1
|
Zhang Y, Zhang Z, Yu Q, Lan B, Shi Q, Liu Y, Zhang W, Li F. Dual-factor model of sleep and diet: a new approach to understanding central fatigue. Front Neurosci 2024; 18:1465568. [PMID: 39355851 PMCID: PMC11442446 DOI: 10.3389/fnins.2024.1465568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Background Numerous studies have recently examined the impact of dietary factors such as high-fat diets on fatigue. Our study aims to investigate whether high-fat diet (HFD) alone or combined with alternate-day fasting (ADF) can lead to the central fatigue symptoms and to investigate the potential integration of dietary and sleep variables in the development of central fatigue models. Methods Seventy-five male Wistar rats were divided into five groups: control, HFD, HFD + ADF, modified multiple platform method (MMPM), and MMPM+HFD + ADF. Each group underwent a 21-day modeling period according to their respective protocol. Their behavioral characteristics, fatigue biochemical markers, hippocampal pathological changes, mitochondrial ultrastructure, and oxidative stress damage were analyzed. Results Our findings demonstrate that using only HFD did not cause central fatigue, but combining it with ADF did. This combination led to reduced exercise endurance, decreased locomotor activity, impaired learning and memory abilities, along with alterations in serum levels of alanine aminotransferase (ALT), creatine kinase (CK), and lactate (LAC), as well as hippocampal pathological damage and other central fatigue symptoms. Moreover, the MMPM+HFD + ADF method led to the most obvious central fatigue symptoms in rats, including a variety of behavioral changes, alterations in fatigue-related biochemical metabolic markers, prominent pathological changes in hippocampal tissue, severe damage to the ultrastructure of mitochondria in hippocampal regions, changes in neurotransmitters, and evident oxidative stress damage. Additionally, it was observed that rats subjected to HFD + ADF, MMPM, and MMPM+HFD + ADF modeling method exhibited significant brain oxidative stress damage. Conclusion We have demonstrated the promotive role of dietary factors in the development of central fatigue and have successfully established a more stable and clinically relevant animal model of central fatigue by integrating dietary and sleep factors.
Collapse
Affiliation(s)
- Yifei Zhang
- School of Tradional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zehan Zhang
- School of Tradional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingqian Yu
- School of Tradional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bijuan Lan
- School of Tradional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qinghuan Shi
- School of Tradional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Liu
- School of Tradional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Weiyue Zhang
- School of Nursing, Beijing University of Chinese Medicine, Beijing, China
| | - Feng Li
- School of Tradional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Zhao Z, Sun X, Tu P, Ma Y, Guo Y, Zhang Y, Liu M, Wang L, Chen X, Si L, Li G, Pan Y. Mechanisms of vascular invasion after cartilage injury and potential engineering cartilage treatment strategies. FASEB J 2024; 38:e23559. [PMID: 38502020 DOI: 10.1096/fj.202302391rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
Articular cartilage injury is one of the most common diseases in orthopedic clinics. Following an articular cartilage injury, an inability to resist vascular invasion can result in cartilage calcification by newly formed blood vessels. This process ultimately leads to the loss of joint function, significantly impacting the patient's quality of life. As a result, developing anti-angiogenic methods to repair damaged cartilage has become a popular research topic. Despite this, tissue engineering, as an anti-angiogenic strategy in cartilage injury repair, has not yet been adequately investigated. This exhaustive literature review mainly focused on the process and mechanism of vascular invasion in articular cartilage injury repair and summarized the major regulatory factors and signaling pathways affecting angiogenesis in the process of cartilage injury. We aimed to discuss several potential methods for engineering cartilage repair with anti-angiogenic strategies. Three anti-angiogenic tissue engineering methods were identified, including administering angiogenesis inhibitors, applying scaffolds to manage angiogenesis, and utilizing in vitro bioreactors to enhance the therapeutic properties of cultured chondrocytes. The advantages and disadvantages of each strategy were also analyzed. By exploring these anti-angiogenic tissue engineering methods, we hope to provide guidance for researchers in related fields for future research and development in cartilage repair.
Collapse
Affiliation(s)
- Zitong Zhao
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Xiaoxian Sun
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Pengcheng Tu
- Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Yong Ma
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, P.R. China
| | - Yang Guo
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, P.R. China
| | - Yafeng Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, P.R. China
| | - Mengmin Liu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Lining Wang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Xinyu Chen
- Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Lin Si
- Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Guangguang Li
- Orthopedics and traumatology department, Yixing Traditional Chinese Medicine Hospital, Yixing, P.R. China
| | - Yalan Pan
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| |
Collapse
|
3
|
Liu G, Wei J, Xiao W, Xie W, Ru Q, Chen L, Wu Y, Mobasheri A, Li Y. Insights into the Notch signaling pathway in degenerative musculoskeletal disorders: Mechanisms and perspectives. Biomed Pharmacother 2023; 169:115884. [PMID: 37981460 DOI: 10.1016/j.biopha.2023.115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
Degenerative musculoskeletal disorders are a group of age-related diseases of the locomotive system that severely affects the patient's ability to work and cause adverse sequalae such as fractures and even death. The incidence and prevalence of degenerative musculoskeletal disorders is rising owing to the aging of the world's population. The Notch signaling pathway, which is expressed in almost all organ systems, extensively regulates cell proliferation and differentiation as well as cellular fate. Notch signaling shows increased activity in degenerative musculoskeletal disorders and retards the progression of degeneration to some extent. The review focuses on four major degenerative musculoskeletal disorders (osteoarthritis, intervertebral disc degeneration, osteoporosis, and sarcopenia) and summarizes the pathophysiological functions of Notch signaling in these disorders, especially its role in stem/progenitor cells in each disorder. Finally, a conclusion will be presented to explore the research and application of the perspectives on Notch signaling in degenerative musculoskeletal disorders.
Collapse
Affiliation(s)
- Gaoming Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jun Wei
- Department of Clinical Medical School, Xinjiang Medical University, Urumqi 830054, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China; Department of Clinical Medical School, Xinjiang Medical University, Urumqi 830054, China.
| |
Collapse
|
4
|
Juan Z, Xing-tong M, Xu Z, Chang-yi L. Potential pathological and molecular mechanisms of temporomandibular joint osteoarthritis. J Dent Sci 2023; 18:959-971. [PMID: 37404608 PMCID: PMC10316511 DOI: 10.1016/j.jds.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Indexed: 07/06/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ OA) is a progressive degenerative disease of the temporomandibular joint (TMJ). The unclear etiology and mechanisms of TMJ OA bring great difficulties to early diagnosis and effective treatment, causing enormous burdens to patients' life and social economics. In this narrative review, we summarized the main pathological changes of TMJ OA, including inflammatory responses, degeneration of extracellular matrix (ECM), abnormal cell biological behaviors (apoptosis, autophagy, and differentiation) in TMJ tissue, and aberrant angiogenesis. All pathological features are closely linked to each other, forming a vicious cycle in the process of TMJ OA, which results in prolonged disease duration and makes it difficult to cure. Various molecules and signaling pathways are involved in TMJ OA pathogenesis, including nuclear factor kappa-B (NF-κB), mitogen-activated protein kinases (MAPKs), extracellular regulated protein kinases (ERKs) and transforming growth factor (TGF)-β signaling pathways et al. One molecule or pathway can contribute to several pathological changes, and the crosstalk between different molecules and pathways can further lead to a complicated condition TMJ OA. TMJ OA has miscellaneous etiology, complex clinical status, depressed treatment results, and poor prognosis. Therefore, novel in-vivo and in-vitro models, novel medicine, materials, and approaches for therapeutic procedures might be helpful for further investigation of TMJ OA. Furthermore, the role of genetic factors in TMJ OA needs to be elucidated to establish more reasonable and effective clinical strategies for diagnosing and treating TMJ OA.
Collapse
Affiliation(s)
- Zhang Juan
- Department of Prosthodontics, Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
| | - Mu Xing-tong
- Department of Prosthodontics, Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
| | - Zhang Xu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
- Institute of Stomatology, Tianjin Medical University, Tianjin, PR China
| | - Li Chang-yi
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
| |
Collapse
|
5
|
Mélou C, Pellen-Mussi P, Jeanne S, Novella A, Tricot-Doleux S, Chauvel-Lebret D. Osteoarthritis of the Temporomandibular Joint: A Narrative Overview. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:medicina59010008. [PMID: 36676632 PMCID: PMC9866170 DOI: 10.3390/medicina59010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Background and Objectives: This study reviewed the literature to summarize the current and recent knowledge of temporomandibular joint osteoarthritis (TMJOA). Methods: Through a literature review, this work summarizes many concepts related to TMJOA. Results: Although many signaling pathways have been investigated, the etiopathogenesis of TMJOA remains unclear. Some clinical signs are suggestive of TMJOA; however, diagnosis is mainly based on radiological findings. Treatment options include noninvasive, minimally invasive, and surgical techniques. Several study models have been used in TMJOA studies because there is no gold standard model. Conclusion: More research is needed to develop curative treatments for TMJOA, which could be tested with reliable in vitro models, and to explore tissue engineering to regenerate damaged temporomandibular joints.
Collapse
Affiliation(s)
- Caroline Mélou
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
- CHU Rennes, Pôle d’Odontologie, 35033 Rennes, France
- UFR Odontologie, 35043 Rennes, France
| | - Pascal Pellen-Mussi
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
| | - Sylvie Jeanne
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
- CHU Rennes, Pôle d’Odontologie, 35033 Rennes, France
- UFR Odontologie, 35043 Rennes, France
| | - Agnès Novella
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
| | - Sylvie Tricot-Doleux
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
| | - Dominique Chauvel-Lebret
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
- CHU Rennes, Pôle d’Odontologie, 35033 Rennes, France
- UFR Odontologie, 35043 Rennes, France
- Correspondence: ; Tel.: +33-2-23-23-43-64; Fax: +33-2-23-23-43-93
| |
Collapse
|
6
|
Zhao XX, Xie WQ, Xiao WF, Li HZ, Naranmandakh S, Bruyere O, Reginster JY, Li YS. Perlecan: Roles in osteoarthritis and potential treating target. Life Sci 2022; 312:121190. [PMID: 36379311 DOI: 10.1016/j.lfs.2022.121190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Osteoarthritis (OA) is the most common joint disease, affecting hundreds of millions of people globally, which leads to a high cost of treatment and further medical care and an apparent decrease in patient prognosis. The recent view of OA pathogenesis is that increased vascularity, bone remodeling, and disordered turnover are influenced by multivariate risk factors, such as age, obesity, and overloading. The view also reveals the gap between the development of these processes and early stage risk factors. This review presents the latest research on OA-related signaling pathways and analyzes the potential roles of perlecan, a typical component of the well-known protective structure against osteoarthritic pericellular matrix (PCM). Based on the experimental results observed in end-stage OA models, we summarized and analyzed the role of perlecan in the development of OA. In normal cartilage, it plays a protective role by maintaining the integrin of PCM and sequesters growth factors. Second, perlecan in cartilage is required to not only activate vascular epithelium growth factor receptor (VEGFR) signaling of endothelial cells for vascular invasion and catabolic autophagy, but also for different signaling pathways for the catabolic and anabolic actions of chondrocytes. Finally, perlecan may participate in pain sensitization pathways.
Collapse
Affiliation(s)
- Xiao-Xuan Zhao
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Wen-Qing Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wen-Feng Xiao
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Heng-Zhen Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Shinen Naranmandakh
- School of Arts and Sciences, National University of Mongolia, Sukhbaatar district, 14201 Ulaanbaatar, Mongolia
| | - Olivier Bruyere
- Department of Public Health, Epidemiology and Health Economics, University of Liège, CHU Sart Tilman B23, 4000 Liège, Belgium
| | - Jean-Yves Reginster
- Department of Public Health, Epidemiology and Health Economics, University of Liège, CHU Sart Tilman B23, 4000 Liège, Belgium.
| | - Yu-Sheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
7
|
Network Pharmacology-Based and Molecular Docking-Based Analysis of Suanzaoren Decoction for the Treatment of Parkinson's Disease with Sleep Disorder. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1752570. [PMID: 34660782 PMCID: PMC8519686 DOI: 10.1155/2021/1752570] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/18/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022]
Abstract
This study is aimed at exploring the possible mechanism of action of the Suanzaoren decoction (SZRD) in the treatment of Parkinson's disease with sleep disorder (PDSD) based on network pharmacology and molecular docking. Traditional Chinese Medicine Systems Pharmacology (TCMSP) was used to screen the bioactive components and targets of SZRD, and their targets were standardized using the UniProt platform. The disease targets of “Parkinson's disease (PD)” and “Sleep disorder (SD)” were collected by OMIM, GeneCards, and DisGeNET databases. Thereafter, the protein-protein interaction (PPI) network was constructed using the STRING platform and visualized by Cytoscape (3.7.2) software. Then, the DAVID platform was used to analyze the Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Cytoscape (3.7.2) software was also used to construct the network of the “herb-component-target-pathway.” The core active ingredients and core action targets of the drug were verified by molecular docking using AutoDock software. A total of 135 Chinese herbal components and 41 corresponding targets were predicted for the treatment of PDSD using SZRD. Fifteen important signaling pathways were screened, such as the cancer pathway, TNF signaling pathway, PI3K-AKT signaling pathway, HIF-1 signaling pathway, and Toll-like receptor signaling pathway. The results of molecular docking showed that the main active compounds could bind to the representative targets and exhibit good affinity. This study revealed that SZRD has the characteristics and advantages of “multicomponent, multitarget, and multipathway” in the treatment of PDSD; among these, the combination of the main active components of quercetin and kaempferol with the key targets of AKT1, IL6, MAPK1, TP53, and VEGFA may be one of the important mechanisms. This study provides a theoretical basis for further study of the material basis and molecular mechanism of SZRD in the treatment of PDSD.
Collapse
|
8
|
Li B, Guan G, Mei L, Jiao K, Li H. Pathological mechanism of chondrocytes and the surrounding environment during osteoarthritis of temporomandibular joint. J Cell Mol Med 2021; 25:4902-4911. [PMID: 33949768 PMCID: PMC8178251 DOI: 10.1111/jcmm.16514] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Temporomandibular joint (TMJ) osteoarthritis is a common chronic degenerative disease of the TMJ. In order to explore its aetiology and pathological mechanism, many animal models and cell models have been constructed to simulate the pathological process of TMJ osteoarthritis. The main pathological features of TMJ osteoarthritis include chondrocyte death, extracellular matrix (ECM) degradation and subchondral bone remodelling. Chondrocyte apoptosis accelerates the destruction of cartilage. However, autophagy has a protective effect on condylar chondrocytes. Degradation of ECM not only changes the properties of cartilage but also affects the phenotype of chondrocytes. The loss of subchondral bone in the early stages of TMJ osteoarthritis plays an aetiological role in the onset of osteoarthritis. In recent years, increasing evidence has suggested that chondrocyte hypertrophy and endochondral angiogenesis promote TMJ osteoarthritis. Hypertrophic chondrocytes secrete many factors that promote cartilage degeneration. These chondrocytes can further differentiate into osteoblasts and osteocytes and accelerate cartilage ossification. Intrachondral angiogenesis and neoneurogenesis are considered to be important triggers of arthralgia in TMJ osteoarthritis. Many molecular signalling pathways in endochondral osteogenesis are responsible for TMJ osteoarthritis. These latest discoveries in TMJ osteoarthritis have further enhanced the understanding of this disease and contributed to the development of molecular therapies. This paper summarizes recent cognition on the pathogenesis of TMJ osteoarthritis, focusing on the role of chondrocyte hypertrophy degeneration and cartilage angiogenesis.
Collapse
Affiliation(s)
- Baochao Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangzhao Guan
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Li Mei
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Abstract
Sleep maintains the function of the entire body through homeostasis. Chronic sleep deprivation (CSD) is a prime health concern in the modern world. Previous reports have shown that CSD has profound negative effects on brain vasculature at both the cellular and molecular levels, and that this is a major cause of cognitive dysfunction and early vascular ageing. However, correlations among sleep deprivation (SD), brain vascular changes and ageing have barely been looked into. This review attempts to correlate the alterations in the levels of major neurotransmitters (acetylcholine, adrenaline, GABA and glutamate) and signalling molecules (Sirt1, PGC1α, FOXO, P66shc, PARP1) in SD and changes in brain vasculature, cognitive dysfunction and early ageing. It also aims to connect SD-induced loss in the number of dendritic spines and their effects on alterations in synaptic plasticity, cognitive disabilities and early vascular ageing based on data available in scientific literature. To the best of our knowledge, this is the first article providing a pathophysiological basis to link SD to brain vascular ageing.
Collapse
|
10
|
Expression of Dickkopf-related Protein 1 in Patients with Temporomandibular Osteoarthritis after Treatment with Hyaluronic Acid. Curr Med Sci 2020; 40:574-579. [DOI: 10.1007/s11596-020-2215-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/10/2019] [Indexed: 10/23/2022]
|
11
|
MiR-21-5p regulates extracellular matrix degradation and angiogenesis in TMJOA by targeting Spry1. Arthritis Res Ther 2020; 22:99. [PMID: 32357909 PMCID: PMC7195789 DOI: 10.1186/s13075-020-2145-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/05/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Due to the lack of research on the pathological mechanism of temporomandibular joint osteoarthritis (TMJOA), there are few effective treatment measures in the clinic. In recent years, microRNAs (miRs) have been demonstrated to play an important role in the pathogenesis of osteoarthritis (OA) by regulating a variety of target genes, and the latest evidence shows that miR-21-5p is specifically overexpressed in OA. The purpose of this project was to clarify whether miR-21-5p can regulate the TMJOA process by targeting Spry1. METHODS TMJOA was induced by a unilateral anterior crossbite (UAC) model, and the effect of miR-21-5p knockout on TMJOA was evaluated by toluidine blue (TB), immunohistochemical (IHC) staining, Western blotting (WB) and RT-qPCR. Primary mouse condylar chondrocytes (MCCs) were isolated, cultured and transfected with a series of mimics, inhibitors, siRNA-Spry1 or cDNA Spry1. WB, RT-qPCR, IHC and TB were used to detect the effect of miR-21-5p and its target gene Spry1 on the expression of MMP-13, VEGF and p-ERK1/2 in TMJOA. The effect of miR-21-5p on angiogenesis was evaluated by chick embryo chorioallantoic membrane (CAM) assay and WB. RESULTS In the UAC model, the cartilage thickness and extracellular matrix of miR-21-5p knockout mice were less damaged, and miR-21-5p and UAC model were shown to affect the expression of Spry1, IL-1β, MMP-13, and VEGF. Luciferase experiments confirmed that Spry1 was the direct target of miR-21-5p. The expression levels of Spry1, MMP-13, VEGF and p-ERK1/2 in MCCs transfected with miR-21-5p mimic were higher than those in the inhibitor group. Under the simulated inflammatory environment of IL-1β, the expression levels of MMP-13, VEGF and p-ERK1/2 were positively correlated with miR-21-5p, while Spry1 was negatively correlated with miR-21-5p. Inhibition of miR-21-5p expression and overexpression of Spry1 enhanced the inhibition of MMP-13, VEGF and p-ERK1/2 expression. MiR-21-5p had a significant role in promoting angiogenesis in the chick embryo CAM assay, and this role was clearly mediated by the ERK-MAPK signalling pathway. CONCLUSION This study verified that miR-21-5p can promote the process of TMJOA by targeting Spry1, which provides a new direction for future research on the treatment of this disease.
Collapse
|
12
|
M Dunn C, Nevitt MC, Lynch JA, Jeffries MA. A pilot study of peripheral blood DNA methylation models as predictors of knee osteoarthritis radiographic progression: data from the Osteoarthritis Initiative (OAI). Sci Rep 2019; 9:16880. [PMID: 31727952 PMCID: PMC6856188 DOI: 10.1038/s41598-019-53298-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Knee osteoarthritis (OA) is a leading cause of chronic disability worldwide, but no diagnostic or prognostic biomarkers are available. Increasing evidence supports epigenetic dysregulation as a contributor to OA pathogenesis. In this pilot study, we investigated epigenetic patterns in peripheral blood mononuclear cells (PBMCs) as models to predict future radiographic progression in OA patients enrolled in the longitudinal Osteoarthritis Initiative (OAI) study. PBMC DNA was analyzed from baseline OAI visits in 58 future radiographic progressors (joint space narrowing at 24 months, sustained at 48 months) compared to 58 non-progressors. DNA methylation was quantified via Illumina microarrays and beta- and M-values were used to generate linear classification models. Data were randomly split into a 60% development and 40% validation subsets, models developed and tested, and cross-validated in a total of 40 cycles. M-value based models outperformed beta-value based models (ROC-AUC 0.81 ± 0.01 vs. 0.73 ± 0.02, mean ± SEM, comparison p = 0.002), with a mean classification accuracy of 73 ± 1% (mean ± SEM) for M- and 69 ± 1% for beta-based models. Adjusting for covariates did not significantly alter model performance. Our findings suggest that PBMC DNA methylation-based models may be useful as biomarkers of OA progression and warrant additional evaluation in larger patient cohorts.
Collapse
Affiliation(s)
- Christopher M Dunn
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, OK, USA
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, OK, USA
| | | | - John A Lynch
- University of California San Francisco, San Francisco, CA, USA
| | - Matlock A Jeffries
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, OK, USA.
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, OK, USA.
| |
Collapse
|
13
|
Calvo N, Carriere P, Martín MJ, Gigola G, Gentili C. PTHrP treatment of colon cancer cells promotes tumor associated-angiogenesis by the effect of VEGF. Mol Cell Endocrinol 2019; 483:50-63. [PMID: 30639585 DOI: 10.1016/j.mce.2019.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/30/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
We showed that Parathyroid Hormone-related Peptide (PTHrP) induces proliferation, migration, survival and chemoresistance via MAPKs and PI3K/AKT pathways in colorectal cancer (CRC) cells. The objective of this study was to investigate if PTHrP is also involved in tumor angiogenesis. PTHrP increased VEGF expression and the number of structures with characteristics of neoformed vessels in xenografts tumor. Also, PTHrP increased mRNA levels of VEGF, HIF-1α and MMP-9 via ERK1/2 and PI3K/Akt pathways in Caco-2 and HCT116 cells. Tumor conditioned media (TCMs) from both cell lines treated with PTHrP increases the number of cells, the migration and the tube formation in the endothelial HMEC-1 cells, whereas the neutralizing antibody against VEGF diminished this response. In contrast, PTHrP by direct treatment only increased ERK1/2 phosphorylation and the HMEC-1 cells number. These results provide the first evidence related to the mode of action of PTHrP that leads to its proangiogenic effects in the CRC.
Collapse
Affiliation(s)
- Natalia Calvo
- Dept. Biología Bioquímica y Farmacia-INBIOSUR, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| | - Pedro Carriere
- Dept. Biología Bioquímica y Farmacia-INBIOSUR, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María Julia Martín
- Dept. Biología Bioquímica y Farmacia-INBIOSUR, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Graciela Gigola
- Dept. Biología Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Claudia Gentili
- Dept. Biología Bioquímica y Farmacia-INBIOSUR, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
14
|
He D, An Y, Li Y, Wang J, Wu G, Chen L, Zhu G. RNA sequencing reveals target genes of temporomandibular joint osteoarthritis in rats after the treatment of low-intensity pulsed ultrasound. Gene 2018; 672:126-136. [DOI: 10.1016/j.gene.2018.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/21/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022]
|
15
|
Sun JY, Zhao ZW, Li WM, Yang G, Jing PY, Li P, Dang HZ, Chen Z, Zhou YA, Li XF. Knockdown of MALAT1 expression inhibits HUVEC proliferation by upregulation of miR-320a and downregulation of FOXM1 expression. Oncotarget 2017; 8:61499-61509. [PMID: 28977880 PMCID: PMC5617440 DOI: 10.18632/oncotarget.18507] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/21/2017] [Indexed: 12/12/2022] Open
Abstract
Regulation of cancer angiogenesis could be a useful strategy in cancer therapy. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA (lncRNA), and can induce cancer cell proliferation, while lncRNAs, generally are able to act as microRNA (miRNA) sponges. The latter is a type of competitive endogenous RNA (ceRNA) that regulates expression of the targeting miRNAs and protein-coding genes. This study investigated the proliferative role of MALAT1 in human umbilical vein endothelial cells (HUVECs) and the underlying molecular events. The data showed that knockdown of MALAT1 expression using MALAT1 siRNA inhibited HUVEC proliferation and also significantly decreased levels of FOXM1 mRNA and protein in vitro, while knockdown of FOXM1 expression reduced HUVEC proliferation. Annotation of HUVEC microarray data revealed that seven miRNAs, including miR-320a, were upregulated after knockdown of MALAT1 expression in HUVECs. MALAT1 was shown to reciprocally interact with miR-320a, i.e., expression of one negatively regulated levels of the other, whereas knockdown of MALAT1 expression promoted miR-320a levels. Furthermore, miR-320a could directly target and inhibit FOXM1 expression in HUVECs. Knockdown of MALAT1 expression enhanced miR-320a expression but reduced FOXM1 expression resulting in downregulation of HUVEC proliferation. However, such an effect was inhibited by miR-320a depletion. In conclusion, this study demonstrates that miR-320a plays an important role in mediating the effects of MALAT1 on HUVEC proliferation by suppression of FOXM1 expression. Thus, targeting of this gene pathway could be a novel strategy in cancer therapy.
Collapse
Affiliation(s)
- Jian-Yong Sun
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zheng-Wei Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei-Miao Li
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guang Yang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Peng-Yu Jing
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pei Li
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hai-Zhou Dang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhao Chen
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yong-An Zhou
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiao-Fei Li
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|