1
|
Srivastava R, Labani-Motlagh A, Chen A, Bohorquez JA, Qin B, Dodda M, Yang F, Ansari D, Patel S, Ji H, Trasti S, Chao Y, Patel Y, Zou H, Hu B, Yi G. Development of a human glioblastoma model using humanized DRAG mice for immunotherapy. Antib Ther 2023; 6:253-264. [PMID: 38075240 PMCID: PMC10702851 DOI: 10.1093/abt/tbad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 12/20/2023] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary brain tumor. The development of alternative humanized mouse models with fully functional human immune cells will potentially accelerate the progress of GBM immunotherapy. We successfully generated humanized DRAG (NOD.Rag1KO.IL2RγcKO) mouse model by transplantation of human DR4+ hematopoietic stem cells (hHSCs), and effectively grafted GBM patient-derived tumorsphere cells to form xenografted tumors intracranially. The engrafted tumors recapitulated the pathological features and the immune cell composition of human GBM. Administration of anti-human PD-1 antibodies in these tumor-bearing humanized DRAG mice decreased the major tumor-infiltrating immunosuppressive cell populations, including CD4+PD-1+ and CD8+PD-1+ T cells, CD11b+CD14+HLA-DR+ macrophages, CD11b+CD14+HLA-DR-CD15- and CD11b+CD14-CD15+ myeloid-derived suppressor cells, indicating the humanized DRAG mice as a useful model to test the efficacy of GBM immunotherapy. Taken together, these results suggest that the humanized DRAG mouse model is a reliable preclinical platform for studying brain cancer immunotherapy and beyond.
Collapse
Affiliation(s)
- Rashmi Srivastava
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Alireza Labani-Motlagh
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Apeng Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jose Alejandro Bohorquez
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Bin Qin
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
- National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, People’s Republic of China
| | - Meghana Dodda
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Fan Yang
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Danish Ansari
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Sahil Patel
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Honglong Ji
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Scott Trasti
- Laboratory Animal Resource Center, Texas Tech University Health Sciences Center, Lubbock, TX 79410, USA
| | - Yapeng Chao
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Yash Patel
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Han Zou
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Guohua Yi
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| |
Collapse
|
2
|
Srivastava R, Labani-Motlagh A, Chen A, Yang F, Ansari D, Patel S, Ji H, Trasti S, Dodda M, Patel Y, Zou H, Hu B, Yi G. Development of a human glioblastoma model using humanized DRAG mice for immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528743. [PMID: 36824969 PMCID: PMC9948970 DOI: 10.1101/2023.02.15.528743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Glioblastoma (GBM) is the most common and lethal primary brain tumor with high mortality rates and a short median survival rate of about 15 months despite intensive multimodal treatment of maximal surgical resection, radiotherapy, and chemotherapy. Although immunotherapies have been successful in the treatment of various cancers, disappointing results from clinical trials for GBM immunotherapy represent our incomplete understanding. The development of alternative humanized mouse models with fully functional human immune cells will potentially accelerate the progress of GBM immunotherapy. In this study, we developed a humanized DRAG (NOD.Rag1KO.IL2RγcKO) mouse model, in which the human hematopoietic stem cells (HSCs) were well-engrafted and subsequently differentiated into a full lineage of immune cells. Using this humanized DRAG mouse model, GBM patient-derived tumorsphere lines were successfully engrafted to form xenografted tumors, which can recapitulate the pathological features and the immune cell composition of human GBM. Importantly, the administration of anti-human PD-1 antibodies in these DRAG mice bearing a GBM patient-derived tumorsphere line resulted in decreasing the major tumor-infiltrating immunosuppressive cell populations, including CD4 + PD-1 + and CD8 + PD-1 + T cells, CD11b + CD14 + HLA-DR + macrophages, CD11b + CD14 + HLA-DR - CD15 - and CD11b + CD14 - CD15 + myeloid-derived suppressor cells, indicating the humanized DRAG mouse model as a useful model to test the efficacy of immune checkpoint inhibitors in GBM immunotherapy. Together, these results suggest that humanized DRAG mouse models are a reliable preclinical platform for brain cancer immunotherapy and beyond.
Collapse
|
3
|
Sreekumar S, Zhou D, Mpoy C, Schenk E, Scott J, Arbeit JM, Xu J, Rogers BE. Preclinical Efficacy of a PARP-1 Targeted Auger-Emitting Radionuclide in Prostate Cancer. Int J Mol Sci 2023; 24:3083. [PMID: 36834491 PMCID: PMC9967758 DOI: 10.3390/ijms24043083] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
There is an unmet need for better therapeutic strategies for advanced prostate cancer. Poly (ADP-ribose) polymerase-1 (PARP-1) is a chromatin-binding DNA repair enzyme overexpressed in prostate cancer. This study evaluates whether PARP-1, on account of its proximity to the cell's DNA, would be a good target for delivering high-linear energy transfer Auger radiation to induce lethal DNA damage in prostate cancer cells. We analyzed the correlation between PARP-1 expression and Gleason score in a prostate cancer tissue microarray. A radio-brominated Auger emitting inhibitor ([77Br]Br-WC-DZ) targeting PARP-1 was synthesized. The ability of [77Br]Br-WC-DZ to induce cytotoxicity and DNA damage was assessed in vitro. The antitumor efficacy of [77Br]Br-WC-DZ was investigated in prostate cancer xenograft models. PARP-1 expression was found to be positively correlated with the Gleason score, thus making it an attractive target for Auger therapy in advanced diseases. The Auger emitter, [77Br]Br-WC-DZ, induced DNA damage, G2-M cell cycle phase arrest, and cytotoxicity in PC-3 and IGR-CaP1 prostate cancer cells. A single dose of [77Br]Br-WC-DZ inhibited the growth of prostate cancer xenografts and improved the survival of tumor-bearing mice. Our studies establish the fact that PARP-1 targeting Auger emitters could have therapeutic implications in advanced prostate cancer and provides a strong rationale for future clinical investigation.
Collapse
Affiliation(s)
- Sreeja Sreekumar
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dong Zhou
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cedric Mpoy
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elsa Schenk
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jalen Scott
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey M. Arbeit
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Buck E. Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Bouchalova P, Bouchal P. Current methods for studying metastatic potential of tumor cells. Cancer Cell Int 2022; 22:394. [PMID: 36494720 PMCID: PMC9733110 DOI: 10.1186/s12935-022-02801-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Cell migration and invasiveness significantly contribute to desirable physiological processes, such as wound healing or embryogenesis, as well as to serious pathological processes such as the spread of cancer cells to form tumor metastasis. The availability of appropriate methods for studying these processes is essential for understanding the molecular basis of cancer metastasis and for identifying suitable therapeutic targets for anti-metastatic treatment. This review summarizes the current status of these methods: In vitro methods for studying cell migration involve two-dimensional (2D) assays (wound-healing/scratch assay), and methods based on chemotaxis (the Dunn chamber). The analysis of both cell migration and invasiveness in vitro require more complex systems based on the Boyden chamber principle (Transwell migration/invasive test, xCELLigence system), or microfluidic devices with three-dimensional (3D) microscopy visualization. 3D culture techniques are rapidly becoming routine and involve multicellular spheroid invasion assays or array chip-based, spherical approaches, multi-layer/multi-zone culture, or organoid non-spherical models, including multi-organ microfluidic chips. The in vivo methods are mostly based on mice, allowing genetically engineered mice models and transplant models (syngeneic mice, cell line-derived xenografts and patient-derived xenografts including humanized mice models). These methods currently represent a solid basis for the state-of-the art research that is focused on understanding metastatic fundamentals as well as the development of targeted anti-metastatic therapies, and stratified treatment in oncology.
Collapse
Affiliation(s)
- Pavla Bouchalova
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Pavel Bouchal
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
5
|
Pobel C, Laurent E, Florence AM, Fromont G, Calais G, Narciso B, Linassier C, Cancel M. Impact of novel hormonal agents (abiraterone, enzalutamide) on the development of visceral and/or brain metastases in patients with bone-metastatic castration-resistant prostate cancer. Clin Genitourin Cancer 2022; 20:495.e1-495.e9. [DOI: 10.1016/j.clgc.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/03/2022]
|
6
|
Abstract
Liver metastasis, originating either from a primary liver or other cancer types, represent a large cancer-related burden. Therefore, studies that add to better understanding of its molecular basis are needed. Herein, the role of the Wnt signaling pathway in liver metastasis is outlined. Its role in hepatocellular carcinoma (HCC) epithelial-mesenchymal transition (EMT), motility, migration, metastasis formation, and other steps of the metastatic cascade are presented. Additionally, the roles of the Wnt signaling pathway in the liver metastasis formation of colorectal, breast, gastric, lung, melanoma, pancreatic, and prostate cancer are explored. The special emphasis is given to the role of the Wnt signaling pathway in the communication between the many of the components of the primary and secondary cancer microenvironment that contribute to the metastatic outgrowth in the liver. The data presented herein are a review of the most recent publications and advances in the field that add to the idea that the Wnt pathway is among the drivers of liver metastasis and that its targeting could potentially relieve liver metastasis–related complications.
Collapse
|
7
|
Boucher P, Cui X, Curiel DT. Adenoviral vectors for in vivo delivery of CRISPR-Cas gene editors. J Control Release 2020; 327:788-800. [PMID: 32891680 PMCID: PMC8091654 DOI: 10.1016/j.jconrel.2020.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022]
Abstract
Harnessing the bacterial clustered regularly interspaced short palindromic repeats (CRISPR) system for genome editing in eukaryotes has revolutionized basic biomedical research and translational sciences. The ability to create targeted alterations of the genome through this easy to design system has presented unprecedented opportunities to treat inherited disorders and other diseases such as cancer through gene therapy. A major hurdle is the lack of an efficient and safe in vivo delivery system, limiting most of the current gene therapy efforts to ex vivo editing of extracted cells. Here we discuss the unique features of adenoviral vectors that enable tissue specific and efficient delivery of the CRISPR-Cas machinery for in vivo genome editing.
Collapse
Affiliation(s)
- Paul Boucher
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Xiaoxia Cui
- Genome Engineering & iPSC Center, Department of Genetics, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - David T Curiel
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA; Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Lee M, Lu ZH, Li J, Kashentseva EA, Dmitriev IP, Mendonca SA, Curiel DT. Targeting Tumor Neoangiogenesis via Targeted Adenoviral Vector to Achieve Effective Cancer Gene Therapy for Disseminated Neoplastic Disease. Mol Cancer Ther 2020; 19:966-971. [PMID: 31907220 DOI: 10.1158/1535-7163.mct-19-0768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/24/2019] [Accepted: 12/31/2019] [Indexed: 11/16/2022]
Abstract
The application of cancer gene therapy has heretofore been restricted to local, or locoregional, neoplastic disease contexts. This is owing to the lack of gene transfer vectors, which embody the requisite target cell selectivity in vivo required for metastatic disease applications. To this end, we have explored novel vector engineering paradigms to adapt adenovirus for this purpose. Our novel strategy exploits three distinct targeting modalities that operate in functional synergy. Transcriptional targeting is achieved via the hROBO4 promoter, which restricts transgene expression to proliferative vascular endothelium. Viral binding is modified by incorporation of an RGD4C peptide in the HI loop of the fiber knob for recognition of cellular integrins. Liver sequestration is mitigated by ablation of factor X binding to the major capsid protein hexon by a serotype swap approach. The combination of these technologies into the context of a single-vector agent represents a highly original approach. Studies in a murine model of disseminated cancer validated the in vivo target cell selectivity of our vector agent. Of note, clear gains in therapeutic index accrued these vector modifications. Whereas there is universal recognition of the value of vector targeting, very few reports have validated its direct utility in the context of cancer gene therapy. In this regard, our article validates the direct gains that may accrue these methods in the stringent delivery context of disseminated neoplastic disease. Efforts to improve vector targeting thus represent a critical direction to fully realize the promise of cancer gene therapy.
Collapse
Affiliation(s)
- Myungeun Lee
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Zhi Hong Lu
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Jie Li
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Elena A Kashentseva
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Igor P Dmitriev
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Samir A Mendonca
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - David T Curiel
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri. .,Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
9
|
Targeting Endothelial Erk1/2-Akt Axis as a Regeneration Strategy to Bypass Fibrosis during Chronic Liver Injury in Mice. Mol Ther 2018; 26:2779-2797. [PMID: 30266653 DOI: 10.1016/j.ymthe.2018.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 08/13/2018] [Accepted: 08/19/2018] [Indexed: 02/08/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) have great capacity for liver regeneration, and this capacity can easily switch to profibrotic phenotype, which is still poorly understood. In this study, we elucidated a potential target in LSECs for regenerative treatment that can bypass fibrosis during chronic liver injury. Proregenerative LSECs can be transformed to profibrotic phenotype after 4 weeks of carbon tetrachloride administration or 10 days of bile duct ligation. This phenotypic alternation of LSECs was mediated by extracellular regulated protein kinases 1 and 2 (Erk1/2)-Akt axis switch in LSECs during chronic liver injury; Erk1/2 was normally associated with maintenance of the LSEC proregenerative phenotype, inhibiting hepatic stellate cell (HSC) activation and promoting tissue repair by enhancing nitric oxide (NO)/reactive oxygen species (ROS) ratio and increasing expression of hepatic growth factor (HGF) and Wingless-type MMTV integration site family member 2 (Wnt2). Alternatively, Akt induced LSEC profibrotic phenotype, which mainly stimulated HSC activation and concomitant senescence by reducing NO/ROS ratio and decreasing HGF/Wnt2 expression. LSEC-targeted adenovirus or drug particle to promote Erk1/2 activity can alleviate liver fibrosis, accelerate fibrosis resolution, and enhance liver regeneration. This study demonstrated that the Erk1/2-Akt axis acted as a switch to regulate the proregenerative and profibrotic phenotypes of LSECs, and targeted therapy promoted liver regeneration while bypassing fibrosis, providing clues for a more effective treatment of liver diseases.
Collapse
|