1
|
Amin GSM, Marouf BH, Namiq HS, Salih JM. Impact of Resveratrol and Pharmaceutical Care on Type 2 Diabetes Mellitus and Its Neuropathic Complication: A Randomized Placebo Controlled Clinical Trial. J Clin Pharm Ther 2024; 2024:1-18. [DOI: 10.1155/2024/7739710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Background. Management of diabetic neuropathy (DN) is a challenging issue. Therefore, integration of pharmaceutical care provided by the clinical pharmacists with pharmacotherapy may provide multifaceted approach to target the management of hyperglycemia and diabetic neuropathic complication. This study aimed to evaluate the effects of resveratrol (Resv) and/or pharmaceutical care (PC) on glycemic control and amelioration of diabetes-associated neuropathic complications. Patients and Methods. A four-arm randomized placebo-controlled clinical trial assigned 120 patients from the Diabetes and Endocrinology Center in Sulaymaniyah City, Iraq. The patients were divided into four groups. The Resv group (n = 30) received 500 mg Resv capsules once daily. The Placebo group (n = 30) received placebo capsules. Resv + PC (n = 30) received Resv 500 mg capsules with PC. Placebo + PC (n = 30) received placebo capsule plus PC. The duration of the intervention was 90 days. Drug therapy problems (DTPs) have been utilized as an important domain in PC. Clinical signs, symptoms, and neuropathic abnormalities were assessed using the Michigan Neuropathy Screening Instrument (MNSI), Douleur Neuropathique 4 (DN4) questions, and nerve conduction studies (NCSs) of the lower-limb sensory and motor nerves. Results. 97 patients from all the groups completed the study. At baseline, 84% of the Resv, 87% of the Placebo, and 92% of each of Resv + PC and Placebo + PC groups, respectively, had at least one DTP. The provision of PC resulted in a dramatic reduction in the number of DTP. Resveratrol with PC significantly ameliorated hyperglycemic status, neuropathic signs, and symptoms, as evidenced by a decrease in MNSI and DN4 scores and improvement in electroneurographic parameters. Conclusion. These findings support the integration of the PC concept into a pharmacotherapy intervention; they also encourage supplementation of Resv with conventional diabetes therapy to emphasize on the importance of this herbal medicine with the provision of PC in the management of diabetes and its neuropathic complications. This trial is registered with NCT05172947.
Collapse
Affiliation(s)
- Gulabakh Sabir M. Amin
- Department of Clinical Pharmacy, College of Pharmacy, University of Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq
| | - Bushra Hassan Marouf
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq
| | - Hiwa Shafiq Namiq
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq
| | - Jamal Mahmood Salih
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq
- Diabetes and Endocrinology Center, Directorate of Health, Sulaymaniyah, Iraq
| |
Collapse
|
2
|
|
3
|
Lele W, Lei L, Liting Q. Resveratrol sensitizes A549 cells to irradiation damage via suppression of store-operated calcium entry with Orai1 and STIM1 downregulation. Exp Ther Med 2021; 21:587. [PMID: 33850559 PMCID: PMC8027717 DOI: 10.3892/etm.2021.10019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 11/26/2020] [Indexed: 01/04/2023] Open
Abstract
Resveratrol is a natural polyphenol with multiple positive biofunctions and was found to have potential as a radiosensitizer with an intricate molecular mechanism. Store-operated calcium entry (SOCE) is a novel intracellular calcium regulatory pattern that is mainly mediated by iron channels, such as by the stromal interaction molecule (STIM) and calcium release-activated calcium channel protein (Orai) families. SOCE was recently reported to be suppressed via the downregulation of STIM or Orai families for the promotion of tumor cell death induced by resveratrol. In the present study, resveratrol combined with irradiation treatment were found to induce more evident cell damage compared with irradiation treatment alone, as shown with Cell Counting Kit-8 assay and mitochondrial membrane potential detection with rhodamine 123. Additionally, resveratrol combined with irradiation treatment decreased the expression of STIM1 and Orai1, while it had no effects on STIM2, Orai2 and Orai3. Moreover, resveratrol combined with irradiation treatment lead to alleviated thapsigargin-induced SOCE. In addition, overexpression of STIM1 and Orai1 reversed resveratrol-induced SOCE inhibition and reduced death in A549 cells under irradiation. In summary, the present results revealed that resveratrol can significantly enhance the effect of irradiation damage on lung adenocarcinoma A549 cells, and this effect may be mediated by suppression of SOCE with reduced expression of both STIM1 and Orai1.
Collapse
Affiliation(s)
- Wu Lele
- Department of General Medicine, First People's Hospital of Yuhang, Hangzhou, Zhejiang 311100, P.R. China.,Department of Radiotherapy, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China
| | - Lv Lei
- Department of Radiotherapy, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China.,Epigenetic Laboratory, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China
| | - Qian Liting
- Department of Radiotherapy, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China.,Epigenetic Laboratory, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
4
|
Cook DC, Goldstein PA. Non-canonical Molecular Targets for Novel Analgesics: Intracellular Calcium and HCN Channels. Curr Neuropharmacol 2021; 19:1937-1951. [PMID: 33463473 PMCID: PMC9185781 DOI: 10.2174/1570159x19666210119153047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/17/2021] [Indexed: 11/22/2022] Open
Abstract
Pain is a prevalent biopsychosocial condition that poses a significant challenge to healthcare providers, contributes substantially to a disability, and is a major economic burden worldwide. An overreliance on opioid analgesics, which primarily target the μ-opioid receptor, has caused devastating morbidity and mortality in the form of misuse and overdose-related death. Thus, novel analgesic medications are needed that can effectively treat pain and provide an alternative to opioids. A variety of cellular ion channels contribute to nociception, the response of the sensory nervous system to a noxious stimulus that commonly leads to pain. Ion channels involved in nociception may provide a suitable target for pharmacologic modulation to achieve pain relief. This narrative review summarizes the evidence for two ion channels that merit consideration as targets for non-opioid pain medications: ryanodine receptors (RyRs), which are intracellular calcium channels, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which belong to the superfamily of voltage-gated K+ channels. The role of these channels in nociception and neuropathic pain is discussed and suitability as targets for novel analgesics and antihyperalgesics is considered.
Collapse
Affiliation(s)
- Daniel C. Cook
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Peter A. Goldstein
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY 10065, USA
- Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
5
|
Chronic resveratrol consumption prevents hypertension development altering electrophysiological currents and Ca 2+ signaling in chromaffin cells from SHR rats. Cell Signal 2020; 76:109811. [PMID: 33075487 DOI: 10.1016/j.cellsig.2020.109811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/31/2022]
Abstract
Resveratrol (RESV) is one of the most abundant polyphenol-stilbene compounds found in red wine with well-established cardioprotective and antihypertensive effects. Hyperactivity of the sympathoadrenal axis seems to be one of the major contributing factors in the pathogenesis of human essential hypertension. Alterations in outward voltage-dependent potassium currents (IK) and inward voltage-dependent sodium (INa), calcium (ICa) and nicotinic (IACh) currents, CCs excitability, Ca2+ homeostasis, and catecholamine exocytosis were previously related to the hypertensive state. This raised the issue of whether in vivo long-term RESV treatment can directly act as a modulator of Ca2+ influx or a regulator of ion channel permeability in CCs. We monitored outward and inward currents, and cytosolic Ca2+ concentrations ([Ca2+]c) using different pharmacological approaches in CCs from normotensive (WKY) and hypertensive (SHR) animals chronically exposed to trans-RESV (50 mg/L/v.o, 28 days). The long-term RESV treatment prevented the increase of the systolic blood pressure (SBP) in SHR, without reversion of cardiac hypertrophy. We also found an increase of the outward IK, reduction in inward INa,ICa, and IACh, and the mitigation of [Ca2+]c overload in CCs from SHR at the end of RESV treatment. Our data revealed that electrophysiological alterations of the CCs and in its Ca2+ homeostasis are potential new targets related to the antihypertensive effects of long-term RESV treatment.
Collapse
|
6
|
Neuron-derived factors negatively modulate ryanodine receptor-mediated calcium release in cultured mouse astrocytes. Cell Calcium 2020; 92:102304. [PMID: 33065384 DOI: 10.1016/j.ceca.2020.102304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022]
Abstract
Changes in intracellular Ca2+ concentration ([Ca2+]i) produced by ryanodine receptor (RyR) agonist, caffeine (caf), and ionotropic agonists: N-methyl-d-aspartate (NMDA) receptor (NMDAR) agonist, NMDA and P2X7 receptor (P2X7R) agonist, 3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (BzATP) were measured in cultured mouse cortical astrocytes loaded with the fluorescent calcium indicator Fluo3-AM in a confocal laser scanning microscope. In mouse astrocytes cultured in standard medium (SM), treatment with caf increased [Ca2+]i, with a peak response occurring about 10 min after stimulus application. Peak responses to NMDA or BzATP were observed about <1 min and 4.5 min post stimulus, respectively. Co-treatment with NMDA or BzATP did not alter the peak response to caf in astrocytes cultured in SM, the absence of the effects being most likely due to asynchrony between the response to caf, NMDA and BzATP. Incubation of astrocytes with neuron-condition medium (NCM) for 24 h totally abolished the caf-evoked [Ca2+]i increase. In NCM-treated astrocytes, peak of [Ca2+]i rise evoked by NMDA was delayed to about 3.5 min, and that induced by BzATP occurred about three minutes earlier than in SM. The results show that neurons secrete factors that negatively modulate RyR-mediated Ca2+-induced Ca2+ release (CICR) in astrocytes and alter the time course of Ca2+ responses to ionotropic stimuli.
Collapse
|
7
|
Yool AJ, Ramesh S. Molecular Targets for Combined Therapeutic Strategies to Limit Glioblastoma Cell Migration and Invasion. Front Pharmacol 2020; 11:358. [PMID: 32292341 PMCID: PMC7118801 DOI: 10.3389/fphar.2020.00358] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
The highly invasive nature of glioblastoma imposes poor prospects for patient survival. Molecular evidence indicates glioblastoma cells undergo an intriguing expansion of phenotypic properties to include neuron-like signaling using excitable membrane ion channels and synaptic proteins, augmenting survival and motility. Neurotransmitter receptors, membrane signaling, excitatory receptors, and Ca2+ responses are important candidates for the design of customized treatments for cancers within the heterogeneous central nervous system. Relatively few published studies of glioblastoma multiforme (GBM) have evaluated pharmacological agents targeted to signaling pathways in limiting cancer cell motility. Transcriptomic analyses here identified classes of ion channels, ionotropic receptors, and synaptic proteins that are enriched in human glioblastoma biopsy samples. The pattern of GBM-enriched gene expression points to a major role for glutamate signaling. However, the predominant role of AMPA receptors in fast excitatory signaling throughout the central nervous system raises a challenge on how to target inhibitors selectively to cancer cells while maintaining tolerability. This review critically evaluates a panel of ligand- and voltage-gated ion channels and synaptic proteins upregulated in GBM, and the evidence for their potential roles in the pathological disease progress. Evidence suggests combinations of therapies could be more effective than single agents alone. Natural plant products used in traditional medicines for the treatment of glioblastoma contain flavonoids, terpenoids, polyphenols, epigallocatechin gallate, quinones, and saponins, which might serendipitously include agents that modulate some classes of signaling compounds highlighted in this review. New therapeutic strategies are likely to exploit evidence-based combinations of selected agents, each at a low dose, to create new cancer cell-specific therapeutics.
Collapse
Affiliation(s)
- Andrea J. Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Sunita Ramesh
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
8
|
Oliveira CDC, Castor MGME, Castor CGME, Costa ÁDF, Ferreira RCM, Silva JFD, Pelaez JMN, Capettini LDSA, Lemos VS, Duarte IDG, Perez ADC, Santos SHS, Romero TRL. Evidence for the involvement of opioid and cannabinoid systems in the peripheral antinociception mediated by resveratrol. Toxicol Appl Pharmacol 2019; 369:30-38. [PMID: 30763598 DOI: 10.1016/j.taap.2019.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 01/12/2023]
Abstract
Despite all the development of modern medicine, around 100 compounds derived from natural products were undergoing clinical trials only at the end of 2013. Among these natural substances in clinical trials, we found the resveratrol (RES), a pharmacological multi-target drug. RES analgesic properties have been demonstrated, although the bases of these mechanisms have not been fully elucidated. The aim of this study was to evaluate the involvement of opioid and cannabinoid systems in RES-induced peripheral antinociception. Paw withdrawal method was used and hyperalgesia was induced by carrageenan (200 μg/paw). All drugs were given by intraplantar injection in male Swiss mice (n = 5). RES (100 μg/paw) administered in the right hind paw induced local antinociception that was antagonized by naloxone, non-selective opioid receptor antagonist, and clocinnamox, μOR selective antagonist. Naltrindole and nor-binaltorfimine, selective antagonists for δOR and kOR, respectively, did not reverse RES-induced peripheral antinociception. CB1R antagonist AM251, but not CB2R antagonist AM630, antagonized RES-induced peripheral antinociception. Peripheral antinociception of RES intermediate-dose (50 μg/paw) was increased by: (i) bestatin, inhibitor of endogenous opioid degradation involved-enzymes; (ii) MAFP, inhibitor of anandamide amidase; (iii) JZL184, inhibitor of 2-arachidonoylglycerol degradation involved-enzyme; (iv) VDM11, endocannabinoid reuptake inhibitor. Acute and peripheral administration of RES failed to affect the amount of μOR, CB1R and CB2R. Experimental data suggest that RES induces peripheral antinociception through μOR and CB1R activation by endogenous opioid and endocannabinoid releasing.
Collapse
Affiliation(s)
- Cristina da Costa Oliveira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Marina Gomes Miranda E Castor
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Camila Gomes Miranda E Castor
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ághata de França Costa
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Renata Cristina Mendes Ferreira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | - Juliana Maria Navia Pelaez
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Luciano Dos Santos Aggum Capettini
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Virginia Soares Lemos
- Department of Physiology, Institute of Biological Sciences, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Igor Dimitri Gama Duarte
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Andrea de Castro Perez
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | - Thiago Roberto Lima Romero
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
9
|
Liu X, Botchway BOA, Tan X, Zhang Y, Fang M. Resveratrol treatment of spinal cord injury in rat model. Microsc Res Tech 2018; 82:296-303. [PMID: 30575194 DOI: 10.1002/jemt.23171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/03/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022]
Abstract
Spinal cord injury (SCI) is catastrophic and can culminate in disability and death. The routine therapy employed in early stages of SCI currently entails surgical procedures combined with high doses of methylprednisolone (MP). MP is highly controversial for the lack of consensus on its true therapeutic effects. Resveratrol (RES) has recently been recognized as a potential and novel therapeutic drug in SCI. Herein, we investigated the effect of RES in a SCI rat-model and found significant improvement in Basso-Beattie-Bresnahan scores. Results obtained from histological, immunohistochemistry, and ultra-structural examinations evidenced the tremendous treatment effect of RES. On the basis of our experimental results, we hypothesize that RES could serve as an effective SCI therapeutic with prolong treatment time following injury.
Collapse
Affiliation(s)
- Xuehong Liu
- Department of Histology and Embryology, Shaoxing University School of Medicine, Shaoxing, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoning Tan
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Shaoxing University School of Medicine, Shaoxing, China
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Xu L, Botchway BOA, Zhang S, Zhou J, Liu X. Inhibition of NF-κB Signaling Pathway by Resveratrol Improves Spinal Cord Injury. Front Neurosci 2018; 12:690. [PMID: 30337851 PMCID: PMC6180204 DOI: 10.3389/fnins.2018.00690] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) can have a significant impact on an individual’s life. Herein, we discuss how resveratrol improves SCI by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. Evidences show resveratrol suppresses NF-κB signaling pathway to exert its beneficial effects on various diseases. NF-κB signaling pathway plays a significant role in the pathophysiological mechanisms of SCI including increase in inflammation, augmentation of damage caused by free radicals and lipid peroxidation as well as facilitation of apoptosis and axonal demyelination. We also discuss mechanisms between resveratrol and NF-κB signaling pathway in the wake of SCI, which can be potential targets for resveratrol to treat SCI.
Collapse
Affiliation(s)
- Luyao Xu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Songou Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Jingying Zhou
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| |
Collapse
|
11
|
Sheng W, Lu Y, Mei F, Wang N, Liu ZZ, Han YY, Wang HT, Zou S, Xu H, Zhang X. Effect of Resveratrol on Sirtuins, OPA1, and Fis1 Expression in Adult Zebrafish Retina. ACTA ACUST UNITED AC 2018; 59:4542-4551. [PMID: 30208422 DOI: 10.1167/iovs.18-24539] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Weiwei Sheng
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Queen Mary School of Nanchang University, Nanchang, China
| | - Ye Lu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - Feng Mei
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - Ning Wang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - Zhi-Zhi Liu
- Institute of Life Science of Nanchang University, Nanchang, China
- School of Life Sciences of Nanchang University, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| | - Ying-Ying Han
- Institute of Life Science of Nanchang University, Nanchang, China
- School of Life Sciences of Nanchang University, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| | - Han-Tsing Wang
- Institute of Life Science of Nanchang University, Nanchang, China
- School of Life Sciences of Nanchang University, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| | - Suqi Zou
- Institute of Life Science of Nanchang University, Nanchang, China
- School of Life Sciences of Nanchang University, Nanchang, China
| | - Hong Xu
- Institute of Life Science of Nanchang University, Nanchang, China
- School of Life Sciences of Nanchang University, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| |
Collapse
|
12
|
Hussain SA, Marouf BH, Ali ZS, Ahmmad RS. Efficacy and safety of co-administration of resveratrol with meloxicam in patients with knee osteoarthritis: a pilot interventional study. Clin Interv Aging 2018; 13:1621-1630. [PMID: 30233159 PMCID: PMC6130538 DOI: 10.2147/cia.s172758] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background and aim Resveratrol shows remarkable anti-inflammatory activities in experimental models. This study aims to evaluate the effect of resveratrol, as an adjuvant with meloxicam (Mlx), on the pain and functional activity during a 90-day period and monitor the adverse effects on kidney and liver functions, lipid profile, and hematological markers. Patients and methods This study was a double-blind, placebo-controlled, randomized multi-center study that involved 110 patients with knee osteoarthritis (OA) and was performed at Sulaimani City, Iraq, from December 2016 to September 2017. To assess the effects of Mlx with or without resveratrol, pain severity and functional disability were evaluated at baseline and after 90 days using the Western Ontario and McMaster Universities Osteoarthritis Index. Fasting blood was collected to evaluate the lipid profile markers, hematological picture, and liver and kidney functions, in addition to vitamin D level. Results Resveratrol significantly improves pain, functions, and associated symptoms compared with placebo. The clinical and biochemical markers indicated that 500 mg/day of resveratrol, as an adjuvant with Mlx, is safe and well tolerated by the knee OA patients. Conclusion Resveratrol, as an “add-on” medication with Mlx, was superior in terms of safety and efficacy to Mlx alone for the treatment of pain and improvement of physical function in patients with knee OA.
Collapse
Affiliation(s)
- Saad Abdulrahman Hussain
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Rafidain University College, Al-Rafidain, Baghdad, Iraq,
| | - Bushra Hassan Marouf
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaimani, Kurdistan, Iraq
| | - Ziyad Serdar Ali
- Department of Rheumatology and Orthopedics, Shar Teaching Hospital, Sulaimani, Kurdistan, Iraq
| | - Runj Simko Ahmmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Rafidain University College, Al-Rafidain, Baghdad, Iraq,
| |
Collapse
|
13
|
Zhao L, Zhang Y, Yang F, Zhu D, Li N, Zhao L, Li N, Yu J, Ma H. Effects of intrathecal bupivacaine on the NR2B/CaMKIIα/CREB signaling pathway in the rat lumbar spinal cord. Mol Med Rep 2018; 17:4508-4514. [PMID: 29344649 PMCID: PMC5802227 DOI: 10.3892/mmr.2018.8448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/12/2017] [Indexed: 11/08/2022] Open
Abstract
Neuraxial anesthesia produces an anesthetic-sparing, sedative effect. The mechanism underlying this effect potentially involves decreased spinal afferent input. However, the neurochemical mechanisms at the spinal level remain unknown. The N-methyl-D-aspartate receptor 2B subunit/calcium-calmodulin-dependent protein kinase II α/cAMP response element-binding protein (NR2B/CaMKIIα/CREB) signaling pathway serves an important role in regulating the transmittance of peripheral noxious stimulation to supraspinal regions in the process of nociception. The present study investigated the effects of intrathecal bupivacaine on the NR2B/CaMKIIα/CREB signaling pathway. Following catheterization, 36 male Sprague-Dawley rats were randomly assigned to a normal saline (NS) or bupivacaine treatment group, in which each rat intrathecally received 20 µl normal saline or 0.5% bupivacaine, respectively. The expression levels of NR2B, CaMKIIα/p-CaMKIIα, and CREB/phosphorylated (p)-CREB in the lumbar spinal cord were investigated by western blotting, reverse transcription-quantitative polymerase chain reaction and immunohistochemistry (IHC). Following bupivacaine treatment, western blot analysis demonstrated that the protein expression levels of NR2B, p-CaMKIIα, and p-CREB in the spinal cord were reduced by approximately 54, 56 and 33%, respectively, compared with NS control rats. Similar alterations in expression were observed by IHC analysis. Additionally, mRNA expression levels of NR2B, CaMKIIα, and CREB were also downregulated following the intrathecal administration of bupivacaine. Therefore, the sedative effect of subarachnoid blockade with bupivacaine possibly occurs through de-afferentation, which may reduce cortical arousal by downregulating the spinal NR2B/CaMKIIα/CREB pathway in vivo, however further investigation is required in order to verify this.
Collapse
Affiliation(s)
- Liyan Zhao
- Department of Anesthesiology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yonghai Zhang
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Fan Yang
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Di Zhu
- Department of Anesthesiology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Ningkang Li
- Department of Anesthesiology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Li Zhao
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Na Li
- Department of Anesthesiology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jianqiang Yu
- Department of Pharmacology, Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hanxiang Ma
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
14
|
Liang Z, Li T, Jiang S, Xu J, Di W, Yang Z, Hu W, Yang Y. AMPK: a novel target for treating hepatic fibrosis. Oncotarget 2017; 8:62780-62792. [PMID: 28977988 PMCID: PMC5617548 DOI: 10.18632/oncotarget.19376] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/08/2017] [Indexed: 12/19/2022] Open
Abstract
Fibrosis is a common process of excessive extracellular matrix (ECM) accumulation following inflammatory injury. Fibrosis is involved in the pathogenesis of almost all liver diseases for which there is no effective treatment. 5'-AMP-activated protein kinase (AMPK) is a cellular energy sensor that can ameliorate the process of hepatic fibrogenesis. Given the existing evidence, we first introduce the basic background of AMPK and hepatic fibrosis and the actions of AMPK in hepatic fibrosis. Second, we discuss the three phases of hepatic fibrosis and potential drugs that target AMPK. Third, we analyze possible anti-fibrosis mechanisms and other benefits of AMPK on the liver. Finally, we summarize and briefly explain the current objections to targeting AMPK. This review may aid clinical and basic research on AMPK, which may be a novel drug candidate for hepatic fibrosis.
Collapse
Affiliation(s)
- Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Tian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an 710069, China.,Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an 710032, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Jing Xu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wencheng Di
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an 710032, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an 710032, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an 710069, China.,Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|