1
|
Fan K, Ni X, Shen S, Gong Z, Wang J, Xin Y, Zheng B, Sun W, Liu H, Suo T, Ni X, Liu H. Acetylation stabilizes stathmin1 and promotes its activity contributing to gallbladder cancer metastasis. Cell Death Dis 2022; 8:265. [PMID: 35581193 PMCID: PMC9114396 DOI: 10.1038/s41420-022-01051-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/10/2021] [Accepted: 04/29/2022] [Indexed: 01/16/2023]
Abstract
Gallbladder cancer is the most common biliary tract malignant tumor with highly metastatic characters and poor prognosis. However, the underlying mechanism remains unclear. Stathmin1 is ubiquitous phosphoprotein, regulating microtubule stabilization. We identified the acetylation of stahtmin1 at lysine 9 (K9) in gallbladder cancer. K9 acetylation of stathmin1 was reversely regulated by the acetyltransferase PCAF and the deacetylases sirt2. K9 acetylation of stathmin1 inhibited the combining of stathmin1 to E3 ubiquitin ligase RLIM, thereby inhibiting its ubiquitination degradation. Moreover, K9 acetylation also promoted the activity of stahtmin1 interacting and destabilizing microtubule through the inhibition of stathmin1 phosphorylation. K9 acetylated stathmin1 significantly promoted gallbladder cancer cell migration and invasion viability in vitro and lung metastasis in vivo, and indicated poor prognosis of nude mice. IHC assay suggested the positive correlation of high levels of K9 acetylation and stathmin1 expression in gallbladder cancer. Our study revealed that K9 acetylation up-regulated stathmin1 protein stability and microtubule-destabilizing activity to promoted gallbladder cancer metastasis, which provides a potential target for gallbladder cancer therapy.
Collapse
Affiliation(s)
- Kun Fan
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of General Surgery, Central Hospital of Xuhui District, Shanghai, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Xiaojian Ni
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Sheng Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of General Surgery, Central Hospital of Xuhui District, Shanghai, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Zijun Gong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Jiwen Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Yanlei Xin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Bohao Zheng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Wentao Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Han Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Tao Suo
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Xiaoling Ni
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China. .,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China. .,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China. .,Biliary Tract Disease Institute, Fudan University, Shanghai, China.
| | - Houbao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China. .,Department of General Surgery, Central Hospital of Xuhui District, Shanghai, China. .,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China. .,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China. .,Biliary Tract Disease Institute, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Li Z, Gao W, Fei Y, Gao P, Xie Q, Xie J, Xu Z. NLGN3 promotes neuroblastoma cell proliferation and growth through activating PI3K/AKT pathway. Eur J Pharmacol 2019; 857:172423. [PMID: 31150649 DOI: 10.1016/j.ejphar.2019.172423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/22/2022]
Abstract
Neuroblastoma is the most common extracranial solid tumor of childhood, previous studies show synaptic protein neuroligin-3 (NLGN3) promotes glioma proliferation and growth, However, no investigation about the role of NLGN3 in neuroblastoma was reported. Here, we found NGLGN3 was significantly upregulated in neuroblastoma cells and tissues, its overexpression significantly promoted neuroblastoma cell proliferation and growth determined by MTT analysis, colony formation assay, cell cycle progression analysis, BrdU incorporation assay and animal model, while its knockdown inhibited cell proliferation and growth. Then we found NLGN3 could increase the phosphorylation level of AKT and the transcription activity of FOXO family, suggesting NLGN3 activated PI3K/AKT pathway, inhibition of PI3K/AKT pathway in NLGN3 overexpressing cells inhibited cell proliferation, confirming NLGN3 promoted neuroblastoma proliferation through activating PI3K/AKT pathway. In summary, we found NLGN3 promoted neuroblastoma cell proliferation and growth through activating PI3K/AKT pathway and providing a new target for neuroblastoma therapy.
Collapse
Affiliation(s)
- Zuoqing Li
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Wenzong Gao
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yingchun Fei
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Pengfei Gao
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Qigen Xie
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Juntao Xie
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| | - Zhe Xu
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
3
|
Kaavya J, Mahalaxmi I, Devi SM, Santhy KS, Balachandar V. Targeting phosphoinositide-3-kinase pathway in biliary tract cancers: A remedial route? J Cell Physiol 2018; 234:8259-8273. [PMID: 30370571 DOI: 10.1002/jcp.27673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/04/2018] [Indexed: 01/17/2023]
Abstract
Biliary tract cancers (BTC) are aggressive tumours with a low survival rate. At the advent of the genomic era, various genetic mutations in cell signalling pathways have been incriminated in carcinogenesis. Genomic analysis studies have connected main components of the phosphoinositide-3-kinase (PI3K) signalling pathway to BTC. PI3K pathway playing a central role in cell signalling and being deregulated in various tumours has been studied as a target for chemotherapy. Novel compounds have also been identified in preclinical trials that specifically target the PI3K pathway in BTCs, but these studies have not accelerated to clinical use. These novel compounds can be examined in upcoming studies to validate them as potential therapeutic agents, as further research is required to combat the growing need for adjuvant chemotherapy to successfully battle this tumour type. Furthermore, these molecules could also be used along with gemcitabine, cisplatin and 5-fluorouracil to improve sensitivity of the tumour tissue to chemotherapy. This review focuses on the basics of PI3K signalling, genetic alterations of this pathway in BTCs and current advancement in targeting this pathway in BTCs. It emphasizes the need for gene-based drug screening in BTC. It may reveal various novel targets and drugs for amelioration of survival in patients with BTC and serve as a stepping stone for further research.
Collapse
Affiliation(s)
- Jayaramayya Kaavya
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Avinashilingam University for Women, Coimbatore, India
| | - Iyer Mahalaxmi
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Avinashilingam University for Women, Coimbatore, India
| | | | - K S Santhy
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Avinashilingam University for Women, Coimbatore, India
| | - Vellingiri Balachandar
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| |
Collapse
|
4
|
Chen RJ, Shun CT, Yen ML, Chou CH, Lin MC. Methyltransferase G9a promotes cervical cancer angiogenesis and decreases patient survival. Oncotarget 2017; 8:62081-62098. [PMID: 28977928 PMCID: PMC5617488 DOI: 10.18632/oncotarget.19060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/12/2017] [Indexed: 12/17/2022] Open
Abstract
Research suggests that the epigenetic regulator G9a, a H3K9 histone methyltransferase, is involved in cancer invasion and metastasis. Here we show that G9a is linked to cancer angiogenesis and poor patient survival. Invasive cervical cancer has a higher G9a expression than cancer precursors or normal epithelium. Pharmacological inhibition and genetic silencing of G9a suppresses H3K9 methylation, cancer cell proliferation, angiogenesis, and cancer cell invasion/migration, but not apoptosis. Microarray and quantitative reverse transcription polymerase chain reaction analyses reveal that G9a induces a cohort of angiogenic factors that include angiogenin, interleukin-8, and C-X-C motif chemokine ligand 16. Depressing G9a by either pharmacological inhibitor or gene knock down significantly reduces angiogenic factor expression. Moreover, promoting G9a gene expression augments transcription and angiogenic function. A luciferase reporter assay suggests that knockdown of G9a inhibits transcriptional activation of interleukin-8. G9a depletion suppresses xenograft tumor growth in mouse model, which is linked to a decrease in microvessel density and proliferating cell nuclear antigen expression. Clinically, higher G9a expression correlates with poorer survival for cancer patients. For patients’ primary tumors a positive correlation between G9a expression and microvessel density also exists. In addition to increasing tumor cell proliferation, G9a promotes tumor angiogenesis and reduces the patient survival rate. G9a may possess great value for targeted therapies.
Collapse
Affiliation(s)
- Ruey-Jien Chen
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei 100, Taiwan
| | - Chia-Tung Shun
- Department of Pathology, National Taiwan University, Taipei 100, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei 100, Taiwan
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei 100, Taiwan
| | - Ming-Chieh Lin
- Department of Pathology, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|