and Nutrition, Federal University of Piauí, Teresina, PI, Brazil
| | | | - Gabriella Pacheco
- Graduate Program in Biotechnology, Federal University of Piauí, Parnaiba, PI, Brazil
| | | | - Lívia Maria Soares Nobre
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Roberto Cesar Lima-Junior
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Armênio Aguiar Dos Santos
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Moisés Tolentino
- Graduate Program in Food and Nutrition, Federal University of Piauí, Teresina, PI, Brazil. .,Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Center for Health Sciences, Federal University of Piauí, Teresina, PI, 64049-550, Brazil. .,Graduate Program in Pharmacology, Federal University of Piauí, Teresina, PI, Brazil.
| |
Collapse
|
21
|
Exercise Preconditioning Attenuates the Response to Experimental Colitis and Modifies Composition of Gut Microbiota in Wild-Type Mice. Life (Basel) 2020; 10:life10090200. [PMID: 32937846 PMCID: PMC7555193 DOI: 10.3390/life10090200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/07/2020] [Accepted: 09/12/2020] [Indexed: 12/20/2022] Open
Abstract
This study investigated the suppressive effect of exercise preconditioning against colitis induced by high-fat diet (HF) plus dextran sulfate sodium (DSS) in wild-type mice. Male mice (C57BL/6) aged 6 weeks were assigned to standard chow (SC, n = 10) or HF (n = 10) or HF followed by DSS (HF+DSS, n = 10) or exercise preconditioning (EX) followed by HF+DSS (EX+HF+DSS, n = 10) for a total of 15 weeks. After 12 weeks of dietary treatments and/or exercise preconditioning, mice in the DSS groups were subjected to administration of 2 cycles of 5-day DSS (2% w/v) with a 7-day interval between cycles. HF resulted in colitis symptoms and histological changes, infiltration of immunity cells, decreased gut barrier proteins, increased pro-inflammatory and chemotactic cytokines and decreased anti-inflammatory cytokine such as adiponectin, which deteriorated after administration of DSS. Exercise preconditioning alleviated HF+DSS-induced colitis and caused significant modifications in gut microbiota: decreased Bacteroides vulgatus (p = 0.050) and increased Akkermansia muciniphila (p = 0.050). The current findings suggest that exercise preconditioning attenuates the severity of HF+DSS-induced colitis in C57BL/6 mice.
Collapse
|
22
|
Liu Y, Zheng JW, Peng XC, Li HY, Huang L, Li DW, Liu JS, Yang WD. Changes in colonic microbiotas in rat after long-term exposure to low dose of okadaic acid. CHEMOSPHERE 2020; 254:126874. [PMID: 32361543 DOI: 10.1016/j.chemosphere.2020.126874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/05/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Okadaic acid (OA), one of the most important phycotoxins, is widely distributed around the world, concerning diarrheic shellfish poisoning (DSP), and even colorectal cancer. Here, we found that long-term exposure of OA at a low dose (80 μg kg-1 body weight) had certain effects on colonic microbiotas and tract in rat. In the OA-exposed rat, colonic epithelium layer was damaged, and relative abundance of some microbiotas were significantly changed, especially genera in Clostridiales. However, no intestinal inflammation or significant disease was observed. Combined with the increase in relative abundance of some genera in Clostridiales induced by OA in the fermentation experiment, we proposed that OA could cause damage to the intestinal epithelium and increase the relative abundance of pathogenic bacteria, thereby increasing the probability of contact between intestinal epithelium and pathogenic bacteria and leading to an easier pathogenicity.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jian-Wei Zheng
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xi-Chun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510630, China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Lu Huang
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Da-Wei Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jie-Sheng Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
23
|
Koelwyn GJ, Zhuang X, Tammela T, Schietinger A, Jones LW. Exercise and immunometabolic regulation in cancer. Nat Metab 2020; 2:849-857. [PMID: 32929232 PMCID: PMC9128397 DOI: 10.1038/s42255-020-00277-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Unhealthful lifestyle factors, such as obesity, disrupt organismal homeostasis and accelerate cancer pathogenesis, partly through metabolic and immunological dysregulation. Exercise is a prototypical strategy that maintains and restores homeostasis at the organismal, tissue, cellular and molecular levels and can prevent or inhibit numerous disease conditions, including cancer. Here, we review unhealthful lifestyle factors that contribute to metabolic and immunological dysregulation and drive tumourigenesis, focusing on patient physiology (host)-tissue-tumour microenvironment interactions. We also discuss how exercise may influence distant tissue microenvironments, thereby improving tissue function through both metabolic and immunospecific pathways. Finally, we consider future directions that merit consideration in basic and clinical translational exercise studies.
Collapse
Affiliation(s)
| | - Xueqian Zhuang
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell and Developmental Biology, Weill-Cornell Medical College, New York, NY, USA
| | - Andrea Schietinger
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, New York, NY, USA
| | - Lee W Jones
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
24
|
Bilski J, Wojcik D, Danielak A, Mazur-Bialy A, Magierowski M, Tønnesen K, Brzozowski B, Surmiak M, Magierowska K, Pajdo R, Ptak-Belowska A, Brzozowski T. Alternative Therapy in the Prevention of Experimental and Clinical Inflammatory Bowel Disease. Impact of Regular Physical Activity, Intestinal Alkaline Phosphatase and Herbal Products. Curr Pharm Des 2020; 26:2936-2950. [DOI: 10.2174/1381612826666200427090127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are multifactorial, chronic, disabling, and progressive diseases characterised by cyclical nature, alternating between active and quiescent states. While the aetiology of IBD is not fully understood, this complex of diseases involve a combination of factors including the genetic predisposition and changes in microbiome as well as environmental risk factors such as high-fat and low-fibre diets, reduced physical activity, air pollution and exposure to various toxins and drugs such as antibiotics. The prevalence of both IBD and obesity is increasing in parallel, undoubtedly proving the existing interactions between these risk factors common to both disorders to unravel poorly recognized cell signaling and molecular alterations leading to human IBD. Therefore, there is still a significant and unmet need for supportive and adjunctive therapy for IBD patients directed against the negative consequences of visceral obesity and bacterial dysbiosis. Among the alternative therapies, a moderate-intensity exercise can benefit the health and well-being of IBD patients and improve both the healing of human IBD and experimental animal colitis. Intestinal alkaline phosphatase (IAP) plays an essential role in the maintenance of intestinal homeostasis intestinal and the mechanism of mucosal defence. The administration of exogenous IAP could be recommended as a therapeutic strategy for the cure of diseases resulting from the intestinal barrier dysfunction such as IBD. Curcumin, a natural anti-inflammatory agent, which is capable of stimulating the synthesis of endogenous IAP, represents another alternative approach in the treatment of IBD. This review was designed to discuss potential “nonpharmacological” alternative and supplementary therapeutic approaches taking into account epidemiological and pathophysiological links between obesity and IBD, including changes in the functional parameters of the intestinal mucosa and alterations in the intestinal microbiome.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Dagmara Wojcik
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Aleksandra Danielak
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Agnieszka Mazur-Bialy
- Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Magierowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Katherine Tønnesen
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Bartosz Brzozowski
- Gastroenterology and Hepatology Clinic, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Surmiak
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Katarzyna Magierowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Robert Pajdo
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Agata Ptak-Belowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
25
|
Bao C, Liu B, Li B, Chai J, Zhang L, Jiao L, Li D, Yu Z, Ren F, Shi X, Li Y. Enhanced Transport of Shape and Rigidity-Tuned α-Lactalbumin Nanotubes across Intestinal Mucus and Cellular Barriers. NANO LETTERS 2020; 20:1352-1361. [PMID: 31904988 DOI: 10.1021/acs.nanolett.9b04841] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mucus is a viscoelastic biological hydrogel that protects the epithelial surface from penetration by most nanoparticles, which limits the efficiency of oral drug delivery. Pursuing highly efficient, biocompatible, and biodegradable oral drug vehicles is of central importance to the development of promising nanomedicine. Here, we prepared five peptosomes (PSs) with various sizes, shapes, and rigidities based on self-assembly of amphiphilic α-lactalbumin (α-lac) peptides from partial enzymolysis and cross-linking. The mucus permeation of α-lac PSs and release of curcumin (Cur) encapsulated in these PSs were evaluated. Compared with a long nanotube, big nanosphere, small nanosphere, and cross-linked short nanotube, we demonstrated that a short nanotube (SNT) exhibits excellent permeability in mucus, which enables it to arrive at epithelial cells quickly. Besides, SNT exhibits the highest cellular uptake and transmembrane permeability on Caco-2/HT29-MTX (E12) 3D coculture model. In vivo pharmacokinetic evaluation revealed that SNT formulation shows the highest curcumin bioavailability, which is 6.85-folds higher than free Cur. Most importantly, Cur loaded in SNT exhibits the optimum therapeutic efficacy for in vivo treatment of dextran sulfate sodium (DSS)-induced ulcerative colitis. In the end, the mechanism of the high permeability of SNTs through mucus was explained by coarse-grained molecular dynamics simulations, which indicated that short time scale jiggling and flying across pores of mucus network played key roles. These findings revealed the tubular α-lac PSs could be a promising oral drug delivery system targeted to mucosal for improving absorption and bioavailability of hydrophobic bioactive ingredients.
Collapse
Affiliation(s)
- Cheng Bao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
- School of Life Science , Ludong University , Yantai 264025 , China
| | - Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Bin Li
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Chinese Academy of Sciences , 100190 Beijing , China
- School of Chemical Engineering and Technology , Sun Yat-sen University , Zhuhai 519082 , China
| | - Jingjing Chai
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Liwei Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Lulu Jiao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Dan Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences , China Agricultural University , Beijing , 100193 , China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Xinghua Shi
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Chinese Academy of Sciences , 100190 Beijing , China
- University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , China
| | - Yuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| |
Collapse
|
26
|
Zhou X, Liu H, Zhang J, Mu J, Zalan Z, Hegyi F, Takács K, Zhao X, Du M. Protective effect of Lactobacillus fermentum CQPC04 on dextran sulfate sodium–induced colitis in mice is associated with modulation of the nuclear factor-κB signaling pathway. J Dairy Sci 2019; 102:9570-9585. [DOI: 10.3168/jds.2019-16840] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022]
|
27
|
Humayun Fard H, Hosseini SA, Azarbayjani MA, Nikbakht M. Antiapoptotic Effects of Continuous Training and Selenium Consumption on the Liver Tissue of Cadmium-Exposed Rats. MIDDLE EAST JOURNAL OF REHABILITATION AND HEALTH 2019; 6. [DOI: 10.5812/mejrh.91278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
|
28
|
Assessment of Selected Exercise-induced CD3 + Cell Subsets and Cell Death Parameters Among Soccer Players. J Med Biochem 2019; 38:437-444. [PMID: 31496907 PMCID: PMC6708294 DOI: 10.2478/jomb-2019-0013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/03/2019] [Indexed: 12/31/2022] Open
Abstract
Background Molecular mechanisms of biological adaptation to training in professional soccer players are unclear. The aim of this study was to assess the impact of progressive physical effort on peripheral T-cells and their molecular response. Methods Thirteen soccer players form Pogo Szczecin S.A., a top league soccer club, (median age 21, range 18– 31, years old) performed progressive efficiency tests on a mechanical treadmill until exhaustion at the start (period 1) and the end (period 2) of a competition round. Venous blood T-lymphocyte subsets, selected hallmarks of cell death and plasma cytokine levels were determined by flow cytometry three times: pre-exercise, post-exercise, and in recovery. Results Although significant changes in T, Tc and Tc-naïve cell percentages were found in both periods, Th-naïve cell percentages were altered only in period 1. Post-exercise IL-10 plasma levels were higher than pre-exercise, while an increase in TNF-α levels was noticed in recovery from both periods. An increase in recovery IL-12p70 levels was observed in the second period. Increases in the percentage of T-cells with disrupted mitochondrial membrane potentials, elevated levels of phosphorylated H2AX histones and increases in early apoptotic T-cells were also observed. Conclusions The immune system in soccer players creates space for naïve CD3+CD8+ cells by inducing mechanisms of cell death. It seems that the cumulative effect of physical activity during a competition round induced an adaptive mechanism, since the cell death process was induced faster during period 2.
Collapse
|
29
|
Erkens T, Bueters R, van Heerden M, Cuyckens F, Vreeken R, Goeminne N, Lammens L. Translational safety biomarkers of colonic barrier integrity in the rat. J Appl Toxicol 2018; 38:1282-1292. [DOI: 10.1002/jat.3639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Tim Erkens
- Preclinical Development & Safety, Janssen Research & Development, a division of Janssen Pharmaceutica NV; Turnhoutseweg 30 2340 Beerse Belgium
| | - Ruud Bueters
- Preclinical Development & Safety, Janssen Research & Development, a division of Janssen Pharmaceutica NV; Turnhoutseweg 30 2340 Beerse Belgium
| | - Marjolein van Heerden
- Preclinical Development & Safety, Janssen Research & Development, a division of Janssen Pharmaceutica NV; Turnhoutseweg 30 2340 Beerse Belgium
| | - Filip Cuyckens
- Preclinical Development & Safety, Janssen Research & Development, a division of Janssen Pharmaceutica NV; Turnhoutseweg 30 2340 Beerse Belgium
| | - Rob Vreeken
- Preclinical Development & Safety, Janssen Research & Development, a division of Janssen Pharmaceutica NV; Turnhoutseweg 30 2340 Beerse Belgium
| | - Nick Goeminne
- Preclinical Development & Safety, Janssen Research & Development, a division of Janssen Pharmaceutica NV; Turnhoutseweg 30 2340 Beerse Belgium
| | - Lieve Lammens
- Preclinical Development & Safety, Janssen Research & Development, a division of Janssen Pharmaceutica NV; Turnhoutseweg 30 2340 Beerse Belgium
| |
Collapse
|
30
|
Yu XT, Xu YF, Huang YF, Qu C, Xu LQ, Su ZR, Zeng HF, Zheng L, Yi TG, Li HL, Chen JP, Zhang XJ. Berberrubine attenuates mucosal lesions and inflammation in dextran sodium sulfate-induced colitis in mice. PLoS One 2018; 13:e0194069. [PMID: 29538417 PMCID: PMC5851626 DOI: 10.1371/journal.pone.0194069] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 02/25/2018] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing disease without satisfactory treatments, in which intestinal inflammation and disrupted intestinal epithelial barrier are two main pathogeneses triggering UC. Berberrubine (BB) is deemed as one of the major active metabolite of berberine (BBR), a naturally-occurring isoquinoline alkaloid with appreciable anti-UC effect. This study aimed to comparatively investigate the therapeutic effects of BB and BBR on dextran sodium sulfate (DSS)-induced mouse colitis model, and explore the potential underlying mechanism. Results revealed that BB (20 mg/kg) produced a comparable therapeutic effect as BBR (50 mg/kg) and positive control sulfasalazine (200 mg/kg) by significantly reducing the disease activity index (DAI) with prolonged colon length and increased bodyweight as compared with the DSS group. BB treatment was shown to significantly ameliorate the DSS-induced colonic pathological alternations and decreased histological scores. In addition, BB markedly attenuated colonic inflammation by alleviating inflammatory cell infiltration and inhibiting myeloperoxidase (MPO) and cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-4 and IL-10) productions in DSS mice. Furthermore, BB treatment substantially upregulated the expression of tight junction (TJ) proteins (zonula occludens-1, zonula occludens-2, claudin-1, occludin) and mRNA expression of mucins (mucin-1 and mucin-2), and decreased the Bax/Bcl-2 ratio. In summary, BB exerted similar effect to its analogue BBR and positive control in attenuating DSS-induced UC with much lower dosage and similar mechanism. The protective effect observed may be intimately associated with maintaining the integrity of the intestinal mucosal barrier and mitigating intestinal inflammation, which were mediated at least partially, via favorable modulation of TJ proteins and mucins and inhibition of inflammatory mediators productions in the colonic tissue. This is the first report to demonstrate that BB possesses pronounced anti-UC effect similar to BBR and sulfasalazine with much smaller dosage. BB might have the potential to be further developed into a promising therapeutic option in the treatment of UC.
Collapse
Affiliation(s)
- Xiu-Ting Yu
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yi-Fei Xu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yan-Feng Huang
- Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Chang Qu
- Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Lie-Qiang Xu
- Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Zi-Ren Su
- Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
- Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, Guangdong, PR China
| | - Hui-Fang Zeng
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Lin Zheng
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Tie-Gang Yi
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Hui-Lin Li
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Jian-Ping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Xiao-Jun Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| |
Collapse
|
31
|
Abstract
Inflammatory bowel diseases (IBDs), including both Crohn's disease (CD) and ulcerative colitis (UC), are chronic autoimmune diseases. Both CD and UC have relapsing and remitting courses. Although effective medical treatments exist for these chronic conditions, some patients do not respond to these traditional therapies. Patients are often left frustrated with incomplete resolution of symptoms and seek alternative or complementary forms of therapy. Patients often search for modifiable factors that could improve their symptoms or help them to maintain periods of remission. In this review, we examine both the published evidence on the benefits of exercise clinically and the pathophysiological changes associated with exercise. We then describe data on exercise patterns in patients with IBDs, potential barriers to exercise in IBDs, and the role of exercise in the development and course of IBDs. While some data support physical activity as having a protective role in the development of IBDs, the findings have not been robust. Importantly, studies of exercise in patients with mild-to-moderate IBD activity show no danger of disease or symptom exacerbation. Exercise has theoretical benefits on the immune response, and the limited available data suggest that exercise may improve disease activity, quality of life, bone mineral density, and fatigue levels in patients with IBDs. Overall, exercise is safe and probably beneficial in patients with IBDs. Evidence supporting specific exercise recommendations, including aspects such as duration and heart rate targets, is needed in order to better counsel patients with IBDs.
Collapse
Affiliation(s)
- Michael Engels
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Raymond K Cross
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Millie D Long
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
32
|
Yang Q, Wang WW, Ma P, Ma ZX, Hao M, Adelusi TI, Lei-Du, Yin XX, Lu Q. Swimming training alleviated insulin resistance through Wnt3a/ β-catenin signaling in type 2 diabetic rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:1220-1226. [PMID: 29299199 PMCID: PMC5749356 DOI: 10.22038/ijbms.2017.9473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/10/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Increasing evidence suggests that regular physical exercise improves type 2 diabetes mellitus (T2DM). However, the potential beneficial effects of swimming on insulin resistance and lipid disorder in T2DM, and its underlying mechanisms remain unclear. MATERIALS AND METHODS Rats were fed with high fat diet and given a low dosage of Streptozotocin (STZ) to induce T2DM model, and subsequently treated with or without swimming exercise. An 8-week swimming program (30, 60 or 120 min per day, 5 days per week) decreased body weight, fasting blood glucose and fasting insulin. RESULTS Swimming ameliorated lipid disorder, improved muscular atrophy and revealed a reduced glycogen deposit in skeletal muscles of diabetic rats. Furthermore, swimming also inhibited the activation of Wnt3a/β-catenin signaling pathway, decreased Wnt3a mRNA and protein level, upregulated GSK3β phosphorylation activity and reduced the expression of β-catenin phosphorylation in diabetic rats. CONCLUSION The trend of the result suggests that swimming exercise proved to be a potent ameliorator of insulin resistancein T2DM through the modulation of Wnt3a/β-catenin pathway and therefore, could present a promising therapeutic measure towards the treatment of diabetes and its relatives.
Collapse
Affiliation(s)
- Qiang Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou 221002, Jiangsu, China
| | - Wen-wen Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou 221002, Jiangsu, China
| | - Pu Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou 221002, Jiangsu, China
| | - Zhong-xuan Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou 221002, Jiangsu, China
| | - Meng Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou 221002, Jiangsu, China
| | - Temitope I Adelusi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou 221002, Jiangsu, China
| | - Lei-Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou 221002, Jiangsu, China
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou 221002, Jiangsu, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou 221002, Jiangsu, China
| |
Collapse
|