1
|
Li S, Hao L, Li N, Hu X, Yan H, Dai E, Shi X. Targeting the Hippo/YAP1 signaling pathway in hepatocellular carcinoma: From mechanisms to therapeutic drugs (Review). Int J Oncol 2024; 65:88. [PMID: 39092548 DOI: 10.3892/ijo.2024.5676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
The Hippo signaling pathway plays a pivotal role in regulating cell growth and organ size. Its regulatory effects on hepatocellular carcinoma (HCC) encompass diverse aspects, including cell proliferation, invasion and metastasis, tumor drug resistance, metabolic reprogramming, immunomodulatory effects and autophagy. Yes‑associated protein 1 (YAP1), a potent transcriptional coactivator and a major downstream target tightly controlled by the Hippo pathway, is influenced by various molecules and pathways. The expression of YAP1 in different cell types within the liver tumor microenvironment exerts varying effects on tumor outcomes, warranting careful consideration. Therefore, research on YAP1‑targeted therapies merits attention. This review discusses the composition and regulation mechanism of the Hippo/YAP1 signaling pathway and its relationship with HCC, offering insights for future research and cancer prevention strategies.
Collapse
Affiliation(s)
- Shenghao Li
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Liyuan Hao
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Na Li
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Huimin Yan
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050024, P.R. China
| | - Erhei Dai
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050024, P.R. China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| |
Collapse
|
2
|
Mranda GM, Xiang ZP, Liu JJ, Wei T, Ding Y. Advances in prognostic and therapeutic targets for hepatocellular carcinoma and intrahepatic cholangiocarcinoma: The hippo signaling pathway. Front Oncol 2022; 12:937957. [PMID: 36033517 PMCID: PMC9411807 DOI: 10.3389/fonc.2022.937957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/13/2022] [Indexed: 01/07/2023] Open
Abstract
Primary liver cancer is the sixth most frequently diagnosed cancer worldwide and the third leading cause of cancer-related death. The majority of the primary liver cancer cases are hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Worldwide, there is an increasing incidence of primary liver cancer cases due to multiple risk factors ranging from parasites and viruses to metabolic diseases and lifestyles. Often, patients are diagnosed at advanced stages, depriving them of surgical curability benefits. Moreover, the efficacy of the available chemotherapeutics is limited in advanced stages. Furthermore, tumor metastases and recurrence make primary liver cancer management exceptionally challenging. Thus, exploring the molecular mechanisms for the development and progression of primary liver cancer is critical in improving diagnostic, treatment, prognostication, and surveillance modalities. These mechanisms facilitate the discovery of specific targets that are critical for novel and more efficient treatments. Consequently, the Hippo signaling pathway executing a pivotal role in organogenesis, hemostasis, and regeneration of tissues, regulates liver cells proliferation, and apoptosis. Cell polarity or adhesion molecules and cellular metabolic status are some of the biological activators of the pathway. Thus, understanding the mechanisms exhibited by the Hippo pathway is critical to the development of novel targeted therapies. This study reviews the advances in identifying therapeutic targets and prognostic markers of the Hippo pathway for primary liver cancer in the past six years.
Collapse
|
3
|
Zheng HC, Xiang LW, Cui ZG, Xue H, E Y, Zhao MZ. The clinicopathological and prognostic significances of LATS1 expression in breast cancer. Histol Histopathol 2022; 37:665-677. [PMID: 35142365 DOI: 10.14670/hh-18-433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
AIM Large tumor suppressor gene 1 (LATS1) belongs to the PKA/PKG/PKC serine/threonine kinase subfamily of the Hippo signaling pathway and inactivates nuclear co-activators YAP1 and WWTR1 by phosphorylation. This study aimed to discern the clinicopathological and prognostic significances of LATS1 expression in breast cancer. METHODS We examined LATS1 expression in breast carcinogenesis and compared it with clinicopathological parameters and survival information of breast cancer patients using immunohistochemistry, western blotting, RT-PCR, and bioinformatics analysis. RESULTS LATS1 expression was downregulated in breast cancer at both mRNA and protein levels (P<0.05). LATS1 mRNA expression was negatively correlated with low ER and PR expression, aggressive subtypes (TNBC and HER2+ vs. luminal), and poor survival (P<0.05). Its protein expression was negatively linked to patient age, T stage, N stage, M stage histological grade, PR status, and unfavorable prognosis (P<0.05). There was a positive correlationship between nuclar and cytoplasmic LATS1 expression in breast cancer (P<0.05). CONCLUSIONS The downregulation of LATS1 expression plays a vital role in the carcinogenesis and progression of breast cancer. Thus, LATS1 loss was employed to indicate the aggressive behaviors and poor prognosis of breast cancer.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China.
| | - Li-Wei Xiang
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Science, Fukui, Japan
| | - Hang Xue
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Ying E
- Department of Oncology, Liaoning Cancer Hospital, Shenyang, China
| | - Ming-Zhen Zhao
- Department of Respiratory Medicine, The Affiliated Hospital of Chengde Medical University, Chengde, China
| |
Collapse
|
4
|
Padmavathi G, Monisha J, Bordoloi D, Banik K, Roy NK, Girisa S, Singh AK, Longkumer I, Baruah MN, Kunnumakkara AB. Tumor necrosis factor-α induced protein 8 (TNFAIP8/TIPE) family is differentially expressed in oral cancer and regulates tumorigenesis through Akt/mTOR/STAT3 signaling cascade. Life Sci 2021; 287:120118. [PMID: 34740574 DOI: 10.1016/j.lfs.2021.120118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Highest incidence of oral cancer is reported in India with reduced survival rate in the advanced stages due to lack of effective biomarkers. Therefore, it is essential to develop novel biomarkers for the better management of this disease. In the current study, TNFAIP8/TIPE protein family comprising of four proteins is explored for its role in oral cancer. METHODS IHC analysis of oral cancer TMA and Western blot analysis of tobacco treated oral cancer cells were performed to determine the differential expression of TIPE proteins in oral cancer. Further, CRISPR/Cas9-mediated gene editing was done to generate TIPE proteins' knockouts and MTT, colony formation, wound healing, cell cycle and Western blot analysis were performed to determine the effect of gene knockouts on various cancer hallmarks and the associated molecular targets of TIPE proteins. RESULTS AND DISCUSSION IHC results revealed that expression of TIPE, TIPE2 and TIPE3 were upregulated and TIPE1 was downregulated in oral cancer tissues compared to normal tissues. Similar results were observed upon treating oral cancer cells with tobacco carcinogens. Furthermore, knockout of TIPE or TIPE2 or TIPE3 significantly reduced the survival, proliferation, colony formation and migration of oral cancer cells whereas knockout of TIPE1 had an opposite effect. Further, TIPE, TIPE2 and TIPE3 knockout-mediated inhibition of proliferation was associated with inhibition of cell cycle progression at S or G2/M phases, and downregulation of proteins involved in cancer progression. We found that TIPE, TIPE1 and TIPE2 proteins regulate oral cancer progression through modulation of Akt/mTOR signaling cascade, whereas TIPE3 acts through an Akt-independent mTOR/STAT3 pathway. CONCLUSION Collectively, the TIPE proteins were proved to play significant roles in the progression of oral cancer thus warranting research and clinic attention for their therapeutic and prognostic values and raising the importance of specific targeting of TIPE proteins in cancer treatment.
Collapse
Affiliation(s)
- Ganesan Padmavathi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Javadi Monisha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Nand Kishor Roy
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Anuj Kumar Singh
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Imliwati Longkumer
- North-East Cancer Hospital and Research Institute, Guwahati 781023, Assam, India
| | | | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
5
|
Ge X, Niture S, Lin M, Cagle P, Li PA, Kumar D. MicroRNA-205-5p inhibits skin cancer cell proliferation and increase drug sensitivity by targeting TNFAIP8. Sci Rep 2021; 11:5660. [PMID: 33707587 PMCID: PMC7952414 DOI: 10.1038/s41598-021-85097-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor-α-induced protein 8 (TNFAIP8) is a member of the TIPE/TNFAIP8 family which regulates tumor growth and survival. Our goal is to delineate the detailed oncogenic role of TNFAIP8 in skin cancer development and progression. Here we demonstrated that higher expression of TNFAIP8 is associated with basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma development in patient tissues. Induction of TNFAIP8 expression by TNFα or by ectopic expression of TNFAIP8 in SCC or melanoma cell lines resulted in increased cell growth/proliferation. Conversely, silencing of TNFAIP8 decreased cell survival/cell migration in skin cancer cells. We also showed that miR-205-5p targets the 3'UTR of TNFAIP8 and inhibits TNFAIP8 expression. Moreover, miR-205-5p downregulates TNFAIP8 mediated cellular autophagy, increased sensitivity towards the B-RAFV600E mutant kinase inhibitor vemurafenib, and induced cell apoptosis in melanoma cells. Collectively our data indicate that miR-205-5p acts as a tumor suppressor in skin cancer by targeting TNFAIP8.
Collapse
Affiliation(s)
- Xinhong Ge
- Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.,Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA
| | - Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA.
| | - Minghui Lin
- Department of Respiratory Diseases, The Forth People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750021, Ningxia Hui Autonomous Region, China
| | - Patrice Cagle
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA
| | - P Andy Li
- Department of Pharmaceutical Sciences, Bio-Manufacturing Research Institute and Technology Enterprise (BRITE), College of Health and Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA.
| |
Collapse
|
6
|
Niture S, Lin M, Odera JO, Moore J, Zhe H, Chen X, Suy S, Collins SP, Kumar D. TNFAIP8 drives metabolic reprogramming to promote prostate cancer cell proliferation. Int J Biochem Cell Biol 2021; 130:105885. [PMID: 33227392 PMCID: PMC7770075 DOI: 10.1016/j.biocel.2020.105885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/04/2020] [Accepted: 11/07/2020] [Indexed: 11/20/2022]
Abstract
Tumor necrosis factor-α-induced protein 8 (TNFAIP8) is a member of TIPE/TNFAIP8 family, has been involved in the development and progression of various human cancers. We hypothesized that TNFAIP8 promotes prostate cancer (PCa) progression via regulation of oxidative phosphorylation (OXPHOS) and glycolysis. Ectopic expression of TNFAIP8 increased PCa cell proliferation/migration/spheroid formation by enhancing cell metabolic activities. Mechanistically, TNFAIP8 activated the PI3K-AKT pathway and up-regulated PCa cell survival. TNFAIP8 was also found to regulate the expression of glucose metabolizing enzymes, enhancing glucose consumption, and endogenous ATP production. Treatment with a glycolysis inhibitor, 2-deoxyglucose (2-DG), reduced TNFAIP8 mediated glucose consumption, ATP production, spheroid formation, and PCa cell migration. By maintaining mitochondrial membrane potential, TNFAIP8 increased OXPHOS and glycolysis. Moreover, TNFAIP8 modulates the production of glycolytic metabolites in PCa cells. Collectively, our data suggest that TNFAIP8 exerts its oncogenic effects by enhancing glucose metabolism and by facilitating metabolic reprogramming in PCa cells. Therefore, TNFAIP8 may be a biomarker associated with prostate cancer and indicate a potential therapeutic target.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| | - Minghui Lin
- Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Joab O Odera
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| | - John Moore
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| | - Hong Zhe
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004 China
| | - Xiaoxin Chen
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| | - Simeng Suy
- Department of Radiation Medicine, Georgetown University Hospital, WA, DC 20057, USA
| | - Sean P Collins
- Department of Radiation Medicine, Georgetown University Hospital, WA, DC 20057, USA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA.
| |
Collapse
|
7
|
Gu Z, Cui X, Sun P, Wang X. Regulatory Roles of Tumor Necrosis Factor-α-Induced Protein 8 Like-Protein 2 in Inflammation, Immunity and Cancers: A Review. Cancer Manag Res 2020; 12:12735-12746. [PMID: 33364825 PMCID: PMC7751774 DOI: 10.2147/cmar.s283877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α)-induced protein 8 (TNFAIP8/TIPE) family, including TNFAIP8 (TIPE), TNFAIP8 like-protein 1 (TNFAIP8L1/TIPE1), TNFAIP8 like-protein 2 (TNFAIP8L2/TIPE2), and TNFAIP8 like-protein 3 (TNFAIP8L3/TIPE3), plays a vital role in regulating inflammatory responses, immune homeostasis, and cancer development. Over the last decade, studies have shown that TIPE2 protein is differentially expressed in diverse cells and tissues. The dysregulation of TIPE2 protein can lead to dysregulation of inflammatory responses and immune homeostasis, and change the basic characteristics of cancers. In consideration of the immeasurable values of TIPE2 in diagnosis, treatment, and prognosis of various human diseases, this review will focus on the expression pattern, structure, and regulatory roles of TIPE2 in inflammation, immunity, and cancers.
Collapse
Affiliation(s)
- Zhengzhong Gu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Xiaohan Cui
- Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Pengda Sun
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Xudong Wang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| |
Collapse
|
8
|
Bordoloi D, Banik K, Vikkurthi R, Thakur KK, Padmavathi G, Sailo BL, Girisa S, Chinnathambi A, Alahmadi TA, Alharbi SA, Buhrmann C, Shakibaei M, Kunnumakkara AB. Inflection of Akt/mTOR/STAT-3 cascade in TNF-α induced protein 8 mediated human lung carcinogenesis. Life Sci 2020; 262:118475. [PMID: 32976884 DOI: 10.1016/j.lfs.2020.118475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023]
Abstract
Lung cancer is the leading cause of cancer-related death across the globe. Despite the marked advances in detection and therapeutic approaches, management of lung cancer patients remains a major challenge to oncologists which can be mainly attributed to late stage diagnosis, tumor recurrence and chemoresistance. Therefore, to overthrow these limitations, there arises a vital need to develop effective biomarkers for the successful management of this aggressive cancer type. Notably, TNF-alpha induced protein 8 (TIPE), a nuclear factor-kappa B (NF-κB)-inducible, oncogenic molecule and cytoplasmic protein which is involved in the regulation of T lymphocyte-mediated immunity and different processes in tumor cells such as proliferation, cell death and evasion of growth suppressors, might serve as one such biomarker which would facilitate effective management of lung cancer. Expression studies revealed this protein to be significantly upregulated in different lung cancer types, pathological conditions, stages and grades of lung tumor compared to normal human lung tissues. In addition, knockout of TIPE led to the reduced proliferation, survival, invasion and migration of lung cancer cells. Furthermore, TIPE was found to function through modulation of Akt/mTOR/STAT-3 signaling cascade. This is the first report which shows the involvement of TIPE in tobacco induced lung carcinogenesis. It positively regulated nicotine, NNK, NNN, and BaP induced proliferation, survival and migration of lung cancer cells possibly via Akt/STAT-3 signaling. Thus, this protein possesses important role in the pathogenesis of lung tumor and hence it can be targeted for developing newer therapeutic interventions for the clinico-management of lung cancer.
Collapse
Affiliation(s)
- Devivasha Bordoloi
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Kishore Banik
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Rajesh Vikkurthi
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine, King Saud University [Medical City], King Khalid University Hospital, PO Box-2925, Riyadh 11461, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Constanze Buhrmann
- Department of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Mehdi Shakibaei
- Department of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
9
|
Guo L, Zheng J, Luo J, Zhang Z, Shao G. Targeting Yes1 Associated Transcriptional Regulator Inhibits Hepatocellular Carcinoma Progression and Improves Sensitivity to Sorafenib: An in vitro and in vivo Study. Onco Targets Ther 2020; 13:11071-11087. [PMID: 33149619 PMCID: PMC7605682 DOI: 10.2147/ott.s249412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of this study was to investigate the role of Yes1 associated transcriptional regulator (YAP1) in the pathology of hepatocellular carcinoma (HCC) and its potential as a therapeutic target. Methods YAP1 expression in HCC and adjacent tissues was determined via immunohistochemistry; in HCC and human normal liver cell lines, expression was examined via Western blotting. The effects of YAP1 knockdown and overexpression were detected following transfection of HCC cells with siRNA-YAP1 recombinants or pcDNA3.1-YAP1 plasmids. A tumor xenograft model was constructed by implanting YAP1-knockdown lentivirus-infected Hep-3B cells into nude mice, and the animals were treated with sorafenib. Results In patients with HCC, YAP1 was upregulated in tumor tissue compared with adjacent tissue, and its high expression in the tumor was associated with increased Edmonson grade. In vitro, YAP1 expression was increased in Hep-3B, SK-HEP-1 and Huh7 cells, while it was similar in SMMC-7721 cells and LO2 cells. Meanwhile, YAP1 increased cell proliferation and invasion, promoted the progression of epithelial-mesenchymal transition, and inhibited cell apoptosis in HCC cells; furthermore, YAP1 knockdown combined with the administration of sorafenib decreased cell viability and increased cell apoptosis compared with YAP1 knockdown or treatment with sorafenib alone. In vivo, YAP1 knockdown inhibited tumor growth and metastasis, whereas it promoted apoptosis; meanwhile, YAP1 knockdown synergized with sorafenib to suppress tumor progression in HCC mice. Conclusion YAP1 is upregulated in both HCC tumor tissues and cell lines. Moreover, it promotes cell proliferation and invasion and promoted the progression of epithelial-mesenchymal transition in vitro. Furthermore, targeting YAP1 inhibits HCC progression and improves sensitivity to sorafenib in vitro and in vivo.
Collapse
Affiliation(s)
- Liwen Guo
- 1Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China
| | - Jiaping Zheng
- 1Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China
| | - Jun Luo
- 1Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China
| | - Zhewei Zhang
- 1Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China
| | - Guoliang Shao
- 1Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China
| |
Collapse
|
10
|
Gao H, Zhang Z, Jiang L, Zhang L, Qin L, Liu T, Yang S. TNFAIP8 variants as potential epidemiological and predictive biomarkers in ovarian cancer. Cancer Cell Int 2020; 20:396. [PMID: 32821249 PMCID: PMC7433149 DOI: 10.1186/s12935-020-01490-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/10/2020] [Indexed: 11/29/2022] Open
Abstract
Background This research aimed to investigate the association between tumor necrosis factor-a-induced protein 8 (TNFAIP8) polymorphisms and ovarian cancer (OC) susceptibility. Methods A case–control study of 210 patients with OC and 231 healthy controls was conducted to assess the association between TNFAIP8 polymorphisms (rs11064, rs1045241, and rs1045242) and OC risk in Heilongjiang Province of China. The SNaPshot SNP assay was conducted to detect SNP genotype. Logistic regression analysis was applied to illustrate the underlying association. Results Our research found that TNFAIP8 rs11064 and rs1045242 were significantly connected with the susceptibility of OC. Additionally, rs1045242 increased the risk of OC, while rs11064 performed a protective role in the risk of OC. Data revealed that rs1045242 strongly related with advanced FIGO stage, larger residual tumor, and the presence of recurrence. Conclusions TNFAIP8 genetic variants, which may play difference roles, were significantly associated with OC susceptibility. The underlying molecular mechanism needs be clarified with scientific evidence.
Collapse
Affiliation(s)
- Hongyu Gao
- Department of Gastroenterologic Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150081 China
| | - Zhiran Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, 150081 China
| | - Liangliang Jiang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, 150081 China
| | - Lei Zhang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150081 China
| | - Ling Qin
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150081 China
| | - Tianbo Liu
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, 150081 China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, 150081 China
| |
Collapse
|
11
|
Pang Y, Zhao Y, Wang Y, Wang X, Wang R, Liu N, Li P, Ji M, Ye J, Sun T, Li J, Ma D, Lu F, Ji C. TNFAIP8 promotes AML chemoresistance by activating ERK signaling pathway through interaction with Rac1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:158. [PMID: 32795319 PMCID: PMC7427779 DOI: 10.1186/s13046-020-01658-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022]
Abstract
Background Chemoresistance is emerging as a major barrier to successful treatment in acute myeloid leukemia (AML), and evasion of apoptosis is among the fundamental underlying mechanisms. Therefore, unraveling molecular networks that drive this process constitutes an urgent unmet need. Herein, we aim to characterize the role and molecular mechanism of the tumor necrosis factor ɑ-induced protein 8 (TNFAIP8), a novel anti-apoptotic molecule, in AML chemoresistance. Methods The expression levels of TNFAIP8 were assessed in AML patients and cell lines by RT-qPCR and western blots. The transcriptional regulation of TNFAIP8 was analyzed with luciferase reporter assay and ChIP followed by RT-qPCR. Functional experiments were conducted to evaluate the effects of TNFAIP8 on apoptosis, drug sensitivity and proliferation of AML cells. Potential effects of TNFAIP8 on the activation of extracellular signal-regulated kinase (ERK) pathway were detected by western blots. CoIP and P21-activated kinase (PAK) pull-down assay were performed to ascertain the upstream target. The overall effects of TNFAIP8 on AML were examined in murine models. Results Upregulated TNFAIP8 expression was first confirmed in human AML patients and cell lines. E74 like ETS transcription factor 1 (ELF1) was then identified to contribute to its aberrant expression. Through manipulating TNFAIP8 expression, we described its role in protecting AML cells from apoptosis induced by chemotherapeutic agents and in promoting drug resistance. Notably, the leukemia-promoting action of TNFAIP8 was mediated by sustaining activity of the ERK signaling pathway, through an interaction with Rac family small GTPase 1 (Rac1). In addition, in vivo experiments confirmed that TNFAIP8 suppression lowered leukemia infiltration and improved survival. Conclusion Our data provide a molecular basis for the role of TNFAIP8 in chemoresistance and progression of AML and highlight the unique function of TNFAIP8 as an attractive therapeutic target.
Collapse
Affiliation(s)
- Yihua Pang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yanan Zhao
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yan Wang
- Department of Hematology, Taian central hospital, Taian, 271000, Shandong, China
| | - Xinlu Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Ruiqing Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Na Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Peng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Min Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
12
|
Mohammadi S, Arefnezhad R, Danaii S, Yousefi M. New insights into the core Hippo signaling and biological macromolecules interactions in the biology of solid tumors. Biofactors 2020; 46:514-530. [PMID: 32445262 DOI: 10.1002/biof.1634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/26/2022]
Abstract
As an evolutionarily conserved pathway, Hippo signaling pathway impacts different pathology and physiology processes such as wound healing, tissue repair/size and regeneration. When some components of Hippo signaling dysregulated, it affects cancer cells proliferation. Moreover, the relation Hippo pathway with other signaling including Wnt, TGFβ, Notch, and EGFR signaling leaves effect on the proliferation of cancer cells. Utilizing a number of therapeutic approaches, such as siRNAs and long noncoding RNA (lncRNA) to prevent cancer cells through the targeting of Hippo pathways, can provide new insights into cancer target therapy. The purpose of present review, first of all, is to demonstrate the importance of Hippo signaling and its relation with other signaling pathways in cancer. It also tries to demonstrate targeting Hippo signaling progress in cancer therapy.
Collapse
Affiliation(s)
- Solmaz Mohammadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Center, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Depatment of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Wu X, Xiang H, Cong W, Yang H, Zhang G, Wang Y, Guo Z, Shen Y, Chen B. PLOD1, a target of miR-34c, contributes to cell growth and metastasis via repressing LATS1 phosphorylation and inactivating Hippo pathway in osteosarcoma. Biochem Biophys Res Commun 2020; 527:29-36. [PMID: 32446383 DOI: 10.1016/j.bbrc.2020.04.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 04/12/2020] [Indexed: 02/08/2023]
Abstract
Although dysregulated PLOD1 was reported in many cancers, its function in osteocarcoma (OS) progression and potential mechanism are totally unknown. In the present study, we found that the mRNA expression of PLOD1 was significantly upregulated in OS cells and tissues. The high expression of PLOD1 was correlated with the aggressive phenotypes of OS and poor prognosis. Gain- or loss-of-function assays demonstrated that PLOD1 promoted proliferation, migration, and invasion of OS cells in vitro, as well as tumorigenicity and metastasis in vivo. We found that PLOD1 inactivated Hippo-YAP pathway through inhibiting phosphorylation-LATS1 (p-LATS1) and -YAP (p-YAP). Immunofluorescence results validated that nuclear distribution of YAP was increased by PLOD1 overexpression and was decreased by PLOD1 depletion. Furthermore, PLOD1 was demonstrated as a target of miR-34c, which inhibited the luciferase activity of PLOD1 mRNA 3'-UTR and PLOD1 expression at both mRNA and protein levels. The expression of miR-34c was downregulated in OS tissues and negatively correlated with PLOD1 mRNA expression. We found that restoration of PLOD1 abolished the miR-34c induced inhibition of cell growth and invasion. More importantly, miR-34c led to upregulation of p-LATS1 and p-YAP, and reducing of nuclear YAP and TAZ in OS cells. The mice tumors, which formed from miR-34c lentivirus vectors, have relatively low expression of PLOD1 and nuclear YAP staining. Taken together, our findings revealed that PLOD1 promoted tumorigenesis and metastasis in OS, and the dysregulated miR-34c/PLOD1/Hippo pathway affected OS progression, providing a potential therapeutic strategy for treatment.
Collapse
Affiliation(s)
- Xiaolin Wu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongfei Xiang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenbin Cong
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huiying Yang
- Department of Pathology, Dezhou Municipal Hospital, Dezhou, China
| | - Guoqing Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhu Guo
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanqing Shen
- Operation Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bohua Chen
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
14
|
Niture S, Gyamfi MA, Lin M, Chimeh U, Dong X, Zheng W, Moore J, Kumar D. TNFAIP8 regulates autophagy, cell steatosis, and promotes hepatocellular carcinoma cell proliferation. Cell Death Dis 2020; 11:178. [PMID: 32152268 PMCID: PMC7062894 DOI: 10.1038/s41419-020-2369-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor-α-induced protein 8 (TNFAIP8) expression has been linked to tumor progression in various cancer types, but the detailed mechanisms of TNFAIP8 are not fully elucidated. Here we define the role of TNFAIP8 in early events associated with development of hepatocellular carcinoma (HCC). Increased TNFAIP8 levels in HCC cells enhanced cell survival by blocking apoptosis, rendering HCC cells more resistant to the anticancer drugs, sorafenib and regorafenib. TNFAIP8 also induced autophagy and steatosis in liver cancer cells. Consistent with these observations, TNFAIP8 blocked AKT/mTOR signaling and showed direct interaction with ATG3-ATG7 proteins. TNFAIP8 also exhibited binding with fatty acids and modulated expression of lipid/fatty-acid metabolizing enzymes. Chronic feeding of mice with alcohol increased hepatic levels of TNFAIP8, autophagy, and steatosis but not in high-fat-fed obese mice. Similarly, higher TNFAIP8 expression was associated with steatotic livers of human patients with a history of alcohol use but not in steatotic patients with no history of alcohol use. Our data indicate a novel role of TNFAIP8 in modulation of drug resistance, autophagy, and hepatic steatosis, all key early events in HCC progression.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, Durham, NC, 27707, USA
| | - Maxwell A Gyamfi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, Durham, NC, 27707, USA
| | - Minghui Lin
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, Durham, NC, 27707, USA
- Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Uchechukwu Chimeh
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, Durham, NC, 27707, USA
| | - Xialan Dong
- Department of Pharmaceutical Sciences, Bio-manufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University Durham, Durham, NC, 27707, USA
| | - Weifan Zheng
- Department of Pharmaceutical Sciences, Bio-manufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University Durham, Durham, NC, 27707, USA
| | - John Moore
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, Durham, NC, 27707, USA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, Durham, NC, 27707, USA.
- Department of Pharmaceutical Sciences, North Carolina Central University Durham, Durham, NC, 27707, USA.
| |
Collapse
|
15
|
Jiao J, Wang W, Guang H, Lin H, Bu Y, Wang Y, Bi Y, Chai B, Ran Z. 2,4,5-Trichloro-6-((2,4,6-trichlorophenyl)amino)isophthalonitrile, Exerts Anti-bladder Activities through IGF-1R/STAT3 Signaling. Chem Pharm Bull (Tokyo) 2019; 67:410-418. [DOI: 10.1248/cpb.c18-00680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jiayuan Jiao
- Pharmaceutical Research Laboratory, Shenyang Research Institute of Chemical Industry Co., Ltd
| | - Wanqiu Wang
- Pharmaceutical Research Laboratory, Shenyang Research Institute of Chemical Industry Co., Ltd
| | - Haihong Guang
- Pharmaceutical Research Laboratory, Shenyang Research Institute of Chemical Industry Co., Ltd
| | - He Lin
- Safety Evaluation Center, Shenyang Research Institute of Chemical Industry Co., Ltd
| | - Yanxin Bu
- Pharmaceutical Research Laboratory, Shenyang Research Institute of Chemical Industry Co., Ltd
| | - Yunhua Wang
- Pharmaceutical Research Laboratory, Shenyang Research Institute of Chemical Industry Co., Ltd
| | - Yi Bi
- Pharmaceutical Research Laboratory, Shenyang Research Institute of Chemical Industry Co., Ltd
| | - Baoshan Chai
- Pharmaceutical Research Laboratory, Shenyang Research Institute of Chemical Industry Co., Ltd
| | - Zhaojin Ran
- Pharmaceutical Research Laboratory, Shenyang Research Institute of Chemical Industry Co., Ltd
| |
Collapse
|
16
|
Liu T, Jiang L, Yu L, Ge T, Wang J, Gao H. Association of TNFAIP8 gene polymorphisms with endometrial cancer in northern Chinese women. Cancer Cell Int 2019; 19:105. [PMID: 31043860 PMCID: PMC6480735 DOI: 10.1186/s12935-019-0827-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/13/2019] [Indexed: 12/31/2022] Open
Abstract
Background Tumor necrosis factor-a-induced protein 8 (TNFAIP8) presented a elevated expression in endometrial cancer (EC). However, the relationship of TNFAIP8 gene polymorphisms with EC risk remains unclear. This case–control study aimed to investigate the effect of single nucleotide polymorphisms (SNPs) in TNFAIP8 on northern Chinese women with EC. Methods SNP rs11064, rs1045241, and rs1045242 in TNFAIP8 were successfully genotyped in 248 cancer-free controls and 226 ECs by SNaPshot method, respectively. Logistic regression was performed to assess relationship of SNPs with EC risk. The relationships of SNPs with clinicopathological variables were evaluated by Chi-square test or Student’s t-test or Fisher’s text. Results The minor alleles of rs11064 in TNFAIP8 were strongly associated with EC risk, with adjust odds ratio (OR) of 1.719 (95% CI 1.180–2.506, P = 0.005). The minor allele of rs1045242 in the TNFAIP8 gene was strongly associated with with EC risk (adjust OR: 1.636, 95% CI 1.107–2.417, P = 0.014). rs11064 SNPs correlated with TNFAIP8 protein expression in EC (P = 0.015). For rs1045242, patients with AG + GG presented higher TNFAIP8 protein expression than that with AA (P = 0.020). It also showed that SNP rs11064 was associated with advanced FIGO stage (P = 0.001), deep myometrial invasion (P = 0.047), and lymph node metastasis (P = 0.048) under the codominant model in ECs. Conclusions SNP rs11064 in TNFAIP8 increased EC risk and significantly related with its protein expression in northern Chinese women. Electronic supplementary material The online version of this article (10.1186/s12935-019-0827-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tianbo Liu
- 1Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, 150081 China
| | - Liangliang Jiang
- 1Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, 150081 China
| | - Libo Yu
- 1Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, 150081 China
| | - Tingting Ge
- 1Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, 150081 China
| | - Jing Wang
- 1Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, 150081 China
| | - Hongyu Gao
- 2Department of Gastroenterologic Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, 150081 China
| |
Collapse
|
17
|
Niture S, Moore J, Kumar D. TNFAIP8: Inflammation, Immunity and Human Diseases. JOURNAL OF CELLULAR IMMUNOLOGY 2019; 1:29-34. [PMID: 31723944 PMCID: PMC6853632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tumor necrosis factor (TNF)-alpha-induced protein 8 (TNFAIP8 /TIPE) family proteins are known to be involved in maintaining immune homeostasis. The TIPE family contains four members: tumor necrosis factor-α-induced protein 8 (TNFAIP8), TNFAIP8 like 1 (TIPE1), TNFAIP8 like 2 (TIPE2), and TNFAIP8 like 3 (TIPE3). Here we review the latest roles and associations of a founding member of TIPE family protein - TNFAIP8 in cellular function/signaling, inflammation, and immunity related human diseases.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| | - John Moore
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA,Correspondence should be addressed to Deepak Kumar;
| |
Collapse
|
18
|
Niture S, Dong X, Arthur E, Chimeh U, Niture SS, Zheng W, Kumar D. Oncogenic Role of Tumor Necrosis Factor α-Induced Protein 8 (TNFAIP8). Cells 2018; 8:cells8010009. [PMID: 30586922 PMCID: PMC6356598 DOI: 10.3390/cells8010009] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
Tumor necrosis factor (TNF)-α-induced protein 8 (TNFAIP8) is a founding member of the TIPE family, which also includes TNFAIP8-like 1 (TIPE1), TNFAIP8-like 2 (TIPE2), and TNFAIP8-like 3 (TIPE3) proteins. Expression of TNFAIP8 is strongly associated with the development of various cancers including cancer of the prostate, liver, lung, breast, colon, esophagus, ovary, cervix, pancreas, and others. In human cancers, TNFAIP8 promotes cell proliferation, invasion, metastasis, drug resistance, autophagy, and tumorigenesis by inhibition of cell apoptosis. In order to better understand the molecular aspects, biological functions, and potential roles of TNFAIP8 in carcinogenesis, in this review, we focused on the expression, regulation, structural aspects, modifications/interactions, and oncogenic role of TNFAIP8 proteins in human cancers.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, NC 27707, USA.
| | - Xialan Dong
- Bio-manufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA.
| | - Elena Arthur
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, NC 27707, USA.
| | - Uchechukwu Chimeh
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, NC 27707, USA.
| | | | - Weifan Zheng
- Bio-manufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA.
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, NC 27707, USA.
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
19
|
Xie Y, Zhou F, Zhao X. TNFAIP8 promotes cell growth by regulating the Hippo pathway in epithelial ovarian cancer. Exp Ther Med 2018; 16:4975-4982. [PMID: 30546405 PMCID: PMC6256973 DOI: 10.3892/etm.2018.6819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor-α-induced protein 8 (TNFAIP8) is an independent prognostic factor for cancer-specific and disease-free survival in patients with epithelial ovarian cancer (EOC). However, the exact mechanism of the biological role of TNFAIP8 in EOC remains unclear. In the present study, a siRNA specifically targeting TNFAIP8 was prepared to knock down TNFAIP8 in EOC cells. Cell growth, colony formation, apoptosis, and cell cycle distribution in TNFAIP8-deficient EOC cells were determined. In addition, the underlying molecular mechanisms were investigated by western blot analysis and reverse transcription quantitative polymerase chain reaction assays. It was demonstrated that the knockdown of TNFAIP8 inhibited EOC cell growth and colony formation, along with increased levels of apoptosis and cell cycle arrest. The results of the western blot analysis suggested that TNFAIP8 inhibited the expression of phosphorylated yes-associated protein 1 (YAP) while promoting total and nuclear YAP expression, followed by the regulation of apoptosis and cell cycle checkpoint protein expression in EOC. Overexpression of YAP in EOC cells efficiently attenuated cell growth inhibition in TNFAIP8-deficient EOC cells. In addition, knockdown of TNFAIP8 significantly impaired EOC tumor growth in vivo. Collectively, the data from the present study suggested that TNFAIP8 is an oncogene and a novel therapeutic target for EOC.
Collapse
Affiliation(s)
- Yao Xie
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Fei Zhou
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
20
|
TIPE Family of Proteins and Its Implications in Different Chronic Diseases. Int J Mol Sci 2018; 19:ijms19102974. [PMID: 30274259 PMCID: PMC6213092 DOI: 10.3390/ijms19102974] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/19/2018] [Accepted: 09/22/2018] [Indexed: 12/14/2022] Open
Abstract
The tumor necrosis factor-α-induced protein 8-like (TIPE/TNFAIP8) family is a recently identified family of proteins that is strongly associated with the regulation of immunity and tumorigenesis. This family is comprised of four members, namely, tumor necrosis factor-α-induced protein 8 (TIPE/TNFAIP8), tumor necrosis factor-α-induced protein 8-like 1 (TIPE1/TNFAIP8L1), tumor necrosis factor-α-induced protein 8-like 2 (TIPE2/TNFAIP8L2), and tumor necrosis factor-α-induced protein 8-like 3 (TIPE3/TNFAIP8L3). Although the proteins of this family were initially described as regulators of tumorigenesis, inflammation, and cell death, they are also found to be involved in the regulation of autophagy and the transfer of lipid secondary messengers, besides contributing to immune function and homeostasis. Interestingly, despite the existence of a significant sequence homology among the four members of this family, they are involved in different biological activities and also exhibit remarkable variability of expression. Furthermore, this family of proteins is highly deregulated in different human cancers and various chronic diseases. This review summarizes the vivid role of the TIPE family of proteins and its association with various signaling cascades in diverse chronic diseases.
Collapse
|
21
|
Yang C, Xu W, Meng X, Zhou S, Zhang M, Cui D. SCC-S2 Facilitates Tumor Proliferation and Invasion via Activating Wnt Signaling and Depressing Hippo Signaling in Colorectal Cancer Cells and Predicts Poor Prognosis of Patients. J Histochem Cytochem 2018; 67:65-75. [PMID: 30216108 DOI: 10.1369/0022155418799957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
SCC-S2 overexpression has been implicated in several human cancers, its correlation with prognosis and the mechanism how it reserved biological roles are still uncertain. The current study demonstrated that, in 142 archived colorectal carcinoma (CRC) tissue samples, SCC-S2 expression was significantly correlated with higher histological grade ( p=0.001), tumor invasion ( p=0.001), advanced Dukes staging ( p=0.002), positive regional lymph node metastasis ( p=0.024), and poor overall survival ( p<0.001). MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and Transwell assays showed that SCC-S2 significantly promoted the proliferation and invasion. SCC-S2 expression was also accompanied by the overexpression CyclinD1, matrix metalloproteinase-7 (MMP-7), active-β-catenin, yes-associated protein (YAP), and connective tissue growth factor (CTGF), as well as the depression of p-large tumor suppressor kinase 1 (p-LATS1) and p-YAP. Moreover, SCC-S2 interacted and colocalized with LATS1, the interaction may interrupt Hippo signaling and thereafter activate canonical Wnt signaling. In conclusion, our data suggested that SCC-S2 was associated with the progression and unfavorable prognosis of CRCs. Meanwhile, SCC-S2 facilitated canonical Wnt signaling and its downstream effectors (CyclinD1, MMP-7) and promoted tumor proliferation and invasion, which depended on the inhibition of Hippo signaling induced by SCC-S2-LATS1 interaction. These results indicated that SCC-S2 might be used as a novel target for the prevention and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Chuanjia Yang
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China.,Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Weixue Xu
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China.,Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiangzhen Meng
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China.,Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Siqi Zhou
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China.,Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Minglu Zhang
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China.,Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Dongxu Cui
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China.,Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
22
|
Padmavathi G, Banik K, Monisha J, Bordoloi D, Shabnam B, Arfuso F, Sethi G, Fan L, Kunnumakkara AB. Novel tumor necrosis factor-α induced protein eight (TNFAIP8/TIPE) family: Functions and downstream targets involved in cancer progression. Cancer Lett 2018; 432:260-271. [DOI: 10.1016/j.canlet.2018.06.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022]
|
23
|
TNFAIP8 promotes the proliferation and cisplatin chemoresistance of non-small cell lung cancer through MDM2/p53 pathway. Cell Commun Signal 2018; 16:43. [PMID: 30064446 PMCID: PMC6069800 DOI: 10.1186/s12964-018-0254-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/19/2018] [Indexed: 12/29/2022] Open
Abstract
Background The highly refractory nature of non-small cell lung cancer (NSCLC) to chemotherapeutic drugs is an important factor resulting in its poor prognosis. Recent studies have revealed that tumour necrosis factor alpha-induced protein 8 (TNFAIP8) is involved in various biological and pathological processes of cells, but their underlying mechanisms in processes ranging from cancer development to drug resistance have not been fully elucidated. Methods TNFAIP8 expression in clinical NSCLC samples was examined through immunohistochemistry (IHC). After adjusting for patients’ characteristics with propensity score matching, Kaplan-Meier analysis and Cox regression analysis were performed for comparison of patients’ survival according to the TNFAIP8 level. Lentiviral transfection with TNFAIP8-specific shRNAs was used to establish stable TNFAIP8 knockdown (TNFAIP8 KD) NCI-H460, A549 and cis-diamminedichloroplatinum II resistant A549 (A549/cDDP) cell lines. Cell proliferation and viability were assessed by CCK-8 assay. Cell cycle was examined by flow cytometry. Multiple pathways regulated by TNFAIP8 KD were revealed by microarray analysis. Results We found that high TNFAIP8 expression was associated with advanced pT stage, advanced pTNM stage, lymph node metastasis and unfavourable survival in NSCLC patients. TNFAIP8 shRNAs reduced in vitro cancer cell proliferation and in vivo tumor growth. Additionally, TNFAIP8 KD increased the sensitivity of NSCLC cells to cisplatin in vitro and in vivo. Conversely, up-regulation of TNFAIP8 promoted the proliferation and drug resistance to cisplatin of NSCLC cells. TNFAIP8 influences cancer progression pathways involving the MDM2/p53 pathway. Indeed, we observed that TNFAIP8 KD mediated the MDM2 downregulation and the p53 ubiquitination, thereby decreasing the degradation of p53 protein. shRNA p53 reversed TNFAIP8 shRNA-mediated regulation of cell proliferation, cell cycle, cisplatin sensitivity, and expression levels of RAD51, a DNA repair gene. Conclusion Our work uncovers a hitherto unappreciated role of TNFAIP8 in NSCLC proliferation and cisplatin chemoresistance that is mediated through the MDM2/p53 pathway. These findings might offer potential therapeutic targets for reversing cisplatin resistance in NSCLC patients with high TNFAIP8 expression. Electronic supplementary material The online version of this article (10.1186/s12964-018-0254-x) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Wu J, Zhao Z, Zhang H, Kong F, Jiang H, Huang K, Zheng H. LATS1 inhibits metastasis and epithelial-mesenchymal transition in head and neck squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2053-2063. [PMID: 31938312 PMCID: PMC6958224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/22/2018] [Indexed: 06/10/2023]
Abstract
LATS1 is a serine/threonine kinase of the Hippo signaling pathway that phosphorylates and inactivates transcriptional co-activators YAP1 and WWTR1. To investigate roles of LATS1 expression in head and neck squamous cell carcinomas (HNSCCs), we transfected LATS1-expressing plasmid into B88 cells and examined the phenotypes and their relevant molecules. LATS1 expression was analyzed using immunohistochemistry on tissue microarray, Oncomine, and TCGA databases. LATS1 overexpression was found to suppress growth, migration and invasion, and induce apoptosis, G2 arrest, and mesenchymal to epithelial transition (MET) (P < 0.05). Both increased expression of P21, Bax, and E-cadherin and decreased expression of Cyclin B1, D1, Bcl-2, and MMPs. Twist and N-cadherin were detected in B88 transfectants, in comparison to mock and control by Western blot. Nuclear LATS1 expression was weaker in primary cancers than in normal squamous tissue and dysplasia (P < 0.05) but versa for cytoplasmic counterpart (P < 0.05). Cytoplasmic LATS1 expression was positively correlated with lymph node metastasis (P < 0.05). Survival analysis showed that differentiation degree was an independent factor of long overall and relapse-free survival of HNSCC patients (P < 0.05). According to bioinformatics analysis, we found upregulated LATS1 mRNA expression in HNSCCs (P < 0.05). Cox proportional hazards model indicated that perineural invasion and distant metastasis were independent prognostic factors for overall survival of HNSCC (P < 0.05). These findings suggest nucleocytoplasmic translocation of LATS1 protein and upregulated expression of LATS1 mRNA during tumorigenesis of HNSCC. LATS1 mRNA overexpression may reverse aggressive phenotypes of HNSCC cells, as a gene therapy target.
Collapse
Affiliation(s)
- Jicheng Wu
- Department of Experimental Oncology, Shengjing Hospital of China Medical UniversityShenyang, China
| | - Zhijuan Zhao
- Department of Pathology, The First Affiliated Hospital of Jinzhou Medical UniversityJinzhou, China
| | - Huiling Zhang
- Department of Experimental Oncology, Shengjing Hospital of China Medical UniversityShenyang, China
| | - Fanshuang Kong
- Department of Experimental Oncology, Shengjing Hospital of China Medical UniversityShenyang, China
| | - Huamao Jiang
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical UniversityJinzhou, China
| | - Keqiang Huang
- Department of Stomatology, The Second Affiliated Hospital of Jinzhou Medical UniversityJinzhou, China
| | - Huachuan Zheng
- Department of Experimental Oncology, Shengjing Hospital of China Medical UniversityShenyang, China
| |
Collapse
|
25
|
Zhang L, Liu R, Luan YY, Yao YM. Tumor Necrosis Factor-α Induced Protein 8: Pathophysiology, Clinical Significance, and Regulatory Mechanism. Int J Biol Sci 2018; 14:398-405. [PMID: 29725261 PMCID: PMC5930472 DOI: 10.7150/ijbs.23268] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/26/2018] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor-α-induced protein-8 (TNFAIP8) is the earliest discovered component of TNFAIP8 family [tumor necrosis factor-α-induced protein-8 like (TIPE) family]. TNFAIP8 contains a putative death effector domain (DED) homologous to DED II in FLIP (Fas-associated death domain-like interleukin-1β-converting enzyme-inhibitory protein), which may affect cell survival/death process. Recently, it has been demonstrated that TNFAIP8 could inhibit apoptosis and autophagy in various types of cells. Moreover, TNFAIP8 level fluctuated evidently in patients with inflammatory, malignant, and autoimmune diseases, indicating that it might be an anti-apoptotic and oncogenetic protein. Herein we will review the discovery, gene/protein structure, pathophysiological functions, and clinical significance of TNFAIP8 together with its potential regulatory mechanism.
Collapse
Affiliation(s)
- Lei Zhang
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, People's Republic of China.,Emergency Department, The General Hospital of the Chinese PLA Rocket Force, Beijing 100088, People's Republic of China
| | - Ran Liu
- Department of Endocrinology, 307th Hospital of the Chinese PLA, Beijing 100071, People's Republic of China
| | - Ying-Yi Luan
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Yong-Ming Yao
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| |
Collapse
|